
Planning Experiments:

Resolving Interactions between Two Planning Spaces

Yolanda Gil

USC/Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292

email: gil@isi.edu

Abstract

Learning from experimentation allows a system to acquire planning domain knowledge by cor-

recting its knowledge when an action execution fails. Experiments are designed and planned to

bring the world to a state where a hypothesis (e.g., that an operator is missing a precondition)

can be tested. When planning an experiment, the planner must take into account the interactions

between the execution of the main plan and the execution of the experiment plans, since after the

experiment it must continue to carry on its main task. In order for planners to work in such environ-

ments where they can be given several tasks, they must take into account the interactions between

them. A usual assumption in current planning systems is that they are given a single task (or set of

goals to achieve). However, a plan that may seem adequate for a task in isolation may make other

tasks harder (or even impossible) to achieve. Di�erent tasks may compete for resources, execute

irreversible actions that make other tasks unachievable, or set the world in undesirable states. This

paper discusses what these interactions are and presents how the problem was adressed in EXPO,

an implemented system that acquires domain knowledge for planning through experimentation.

In Proceedings of the Third International Conference on Arti�cial Intelligence Planning

Systems (AIPS-96), May 29-31, 1996, Edinburgh, Scotland.



1 Introduction

Planning systems often make the assumption that omniscient world knowledge is available.

Our approach makes the more realistic assumption that the initial knowledge about the

actions is incomplete, and uses experimentation as a learning mechanism when the miss-

ing knowledge causes an execution failure. In a planning system, the inaccuracies of the

knowledge base may render problems unsolvable or produce plans that yield unsuccessful

executions. The imperfections of the domain knowledge have been closely related to plan-

ning and/or execution failures [Hammond, 1986, Hu�man et al., 1992], but they can also

cause unexpected successful executions [Gil, 1994]. Planning systems that model a physical

system and are given the ability to interact with it can directly examine the actual behavior

of the physical system that the domain is supposed to model. This presents an opportu-

nity for autonomous re�nement of the imperfections of the domain model. Our approach

combines selective and continuous monitoring of the environment to detect knowledge faults

with directed manipulation through experiments that lead to the missing knowledge.

The �rst part of this paper summarizes our work on autonomous re�nement of incomplete

planning domains through experimentation [Gil, 1994, Gil, 1993, Gil, 1992] and presents em-

pirical results of its e�ectiveness and e�ciency in improving the planner's domain knowledge

when initial domain knowledge is up to 50% incomplete. Learning is selective and task-

directed: it is triggered only when the missing knowledge is needed to achieve the task

at hand. Our approach is based on continuous and selective interaction with the environ-

ment that leads to identifying the type of fault in the domain knowledge that causes any

unexpected behavior of the environment, and resorts to experimentation when additional

information is needed to correct the fault. The new knowledge learned by experimentation

is incorporated into the domain and is immediately available to the planner. The planner in

turn provides a performance element to measure any improvements in the knowledge base.

This is a closed-loop integration of planning and learning by experimentation.

Research in the area of acquiring action models is mostly subsymbolic [Mahadevan and

Connell, 1992, Maes and Brooks, 1990]. An important component of our approach is the

ability to design experiments to gather additional information that is not available to the

learner and yet is needed to acquire the missing knowledge. Experimentation is vital for

e�ective learning and is a very powerful tool to re�ne scienti�c theories [Cheng, 1990,

Rajamoney, 1993], but other research on learning planning knowledge from the environ-

ment does not address the issue of experiment formulation and design [Shen, 1993, Kedar

et al., 1991]. Previous work on learning by experimentation has not addressed the issue of

how to choose good experiments, and much research on learning from failure has relied on

background knowledge to build explanations that pinpoint directly the causes of failures. We

want to investigate the potential of a system for e�cient learning by experimentation with-

out such background knowledge. Our approach uses domain-independent heuristics that

compare possible hypotheses and choose the ones most likely to cause the failure. These

heuristics extract information solely from the domain operators initially available for plan-

ning (incapable of producing such explanations) and the planner's experiences in interacting

with the environment.

Planning experiments may interact with the main planning task that triggers learning.

