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Applications should be an invaluable experimental source of information and challenges

for AI research. The real world always stretches the limitations of our AI systems, pointing

toward new research themes in many areas. In the process of implementing an application,

the designer continually makes choices based on (1) the baseline architecture used to imple-

ment the application, (2) the characteristics of the problem itself, or (3) arbitrary decisions

and assumptions. All these decisions are intertwined in the resulting application, and as a

result, it is not easy to abstract a description of the functionality provided by the architecture

itself. At the same time, we would like to base our science on real-world applications that

are subject to controllable experiments whose parameters can be modi�ed to obtain exper-

imental results of our programs' behavior. However, real applications rarely facilitate this

task. Although the AI community has developed formalisms to describe AI architectures,

we are still lacking a formal language to describe tasks and problems that provides a good

qualitative understanding of AI applications. We argue that this is a major de�ciency that

stops feedback from applications to research. This work is an e�ort towards descriptions of

applications in terms that are useful 1) to extract conclusions from particular implementa-

tions, 2) to facilitate cross-comparisons among di�erent architectures applied to the same

problem, and 3) to facilitate comparisons among di�erent tasks. We analyze the Sisyphus

experience, and we propose a set of dimensions to describe applications that distinghish

between descriptions of the properties of the architecture, the type of problem, and the data

sets. We show how these dimensions can be used to produce useful distinctions in the con-

text of the �rst Sisyphus task, an o�ce assignment problem. Our hope is that the same

dimensions will be useful to other researchers in describing, characterizing, and producing

qualitative evaluations of their applications, as well as a useful point of comparison for future

Sisyphus e�orts.



1 Introduction

et al.

task modeling level

a problem solving method provides a means of identifying, at each step, candidate

actions. It provides one or more mechanisms for selecting among candidate actions and

ensures that the selected action is implemented

Knowledge-based systems research uses real-world problems to illustrate its advances and

accomplishments. Real-world problems stretch the limits of architectures and provide new

challenges. However, when solving real-world problems the interactions between the prob-

lem statement, the problem solution and the architectural principles employed to obtain a

solution become blurred. As Figure 1 illustrates, the world is a complex place and in the

process of implementing an application, the designer continually makes choices based on

(1) the baseline architecture used to implement the application, (2) the characteristics of the

problem itself, or (3) arbitrary decisions to simplify the problem. This means that it is di�-

cult to assess the potential and the apropriateness of a problem-solving architecture in itself

when it is illustrated with a real-world example. Moreover, it becomes di�cult to assess the

research contribution of a proposed architecture, that is, one cannot assess whether it was

the architecture that allowed for this solution or if the solution became possible due to the

designer's ability to rephrase the problem into the architecture's terminology and its system

of concepts. (Most problem solvers being Turing-Machine equivalent an ingenious designer

can solve any (solvable) problem with any architecture.) Such di�culties do not exist when

a method is illustrated with toy problems, as their simple description makes their interaction

with the architecture obvious. Frequently, one well-de�ned feature of the toy problem is all

that is being addressed. However, in real-world problems, it is hard to de�ne the features of

a problem before starting to solve it.

The Sisyphus e�ort | initiated at EKAW'90 in Amsterdam [Wielinga , 1990] |

invited research groups to provide their solutions to reasonably complex problems that bridge

the gap between real-world tasks and toy problems. The Sisyphus problems (e.g., o�ce

assignment, sailboat rigging, elevator con�guration) are real enough so that the mapping

of their features into the concepts of a solution architecture is ambiguous and allows the

individual designer to conceptualize the problem in an architecture-speci�c manner. For

example, the o�ce-assignment problem states that smokers and non-smokers should not

share o�ces. This statement can be abstracted into rules, constraints, action classes, or

schemas [Linster, 1994]. At the same time, the Sisyphus problems are small enough for easy

documentation, thus allowing many research groups to participate in the experiments.

First analyses of Sisyphus contributions [Linster, 1993b] have shown that it is possible

and fruitful to compare the use of di�erent approaches and architectures to solving the same

problem. Karbach, Linster, and Vo� [Karbach et al, 1990] analyzed operational knowledge-

based problem solvers. They focussed on how di�erent approaches model and represent

problem-solving capabilities and the knowledge required to implement those capabilities.

Besides looking at the use of terms like and , they focus on a unifying

description of the problem-solving method. The de�nition by McDermott [McDermott, 1988]

(i.e., that a

) is extended to account for more complex
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Figure 1: Applications are shaped by the architecture used, the characteristics of problems

they automate, and assumptions about the problem made by the designers.

models of methods, such as they are found in KADS or Generic Tasks. Discussions at

EKAW'94 showed that these analyses helped gain insight. However, we believe that the

analyses to date are very focused on knowledge engineering aspects and neglect important

characteristics of AI architectures, such as . This motivated us to work towards

a more comprehensive and systematic framework for comparison.

