
Abstract

1 Introduction

Operator Re�nement Method

Learning New Planning Operators by Exploration and Experimentation

Yolanda Gil

Information Sciences Institute, USC

4676 Admiralty Way

Marina del Rey, CA 90292

gil@isi.edu

This paper addresses a computational approach to the automated acquisition of domain knowl-

edge for planning systems via experimentation with the environment. Previous work showed how

existing incomplete operators can be re�ned by adding missing preconditions and e�ects. Here

we develop additional methods such as direct analogy to acquire new operators, decomposition of

monolithic operators into meaningful sub-operators, and experimentation with partially-speci�ed

operators.

In order for autonomous systems to interact with their environment in an intelligent way, they must

be given the ability to adapt and learn incrementally and deliberately. Our approach is to improve

initially hand-coded models for planning by failure-driven experimentation with the environment.

Incompleteness is one possible fault in the given domain model. The initial domain may contain

incompletely speci�ed operators, and may be missing operators for legitimate actions that the

planner can use to achieve goals. In previous work [1], we described the use of experimentation

within the (ORM) to �nd new preconditions and e�ects of existing

operators. Shen and Simon [3, 4] describe methods to learn new operators: by exploring available

actions whose e�ects are unknown, or by splitting an existing operator into two di�erent ones

when an expectation failure occurs. This paper presents some additional methods to acquire new

operators. The �rst method presented is based on constructing new operators by direct analogy

with existing ones through the types of the objects that they are applied to. Then we show how

to create micro-operators, which contain only some of the preconditions and e�ects of a given

operator. We describe two di�erent methods to do this: building partial operators and sequencing.

Our methods are goal-directed: they are triggered when the planner �nds itself in a situation where

it cannot solve a problem. The system assumes that the available knowledge is incomplete and tries

the various methods to formulate new operators. Learning is always incremental, preferring overly

incomplete speci�cations (that are progressively re�ned by the ORM) to more detailed speci�cations

that may be incorrect. None of the methods is guaranteed to work, only the external execution of

a proposed operator can prove its correctness. See [2] for more details on this work.

1



2 Direct Analogy

If a given problem cannot be solved by a set of operators because a precondition P that speci�es the type of an

object of an operator O cannot be achieved, formulate a new operator by direct analogy with O through P.

1. Find a related predicate. Look through the type hierarchy of the objects in the domain and �nd P' such

that it refers to objects of the same type of the unachievable precondition P.

2. Formulate a new operator. Construct a new operator O' with the e�ects of O that the original problem

subgoaled on and all the object types of O except P.

3. Experiment with the new operator. Execute the action. If the desired e�ects are not obtained, apply

experimentation to isolate which of the other preconditions of O need to be added to O'. If O' is applied

successfully in some state, then continue with step 4. Otherwise, go back to step 1, either looking for a

di�erent P' or considering a di�erent P.

4. Re�ne the new operator. Apply the ORM to �nd all the preconditions and additional e�ects of the new

operator.

New operators can be learned by direct analogy with existing ones. As an example, suppose that

the system has the knowledge about drilling holes shown in Figure 1(a). A hole can be made if

a drill has a high-helix drill bit of the size of the desired hole and some cutting uid, and if it is

holding a part that has a spot hole in the appropriate location. Suppose now that the system is

given the goal of producing a part with a hole in it, and there are no high-helix drill bits available.

The preconditions of the operator for drilling cannot be achieved, and the planner is not able to

solve the problem. But instead of returning a failure, our system uses the following reasoning to

derive a new operator for drilling with other types of drill bits that might be available. The system

�nds that both high-helix and twist drill bits are of the same object type: DRILL-BIT, and thus

it creates the new operator shown in plain font in Figure 1(b). The new operator only gets from

the original one the types of the objects that it is applied to, and the e�ect that it is created for.

Experiments are performed by executing the action under di�erent conditions until a successful

application is found. We describe in the next paragraph how the experiments can be designed

e�ciently. If the new operator cannot be applied successfully, then the process is repeated with

other types of drill bits. If this does not yield any success either, then other object types are tried.