1



In the second part of the paper we describe how we handle these interactions: by giving the

planner explicit guidance about how to conduct the experiment planning search. This is a

general problem for planners that can be given two or more di�erent tasks and must take

into account the interactions between several planning search spaces.

Our approach to learning by experimentation has been implemented in a system called

EXPO. EXPO's underlying planning architecture is the prodigy system [Carbonell et al.,

1991] which provides a robust, expressive, and e�cient planner. EXPO was tested with a

complex process planning domain of dozens of operators, and a STRIPS-like robot planning

domain that is widely used by planning researchers (both domains are described in [Gil,

1992]).

2 Learning from the Environment by Experimenta-

tion

This section describes how EXPO detects that it is missing domain knowledge, then con-

structs a set of hypotheses of possible �xes, determines the more promising ones, and �nally

designs and executes experiments to determine the �x needed by its domain theory. More

details can be found in [Gil, 1994, Gil, 1993, Gil, 1992].

2.1 Detecting the Need to Learn

EXPO is given a suite of representative planning problems in the domain. This provides a

purpose for learning: EXPO acquires knowledge that is needed to solve these kinds problems,

instead of exploring the environment's behavior under various conditions. In a process

planning domain, representative problems are to produce a part with a certain size, to give

the surfaces of a part a certain degree of smoothness, to produce a part with a hole of

speci�c diameter, depth, and position, etc. For each of these problems, EXPO creates a plan

that solves the problem and starts executing the plan and collecting observations. EXPO

monitors the external world selectively and continuously. Before the execution of an operator,

EXPO expects the operator's known preconditions to be satis�ed, so it checks them in the

external world. If they are indeed satis�ed, then EXPO executes the corresponding action.

The operator's known e�ects are now expected to have occurred in the world, so EXPO

checks them in the external world. For example, before executing grinding, EXPO would

check the operator's known conditions, e.g., that the part is being held by a holding device,

that there is a grinding tool installed in the grinder, and so on. After executing the action,

EXPO checks that the part is of a smaller size and has a �nished surface. Whenever its

observations disagree with its expectations, EXPO concludes that it needs to learn in order

to �x its knowledge about the operator so that observations and expectations coincide the

next time the operator is used. This is the case in our grinding example if the surface is

observed to be rough. After learning, EXPO's internal model should reect more accurately

the actual behavior of its environment.

2



what triggers general particular state to execute operator in observations

learning hypothesis hypothesis experiment experiment in experiment

before after

unexpected O has an The unknown condition is Preconditions O | e�ects
outcome unknown one of the predicates of O and of O
of O precondition fPig that were true in Pi are

previous executions satis�ed

unexpected P is an unknown P is the unknown e�ect of Preconditions Oi P P

value e�ect of a one of the operators fOig of Oi

of P previously executed executed since last time are satis�ed
operator P was observed

Table 1: The design of experiments to learn new preconditions and new e�ects of operators.

2.2 Formulating Hypotheses

Next, EXPO hypothesizes a cause for the unexpected observation in terms of a �x to its

knowledge base. Several possible categories of �xes to the domain knowledge can be consid-

ered, including the following:

� Missing preconditions: When an operator O is executed in state S and not all its

known e�ects take place, EXPO considers the general hypothesis that the precondi-

tions of O are incomplete and triggers learning to discover the missing condition C.

Notice that C must have been true (by coincidence) every time that O was executed

before. In our running example, suppose that the operator for grinding is missing a

precondition to have cutting uid in the machine (to absorb the heat produced by

friction). Without uid, the execution of grinding will produce a rough surface �nish.

When past executions of grinding succeeded, the machine had cutting uid. But in

those occasions the part had no holes in it, had a smooth surface, and was made of

wood. Any of those could be a necessary condition for grinding to succeed. EXPO

then engages in an experimentation process to discern which of those predicates is the

missing condition.