The paper runs as follows. First, we summarize the dimensions for comparing systems in

previous work. Then we propose a set of features to characterize problem-solving artifacts,

to describe the interactions between design decisions and solution characteristics, and to

compare di�erent solutions to the same problem. We focus our discussion on the Sisyphus

o�ce assignment problem, because 1) it is the most manageable in size, 2) it is the one that

has been implemented by most groups to date, and 3) it has already produced some com-

parative studies (see [Linster, 1994] for a description of the problem and various alternative

solutions). Finally, we propose some questions for discussion at the workshop that could

provide further insight in solutions to Sisyphus problems.

Linster [Linster, 1993b] compares several Sisyphus solutions along di�erent dimensions to

address the following questions:
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What are the building blocks used to model knowledge?

What is the purpose of the tool/methodology?

right kind

et al.

knowledge con-

ceptualization visualization implementation knowledge management

1. What are the building blocks of the model?

2. Which components are generic, which are non-reusable?

3. What is the purpose of the tool/methodology (e.g., code generation, visualization,

conceptualization, elicitation, knowledge management)?

4. Where in the development cycle is the tool or methodology most useful?

5. Who is the user of the tool or methodology?

These dimensions re
ect an engineering point of view on knowledge modeling, instead of

a cognition-oriented one. For example the analysis does not consider the adequacy of the

models nor the e�ciency of the approaches in capturing the of knowledge (see
[Burton , 1990] for such a study). The analysis does not look at the methodological

aspects of the approaches either, that is, it does not study how much guidance the approaches

provide for the practitioner developing a model (see [Allemang & Rothen
uh, 1992] for such

a study).

Building blocks were de�ned as discrete and identi�able constructs that the framework pro-

vides to describe the knowledge that goes into an application. Note that according to this

de�nition interpreters or other prede�ned and invariable elements of a system are not con-

sidered building blocks. Rules, objects, knowledge sources, agents, classes, are examples of

building blocks. The focus was on declarative elements of the knowledge representation. This

appears to be the only clear boundary between general-purpose programming languages, such

as Lisp or HyperTalk and other means of representation that are more commonly referred to

as knowledge representation. We will distinguish three kinds of representational primitives:

(1) domain-knowledge representation facilities; (2) method elements, that is the elemen-

tary generic problem-solving building blocks, their aggregation principles and the control

description that combines building blocks into problem-solving methods; and (3) primitives

to connect method de�nitions with domain knowledge.

Four categories of usage were employed to discuss the di�erent approaches:

, , , and . A tool helps in

the conceptualization phase if it allows to represent observations and interpretations of ob-

servations previous to their formalisation, and if it supports the user in the transition from

informal to formal knowledge. We refer to a tool as a knowledge visualisation tool if its

interface emphasizes graphical communication of knowledge. For a tool to be categorized as

3



Where in the development cycle is the tool most useful?

Initial knowledge acquisition.

Data interpretation and knowledge structuring.

Identi�cation of domain structures.

Identi�cation of inferences and roles that knowledge elements play in

the problem-solving process.

Identi�cation of other structures,

Integration and mapping of the di�erent structures into a coherent

model of the task.

an implementation tool it must provide directly operational formalisms or strong method-

ological support to transform pre-operational knowledge into an operational representation.

Simply attaching an editor for Lisp code doesn't do it. Moreover, delivering running systems

must be the intention of the tool developers, as opposed to tools built to deliver executable

speci�cations or feasability studies. Knowledge management refers to repository, dictionary,

and browsing capabilities for the tool's knowledge representation primitives. An environ-

ment provides active knowledge acquisition support if it derives guidance for the ongoing

acquisition from the current contents of its knowledge base.

The study used a description of system development as a cyclic process consisting of a set

of distinct activities. These activities are organized in a logical sequence, not to be confused

with a waterfall-oriented series of phases; we see them as being the central activities of a

spiral development cycle, so that all phases can be repeated and previous results can be

re�ned and even undone if indicated by the ongoing elaboration process. A more detailed

description of this view on the development cycle is given in [Linster, 1993a].

1. The knowledge engineer goes through initial inter-

views with the domain expert, records �rst protocols, and if possible she uses techniques

such as the knowledge acquisition grid [LaFrance, 1987] to obtain initial structures and

to get a �rst overview of the application task.

2. The knowledge engineer identi-

�es recurring and potentially more abstract structures in the domain. These structures

can be of di�erent kinds.