In this case, a new operator for drilling holes with a milling machine is acquired when a di�erent

type of machine is considered. These experiments end when a successful application of a newly

formulated operator is found that proves its existence. Once this happens, the ORM helps to locate

additional conditions and e�ects that are speci�c to the new operator. They are shown with a star

(*) in Figure 1(b). The method is summarized in Table 1. Notice that the power of this method

comes from the possibility of relating P to P' through the object type hierarchy.

Table 1: Method for learning a new operator by direct analogy with an existing one.

Choosing the right experiments is an important issue for making learning e�cient. The condi-

tions for the experiments are guided by the preconditions and e�ects of the original operator. If

there are several operators for drilling that are available, then experiments that involve the pre-

conditions and postconditions common to all drilling operations are preferred. The more available

operators that already contain information about drilling, the more e�cient the experiments de-

signed to re�ne the new operator. Notice that these are heuristics and they do not make any

guarantees about the convergence of the process.

2



3 Micro-operator Formation

(DRILL-WITH-HIGH-HELIX-DRILL

(preconditions

(and (is-a <machine> DRILL)

(is-a <drill-bit> HIGH-HELIX-DRILL-BIT)

(same <drill-bit-diameter> <hole-diameter>)

(diameter-of-drill-bit <drill-bit> <drill-bit-diameter>)

(has-fluid <machine> <fluid> <part>)

(has-spot <part> <hole> <side> <loc-x> <loc-y>)

(holding-tool <machine> <drill-bit>)

(holding <machine> <holding-device> <part> <side>)))

(effects (

(del (is-clean <part>))

(add (has-burrs <part>))

(del (has-spot <part> <hole> <side> <loc-x> <loc-y>))

(add (has-hole <part> <hole> <side> <hole-depth>

<hole-diameter> <loc-x> <loc-y>)))))

(DRILL-WITH-TWIST-DRILL

(preconditions

(and

(is-a <machine> DRILL)

(is-a <drill-bit> TWIST-DRILL-BIT)

* (same <drill-bit-diameter> <hole-diameter>)

* (diameter-of-drill-bit <drill-bit> <drill-bit-diameter>)

* (has-spot <part> <hole> <side> <loc-x> <loc-y>)

* (holding-tool <machine> <drill-bit>)

* (holding <machine> <holding-device> <part> <side>)))

(effects (

* (del (is-clean <part>))

* (add (has-burrs <part>))

* (del (has-spot <part> <hole> <side> <loc-x> <loc-y>))

(add (has-hole <part> <hole> <side> <hole-depth>

<hole-diameter> <loc-x> <loc-y>)))))

(a) An operator for drilling a hole using a high-helix drill bit

(b) New operator for drilling with a twist drill bit. The stars indicate new facts acquired by the

Operator Re�nement Method for the new operator.

Figure 1: Learning a new operator for drilling by analogy with an existing one.

New operators can also be acquired by learning useful partial speci�cations of an existing one. One

possible way to do this is when the system encounters situations in which only some of the e�ects

of the action are desired. If this is the case then experimentation is used to �nd if only some of the

preconditions are required for the partial e�ects needed.

Suppose the system has the operator for cutting speci�ed in Figure 2(a). The operator expresses

that if a circular saw has a type of attachment called friction saw and some cutting uid and if

it is holding a part, then the size of the part can be reduced and the resulting surface is smooth.

Now suppose that the system is given a problem whose goal is to make the size of a part smaller,

and that no uids are available in the initial state. The goal cannot be achieved with the available

knowledge, and yet there is a way to solve the problem. The system formulates a new cutting

operator that has only the e�ects that it needs from the original one, and only the preconditions

that specify the type of the objects required for the operator. The action is then executed. If the

3



partial

sequencing

(CUT-WITH-CIRCULAR-FRICTION-SAW

(params (<machine> <part> <attachment> <holding-device> <dim> <value>))

(preconds (and

(is-a <part> PART)

(is-a <machine> CIRCULAR-SAW)

(is-a <attachment> FRICTION-SAW)

(has-fluid <machine> <fluid> <part>)

(size-of <part> <dim> <value-old>)

(smaller <value> <value-old>)

(side-up-for-machining <dim> <side>)

(holding-tool <machine> <attachment>)

(holding <machine> <holding-device> <part> <side>)))

(effects (

(del (has-fluid <machine> <fluid> <part>))