� Missing e�ects: When a predicate P is found to have a value di�erent than expected,

EXPO considers the general hypothesis that some operator that was applied since the

last time P was observed had the unknown e�ect of changing P . EXPO retrieves

all operators executed since P was last observed, and considers them candidates for

having incomplete e�ects. For example, if EXPO takes a part with a smooth surface

and after grinding and drilling the part it notices that the surface is not smooth, then

it will consider that either the grinding or the drilling operator is missing the e�ect of

changing the surface quality. Experiments with these operators let EXPO observe P

before and after each execution and determine which operator changes P .

Table 1 summarizes hypothesis generation for these two cases. Other possible �xes to the

domain knowledge include acquiring data about the state of the external world and acquiring

new operators [Gil, 1992, Gil, 1994].

3



heuristic description

locality of actions objects a�ected by the action are likely to be already

present in the operator's parameters

structural similarity similar operators are likely to have similar preconditions

generalization of experience necessary conditions have been present in all past

successful executions of the action

Table 2: Domain-independent heuristics for suggesting better experiments.

2.3 Selecting Promising Hypotheses

Once the possible hypotheses are generated, EXPO needs to determine which one is re-

sponsible for the unexpected observation. The number of possible hypotheses may be quite

large, and many may be ruled out by careful acquisition of informative instances through

experimentation. In the process planning domain, the typical size of the hypothesis set is 50

to 100. In the grinding example, possible experiments are to try grinding a part that has a

di�erent number of holes, grinding a part that has a di�erent surface �nish, and grinding a

part made of a di�erent material.

Minimizing the number of experiments is important, not only because of the large num-

bers of hypotheses, but because there is a signi�cant cost associated with each experiment.

For each experiment the planner has to build a plan to set the environment in a state that

satis�es many predicates. For example, in an experiment to try to grind a part with two

holes the planner must select a part, make two holes in it, and then set it up in the grind-

ing machine. Apart from the planning e�ort involved, the execution of those plans raises

additional issues. Plan execution may use up valuable resources (including time), produce

non-desirable changes in the environment that are hard (or impossible) to undo, and interfere

with the goals of the system's main task. These issues are discussed briey here to motivate

the need to reduce the number of experiments, but they are central to the experiment search

space and are discussed in more detail below.

The key to EXPO's e�cient experimentation are a set of heuristics that help it concen-

trate on promising hypotheses. These heuristics, summarized in Table 2, are derived from the

descriptions of other operators and of the operator in question. The locality heuristic points

out, for example, that facts about the machine and tool used and the part being ground are

more likely to be relevant to the failure. The presence of a steel part somewhere else in the

machine shop is not likely to have a�ected the grinding operation. The similarity heuristic

makes EXPO consider adding cutting uid as a more plausible precondition of grinding than

having holes in the part, because in this domain many operators that also reduce the size of

a part require cutting uid. Generalization of experience takes advantage of the fact that the

conditions of the action must have been present in all past successful executions of it. For

each operator, EXPO maintains a generalization of all the states where the execution was

successful. The generalization is done using the operator's parameter bindings. Such gener-

alization of the planner's past experience is useful to guide our search for the missing condi-

tion, because it contains the conditions that were common to all the states when the action

4



was successfully executed before. The heuristics are described in more detail in [Gil, 1992,

Gil, 1993].

2.4 Designing and Executing Experiments

Each hypothesis is tested with an experiment. When the hypothesis is that the operator

is missing a precondition P , an experiment is designed to test whether the operator will

be successfully executed in a state where P and every precondition of O are satis�ed, as

shown in Table 1. This e�ectively becomes a goal for the planner, since a plan needs to be

constructed to achieve the situation desired. This experiment search space is di�erent from

the main search space used to create the original plan that triggered learning. In searching

for a plan, the planner must take into account the interactions with the experiment. This

process is described in more detail below.

After the execution of this plan and of the experiment itself, observations are collected

to determine what should be learned. If the hypothesis is con�rmed, the domain knowledge

is adjusted accordingly. Otherwise, the experimentation process is iterated until success or

until no more hypotheses are left to be considered. Additional candidate hypotheses can be

formed with the di�erences between S and a past state where O was successfully applied. If

all those are also ruled out, the learner may still need to look for additional candidates (for

example, predicates that are not included in the state S because they were never observed),

and even go back and consider an alternative general hypothesis, for example that O has

conditional e�ects instead of a missing precondition.

After the operator is corrected, it will be used in any future planning. The main planning

task can now be continued, and EXPO continues to watch for learning opportunities to

correct its domain knowledge.

3 Empirical Results

EXPO was tested in two di�erent domains: a robot planning domain frequently used in the

planning literature, and a complex process planning domain with dozens of operators and

states of large size. [Gil, 1992] describes these domains in detail as well as other empirical

results not shown here.

To control the amount of missing knowledge that EXPO was given in the tests, we �rst

wrote a complete domain D with all the operators with all their corresponding conditions

and e�ects. With this complete domain, we arti�cially produced domains D0 with certain

percentages of incompleteness (e.g., 20 percent of the preconditions are missing) by randomly

removing preconditions or e�ects from D that EXPO could learn. Note that EXPO never

has access to D, only to some incomplete domain D0:

Training problem sets and test problem sets were generated randomly. At certain points

during learning, we ran the test set with learning turned o�, and when EXPO made a

wrong prediction the internal state was corrected to reect the observations but no learning

occurred (i.e., the domain operators were not changed.)

To show that EXPO is e�ective, i.e., that it can acquire new knowledge that is useful

to the planner, we measured the cumulative number of wrong predictions (i.e., learning

5



opportunities for EXPO). We also measured the number of problems in the test set that could

be executed successfully to completion at several points during training. The following tables

show results in the process planning domain, where the training sets had 100 problems and

the test sets had 20 problems. Each problem required achieving several goals. The results

are shown as cumulative round averages. In the process planning domain with 10 percent

incompleteness the results were as follows:

training learning test plans

problems opportunities successfully executed

0 0 5

10 0 16

30 8 17

50 10 19

100 10 19

and with 30 percent incompleteness:

training learning test plans

problems opportunities successfully executed

0 0 1

10 17 8

30 23 13

50 29 18

100 30 19

EXPO always acquired a new precondition in every learning opportunity. Although

EXPO did not acquire all the missing domain knowledge after learning, it learned in some

trial runs the knowledge necessary to execute successfully the solutions to all the problems in

the test set. In some cases, EXPO acquired knowledge that did not cause any improvement

in the performance for the problems in the test sets. The number of test problems that were

successfully completed always increased as learning progressed.

To measure the e�ciency of EXPO, we measured the number of experiments that were

needed using di�erent strategies to select heuristics. We ran EXPO using each heuristic

alone, using di�erent combinations, and using no heuristics. When no heuristics were used,

EXPO tried the candidate predicates in sequence.1

The results shown for this test are for the robot planning domain. The heuristics used

are represented by a letter: g for generalization, s for structural similarity, and l for locality.

Even though this domain is much smaller in size than the process planning domain, the

number of possible hypotheses that EXPO could consider for each failure ranged between 50

and 85. With 20 percent of the preconditions missing, the cumulative number of experiments

needed was as follows:

1We considered a divide-and-conquer strategy that recursively splits the candidate set, using log(n)
experiments to isolate the correct hypothesis (n being the number of hypotheses). The number of experiments
needed with this strategy is comparable to (but still larger than) the number needed for our combined
heuristics. However, for each experiment the planner must achieve many more additional goals because
more conditions are tested in each experiment setup [Gil, 1992, Gil, 1993].

6



failures none g l s gls

5 215 168 50 94 10

10 332 172 90 110 17

With 50 percent of the preconditions missing, the cumulative number of experiments

needed was:

failures none g l s gls

5 205 172 27 118 40

10 460 276 102 177 71

17 728 370 201 325 89

In all cases, the combination of the three heuristics reduced dramatically the number

of experiments required, and yielded signi�cantly better performance. Notice also that the

number of experiments needed decreases as EXPO acquires more knowledge, because the

heuristics are more e�ective when there is more knowledge about the domain available.

4 Planning and Executing Experiments

In order to perform an experiment, the world must be brought to a state where the conditions

of the experiment are satis�ed. For example, if the hypothesis is that the grind operator is

missing the condition that the grinder has cutting uid, we must reach a state where the

current known preconditions of grinding and the hypothesized new condition are satis�ed.