(add (surface-finish-side <part> <side> SMOOTH))

(add (size-of <part> <dim> <value>)))))

(CUT-TO-SIZE

(params (<machine> <part> <attachment> <holding-device> <dim> <value>))

(preconds (and

(is-a <part> PART)

(is-a <machine> CIRCULAR-SAW)

(is-a <attachment> FRICTION-SAW)

* (size-of <part> <dim> <value-old>)

* (smaller <value> <value-old>)

* (side-up-for-machining <dim> <side>)

* (holding-tool <machine> <attachment>)

* (holding <machine> <holding-device> <part> <side>)))

(effects (

(add (size-of <part> <dim> <value>)))))

desired e�ect is not obtained, then the system �nds which additional conditions are required. This

is done by experimenting with the action applying it under di�erent situations. The experiments

are guided by the preconditions of the known operator for cutting. This process ends when a

successful application of the new operator is found (thereby proving its existence). This happens

when the desired e�ect is obtained in a state where not all the preconditions of the original operator

are true. Finally, the ORM is called to further re�ne the operator. The result is a cutting operator

without the preconditions and e�ects that have to do with obtaining a reasonable surface condition

quality (having uid on the machine), as shown in Figure 2(b). This method for learning a

operator is summarized in Table 2.

(a) An operator for cutting

(b) New operator for cutting to reduce the size. The stars indicate new facts acquired by the

Operator Re�nement Method for the New Operator.

Figure 2: Micro-operator formation when only some e�ects are needed.

A second possibility is , i.e. to detect a sequence of subactions that are currently

represented by an operator. As an example, consider an operator to set up a machine for performing

a machining operation. The operator would have several preconditions that check the availability

of a machine, a holding device, a tool and a part. The set up consists of holding the tool in the tool

holder, having a holding device on the machine, and holding the part with the holding device. Since

a di�erent setup is used for each machining operation, representing this set of actions as a single

operator is an e�cient way of expressing the con�guration for the next operation. Now, suppose

4



4 Discussion

References

Proceedings of the

Eight International Workshop on Machine Leaning

Acquiring Domain Knowledge for Planning by Experimentation

Learning from the Environment Based on Percepts and Actions

Proceedings of the Tenth International Joint Conference on Arti�cial Intelligence

[1] Yolanda Gil. A domain-independent framework for e�ective experimentation in planning. In

, Evanston, IL, 1991. Morgan Kaufmann.

[2] Yolanda Gil. . PhD thesis, Carnegie Mellon

University, School of Computer Science, 1992.

[3] Wei-Min Shen. . PhD thesis, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA, 1989.

[4] Wei-Min Shen and Herbert A. Simon. Detecting and correcting errors of omission after explanation-based learning.

In , Detroit, MI, 1989.

When a given problem cannot be solved by the current operators because a precondition P of an operator O

cannot be achieved, formulate a new operator O'.

1. Formulate a new operator. Construct a new operator O' with the desired e�ect and the type of the objects

in O.

2. Experiment with the new operator. Execute the action. If the desired e�ects are not obtained, apply

experimentation to isolate which of the other preconditions of O (not including P) need to be added to

O'. End the process when O' is successful in a state where the preconditions of O are not true.

3. Re�ne the new operator. Use the ORM to �nd additional preconditions and e�ects of O'.

Table 2: Method for learning a new operator by micro-operator formation

that we want to perform some manual operation on a part. We ask the system to �nd a plan to

hold it. With the available knowledge, holding a part is not possible because there are no tools

that can be installed in the machine. But instead of returning a failure our system tries to �nd

if the operator can be divided into a sequence of actions, one of them involving only holding the

part. The operator to do the setup gives several independent operators: setup the holding device,

hold the part, and setup the tool. Sequencing is done by following the same basic steps shown in

Table 2, but in this case additional operators are formulated with the e�ects not originally needed.

The methods presented in this paper have been implemented to demonstrate the feasibility of

learning by experimentation. They are triggered when a lack of domain knowledge is detected, but

the subsequent experimentation process is simulated manually. The full experimentation process

(as is described in [2]) is implemented only for learning new preconditions and new e�ects. Work

is underway to fully integrate the system. Other extensions include relaxing our assumption of

deterministic environments where other agents cannot produce changes.

5