The planner must �rst come up with a plan to achieve this state from its current state,

which is the state in which the failure that triggered experimentation occured. We call this

process pre-experiment planning.

Once the pre-experiment plan is executed, the experiment can be carried out. In our

example, we grind and check if this time the e�ects of the grind operator are obtained. If

not, other hypotheses must be tested with other experiments. But if grinding works now,

then the missing condition must be that the grinder has cutting uid. The new condition

is added to the operator GRIND. Then, the original plan that failed must be continued in

order to achieve the original goal. If the pre-experiment plan has undone any of the facts

necessary for the original plan, then a post-experiment plan is needed to restore those facts

and continue with the main plan. Whether a post-experiment plan is used to enable the

continuation of the original plan or replanning is done to achieve the original goals is not the

issue here. The issue is that there is some e�ort needed to restore facts that were undone

during pre-experiment planning.

Some pre-experiment plans are better than others depending on the criteria that are

used. For example, minimal interference with the main plan may be an important concern.

Suppose that learning was triggered when grinding part1 in the machine grinder1 with vise1

as a holding device and wheel1 as a tool. Then it would be better to use grinder2, wheel2,

and vise2 with part2 in the experiments since vise1 is already holding part1. But perhaps

we are more concerned with making the pre-experiment plan as short as possible, so we can

learn as quickly as possible and go on with our main plan. If this is the case, using grinder1,

7



wheel1, and vise1 would be better since they are already set up and ready for grinding

operation. So, one experiment may be better than another one depending on what criteria

are preferred.

EXPO designs experiments following a set of policies chosen by the user from a pre-

de�ned pool. An example of a policy is to avoid using irreversible operators, since they

can bring the world to a state where the main task cannot be achieved. Each policy in

EXPO is implemented as a control rule in PRODIGY's language [Carbonell et al., 1991,

Gil, 1992]. Control rules are used during the search at each decision point: to choose a node

to expand, to choose a goal to achieve, to choose an operator to achieve a goal, and to choose

bindings for the operator's parameters. Control rules can express prefereces among options,

rejections of options, or select an option as the only possibility for a decision. The control

rule that represents the policy to avoid irreversible operators is:

(RULE--REJECT-IRREVERSIBLE-OPERATORS

(lhs (and (current-node <node>)

(candidate-op <node> <operator>)

(is-irreversible <operator>)))

(rhs (reject operator <operator>)))

Each policy de�nes a preference to be used for decision making and can be thought of

as a piece of control knowledge to be used during experimentation planning. Policies are

grouped together to de�ne overall strategies that the learner follows to plan experiments.

We describe now EXPO's policies and strategies in detail.

4.1 Planning Experiments

All the policies that the user may de�ne for the main planning task are also applicable

to experiment planning. These policies correspond to the control knowledge (be it domain

independent or not) given to the planner to be used for decision making in the domain. They

can be considered universal policies, since they apply in both the main and the experiment

search spaces. For example, we would consider an experiment that uses cheap materials to be

better than another one that uses expensive materials. But the same principle applies in the

main planning space. The quality of the experiment plans is determined in many dimensions

by these universal policies that are to be addressed by research on how to measure plan

quality, and are not discussed here. Experiment policies and universal policies may be in

conict. When this is the case, EXPO gives priority to universal policies unless indicated

otherwise by the user.

The experiment policies de�ned for EXPO can be grouped under four topics: goal inter-

actions, operator properties, binding interactions, and plan characteristics. The policies are

cast in domain independent terms. They are summarized in Figure 1.

4.1.1 Goal Interactions

The goal interaction policies refer to the interactions between the goals in the experimen-

tation space and goals in the main search space. They are di�erent from the types of

8



� Goal interactions

� Avoid main goal protection violation: If a search path clobbers a goal previ-
ously achieved by the main plan that is still needed to achieve the main goals, then
prefer other search paths over this one.

� Avoid main prerequisite violation: If a search path undoes a fact that the
remaining main plan requires to be true, then prefer other search paths to this one.

� Support main goal concord: If a search path achieves a goal that remains to
be achieved by the main plan, prefer it over other paths.

� Operator properties

� Avoid irreversible operators: Never use irreversible operators.
� Prefer easily reversible operators: Prefer operators whose e�ects are easier to

undo.
� Prefer operators that minimize state changes: Prefer operators that have

less e�ects.
� Prefer more reliable operators: Prefer operators that have a higher rate of

successful executions.
� Avoid unreliable operators: If an operator's rate of failure is over a user-de�ned

threshold, do not use it.

� Binding interactions

� Avoid objects of very high protection: Never use objects that are used in the
main plan and whose type is classi�ed as very high protection.

� Prefer objects of lower degree of protection: If two objects used in the main
plan are being considered for binding the same variable, prefer the object with a
lower degree of protection.

� Prefer least number of protected objects: If several objects used in the main
plan are being considered for binding di�erent variables, prefer the set of objects
that minimizes the total degree of protection.

� Plan characteristics

� Avoid long plans: Never choose plans that are longer than a given length.
� Prefer short plans: Prefer plans that are shorter.
� Avoid deep nodes: Never expand nodes below a given depth. This maximum

depth for the experimentation search must be given a value.
� Prefer shallow nodes: Prefer expanding shallower nodes.
� Avoid plans with too many state changes: Never choose plans that cause

changes in the external world over a user-given number.
� Prefer plans with fewer state changes: Prefer plans that cause a smaller

amount of changes in the external world.

Figure 1: EXPO's experimentation policies.

interactions within a search space. Here, a search path is preferred over another one it

minimizes negative interference (or maximizes positive interference) with the top level goals.

Notice that the preference is over which search paths to pursue, not over which goals.

4.1.2 Operator Properties

One policy is to avoid irreversible operators. Determining that an operator is irreversible

requires proving that there is no plan that can undo its e�ects, which is undecidable. Also,

the irreversibility of operators is not a binary feature: the same operator may be irreversible

9



in some states and reversible in others. Because of these and other issues that make the

automatic determination of irreversibility very complex, EXPO relies on a user-de�ned clas-

si�cation of operator's reversibility.

A second policy states that if the e�ects of operator O1 are easier to undo than the e�ects

of operator O2, prefer O1 over O2. Determining the degree of reversibility of an operator is

not a simple matter, so EXPO relies on an ordered list of operators de�ned by the user.

Another policy is to prefer operators that minimize state changes. If an operator O1

has less e�ects than operator O2, prefer O1 over O2. This policy is a more local version of

another policy that prefers plans with fewer state changes (described below).

The next policy says that if an operator O1 has a higher rate of success (based on the

number of times that it has been used) than operator O2, then prefer O1 over O2. The last

policy avoids operators that have a rate of failure over a user-de�ned threshold. Notice that

both policies try to use operators that have good models in the planner's knowledge base in

order to avoid obtaining execution failures during the experiments.

4.1.3 Binding Interactions

During planning, the parameters of each operator are given values by binding them to objects

in the current state. Some bindings may be preferable to others. For example, we may prefer

to use in the experiments a di�erent machine than the one that is being used in the main

plan, since the machine used in the main plan is probably all set up for the operation.

Other objects may not bring up such preferences. For example, if a brush is being used in

the main plan to clean the metal burrs in the part we may not mind using it during the

experiment planning. In summary, there may be di�erent binding preferences for di�erent

types of objects.

One interesting case in the process planning domain is the object part. Suppose that

the main goal is to drill a hole of a certain width and depth in the part. Now suppose

that the drilling operation fails because of a missing precondition, and experiments with the

drilling operator are needed. If the experiments are done by drilling that part, we may not

interfere with the main goal, but we would violate an implied goal: \Do not drill other holes

in the part other than the ones speci�ed in the goal". In fact, when we specify a goal to the

planner in this domain (and many others) many such explicit goals are also desired but too

complex to specify. A planner works by default on building a plan to achieve each of its given

goals, so by default it would not interfere with these kinds of implicit goals. But since the

experimentation process requires producing plans for other goals, such implicit goals may

be violated by default. Notice that since the implicit goals are not part of the main goal

description, they are not protected by the goal interaction policies. We have addressed this

problem through policies for binding preferences as follows.

When a domain is de�ned, each type of object is assigned to one of the following classes:

� Very high protection: The instances of these types that are being used in the

main plan are never to be used for the experiments.

� High protection: During experiment planning, other instances are preferred to

instances of these types that are being used for the main plan.

� Low protection: During experimentation planning, other instances are preferred

10



to instances of these types that are being used for the main plan, but instances

of high or very high protection are never preferred.

� Very low protection: The instances of these types can be used any time during

experiment planning.

In the robot planning domain there are only four types of objects, classi�ed as follows:

� High protection: boxes

� Low protection: doors, keys

� Very low protection: rooms

The process planning domain is more complex, and has 33 types of objects, grouped as

follows:

� Very high protection: parts

� High protection: holding devices

� Low protection: machines, machine tools, objects consumed during an operation.

� Very low protection: objects not consumed during an operation.

If necessary, the number of degrees of protection may be augmented, but the mechanism

would be the same.

Once the protection classes have been de�ned, they are used to determine the policies that

EXPO can use for choosing bindings: avoiding objects of very high protection, preferring

objects of lower degree of protection, and preferring the least number of protected objects.

4.1.4 Plan characteristics

One criteria is to prefer shorter plans for the experiments. In PRODIGY, each level of

a search involves the application of an operator or an inference rule. An inference rule

represents a deduction from the current state, whereas an operator represents an externally

executable action. The �nal plan is composed only of actions. This is why the depth of

the search does not correspond to the length of the plan, and although they are related we

may wish to control them separately. This is why four di�erent policies are used to express

preferences regarding the search depth and the plan length.

The last two policies prefer plans that minimize the number of state changes. The amount

of changes that a plan produces in the sum of the e�ects of the operators that compose it.

This policy is related to the policy that prefers operators that minimize state changes.

4.2 The Learner-at-Heart and the Planner-at-Heart

The experiment policies described in the previous section express di�erent criteria that an

experimenter may consider to design and choose experiments. Some of these policies may

be conicting, but the experimenter must have some overall, global strategy that determines

which policies serve the strategy best.

With these policies, many di�erent overall strategies may be designed. The following two

strategies lie in opposite sides of the spectrum:

� The Learner-at-Heart strategy. This strategy has a more exploratory avor and

focuses on acquiring new knowledge. Novel sutuations are preferred over ones already

11



experienced, and short experiment plans are preferred over longer ones that may delay

learning.

� The Planner-at-Heart strategy. The main concern of this strategy is to accomplish

the main planning task, acquiring new knowledge only if necessary to solve the problem

at hand. Consequently, interactions with the main plan are avoided when possible, and

using reliable operators is preferred over trying new ones.

The Learner-at-Heart strategy:

� Avoid deep nodes
� Prefer shallow nodes
� Avoid long plans
� Prefer short plans
� Prefer unreliable operators

The Planner-at-Heart strategy:

� Support main goal concord
� Avoid main goal protection violation
� Avoid main prerequisite violation
� Avoid irreversible operators
� Prefer reversible operators
� Prefer more reliable operators
� Avoid unreliable operators
� Prefer plans with fewer state changes
� Avoid plans with too many state changes
� Prefer operators that minimize state changes
� Avoid objects of very high protection
� Prefer objects of lower degree of protection
� Prefer least number of protected objects

Figure 2: Policies for two di�erent experimentation strategies.

Figure 2 summarizes the policies used to de�ne each strategy.

5 Conclusion

Learning from the environment is a vital capability for an autonomous agent. The lack of

knowledge a�ects the planner's capabilities, and learning requires both detecting a knowledge

gap and determining a correction of the knowledge base. Experimentation is a powerful

tool for gathering additional information from the environment that helps determine the

appropriate correction. Our approach combines selective and continuous monitoring of the

environment to detect knowledge faults with directed manipulation through experiments that

lead to the missing knowledge. Our approach improves a planner's prediction accuracy and

reduces the amount of unreliable action outcomes in several domains through the acquisition

of new preconditions and e�ects of operators.

This work is applicable to a wide range of planning tasks, but there are some limita-

tions. The state of the world must be describable with discrete-valued features, and reliable

12



observations must be available on demand. Actions must be axiomatizable as deterministic

operators in terms of those features. Another assumption is the absence of exogenous events

or other agents in the environment that can change the state of the external world. Our

work also assumes an initially incomplete knowledge base. Future work is needed to address

other types of imperfections, including incorrectness of planning domain knowledge.

Acknowledgments

This work was done while the author was at Carnegie Mellon University. I would like to

thank Jaime Carbonell, Tom Mitchell, Herb Simon, and Nils Nilsson for their suggestions

and support throughout my thesis work. Thanks also to all the members of the prodigy

group for many helpful suggestions. This research was supported by the Avionics Laboratory,

Wright Research and Development Center, Aeronautical Systems Division (AFSC), U.S. Air

Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA

Order No. 7597. The view and conclusions contained in this document are those of the

author and should not be interpreted as representing the o�cial policies, either expressed or

implied, of ARPA or the U.S. government.

References

[Carbonell et al., 1991] Carbonell, Jaime G., Craig A. Knoblock, and Steven Minton. 1991.

prodigy: An integrated architecture for planning and learning. In Architectures for

Intelligence, ed. Kurt VanLehn. Hillsdale, NJ: Lawrence Erlbaum Associates.

[Cheng, 1990] Cheng, Peter C-H. 1990. Modelling Scienti�c Discovery. PhD thesis, The

Open University, Milton Keynes, England.

[Gil, 1992] Gil, Y. Acquiring Domain Knowledge for Planning by Experimentation. PhD

thesis, Carnegie Mellon University, School of Computer Science, 1992.

[Gil, 1993] Gil, Y. E�cient domain-independent experimentation. In Proceedings of the

Tenth International Conference on Machine Leaning, Amherst, MA. Morgan Kaufmann,

1993.

[Gil, 1994] Gil, Y. Learning by Experimentation: Incremental Re�nement of Incomplete

Planning Domains. In Proceedings of the Eleventh International Conference on Machine

Leaning, New Brunswick, NJ. Morgan Kaufmann, 1994

[Hammond, 1986] Hammond, Chris J. 1986. Case-based Planning: An Integrated Theory of

Planning, Learning, and Memory. PhD thesis, Yale University, New Haven, CN.

[Hu�man et al., 1992] Hu�man, Scott B., Douglas J. Pearson, and John E. Laird. 1992.

Correcting imperfect domain theories: A knowledge-level analysis. In Machine Learning:

Induction, Analogy and Discovery. Boston, MA: Kluman Academic Press.

13



[Kedar et al., 1991] Kedar, Smadar T., John L. Bresina, and C. Lisa Dent. 1991. The blind

leading the blind: Mutual re�nement of approximate theories. In Proceedings of the Eight

Machine Learning Workshop. Evanston, IL.

[Kulkarni, 1988] Kulkarni, Deepak S. 1988. The Process of Scienti�c Research: The Strategy

of Experimentation. PhD thesis, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA.

[Maes and Brooks, 1990] Maes, Pattie and Rodney A. Brooks. 1990. Learning to coordinate

behaviors. In Proceedings of the Eight National Conference on Arti�cial Intelligence.

Boston, MA.

[Mahadevan and Connell, 1992] Mahadevan, S. and Connell, J. Automatic programming of

behavior-based robots using reinforcement learning. Arti�cial Intelligence 55(2-3):311{

365, 1992.

[Minton et al., 1989] Minton, Steve, Craig A. Knoblock, Dan R. Kuokka, Yolanda Gil,

Robert L. Joseph, and Jaime G. Carbonell. 1989. Prodigy 2.0: The Manual and Tu-

torial. Technical Report CMU-CS-89-146, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA.

[Rajamoney, 1993] Rajamoney, Shankar A. 1993. The design of discrimination experiments.

Machine Learning, 12(1/2/3), 1993.

[Shen, 1993] Shen, W. M. Discovery as autonomous learning from the environment.Machine

Learning, 12(1/2/3), 1993.

14