(a) The knowledge engineer develops a

structured terminology for the domain, for example she can de�ne a T-box in

KL-ONE{like approaches [Brachman & Schmolze, 1985] or a set of classes in an

object-oriented approach.

(b)

The knowledge engineer de�nes the actions,

goals, and decision criteria to give an abstract (possibly knowledge level) descrip-

tion of the problem-solver.

(c) such as, task sharing, task decomposition,

data 
ow, or modality.

(d)

The di�erent knowledge structures, identi�ed in the previous

phases, must be merged into a coherent model. This phase is most important, as it

represents the creative interaction between the di�erent points of view represented

by the di�erent knowledge structures.
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2

2.1 Some conclusions

Obviously this phase is obsolete if the task model is de�ned using operational primitives.

Acquisition of the detailed knowledge in the framework de�ned by the task

model.

Knowledge implementation.

Testing and debugging.

Knowledge maintenance after system delivery.

Maintenance of the structures that constitute the framework of the task

model.

Maintenance of the detailed knowledge in the structures of the task

model.

Who is the user?

3.

The model of the task provides structures that are now stu�ed with detailed

knowledge about the application.

4. The task model is transformed into an operational

system .

5.

6. We distinguish two types of

knowledge maintenance:

(a)

If structures are modi�ed, then this changes the task model. Such mod-

i�cations require re-engineering of the task model, and if necessary, restructuring

of the detailed knowledge.

(b)

Within the framework of the task model, maintenance of the detailed

knowledge is similar to the acquisition of the detailed knowledge.

This distinction depends strongly on the implementation phase. It can only be drawn

if the implementation maintains the distinction between structures of the task model

and the detailed knowledge.

The study di�erentiated between four classes of users: (1) domain experts, that is, users with

a lot of knowledge of the area that the tool will be used in, but without systems analysis

skills and little or no programming knowledge; (2) knowledge engineers, that is, people with

good systems analysis and programming skills; (3) analysts, such as workplace analysts, who

do not necessarily have programming knowledge; and (4) teams consisting of domain experts

working under the guidance of knowledge engineers or analysts.

Many di�erent approaches were used to solve the Sisyphus tasks, including con�guration

design, situated classi�cation, constraint satisfaction, and genetic algorithms [Linster, 1994].

After categorizing the Sisyphus contributions in this framework, we drew conclusions such

as the following ones:
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3 Dimensions to Compare Knowledge-Based Approaches

and Architectures

If one wants to support the creative aspects of model building in the early

phases of knowledge acquisition, then having independent languages for method

and domain modeling appears to be crucial.

If one wants support for initial knowledge acquisition and bottom-up structure

development, then one is bound to get little help for the acquisition and mainte-

nance of the detailed knowledge.

If one wants to have good support for the implementation phase, the acquisi-

tion and maintenance of the detailed knowledge, then one should use a shell.

It is important to keep in mind that these conclusions are based on a �rst analysis

of a limited number of datapoints. Moreover, the dimensions used for analysis and the

positioning of the datapoints along the dimensions are not based on a generally accepted

method of evaluation. We render these conclusions to illustrate the potential that an agreed-

upon system of dimensions and an agreed-upon assessment method have. Right now, the

conclusions are only of interest in the framework used in [Linster, 1993b] to evaluate the

O�ce-Allocation contributions.

Linster [Linster, 1993b] takes a very knowledge-engineering oriented point of view, looking at

systems to �nd out how they support the knowledge engineer in his/her tasks. This point of

view does not look at characteristics of the problem to be addressed (it focusses on the Sisy-

phus o�ce allocation task), nor does it consider the application system that results from the

knowedge engineering process. To generalize Linster's work, it appears necessary to include

other | orthogonal| points of view. In order to produce useful descriptions of applications,

it is important to make distinctions between 1) the architecture, a domain-independent set

of tools designed a priori by the knowledge engineer, 2) the problem that needs to be au-

tomated, and 3) the application system, resulting from applying the architecture to the

problem.

In a concrete problem-solving situation, the architecture is the given and there are varying

degrees of interaction between architecture, problem characterisation, and the application

system as the characterisation of the problem is being in
uenced by a user's familiarity with

the architecture and its underlying metaphors.

In the following list of characterisations we do not aim at being comprehensive, but rather

at presenting what we believe are useful factors to analyze applications and to describe

architectures, problems, and applications.
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3.1 Describing an Architecture

1. Scope of Architecture

task coverage | types of tasks that the architecture can be used for

capabilities | types of reasoning that the system is able to do: uncertainty,

default reasoning, learning, etc.

2. Representations

state descriptions | what formalism is used to represent static descriptions of

objects? is there a representation of time?

procedural knowledge | can the system represent deduction rules? can action

changes be represented?

decisions | can preferences be expressed explicitely? can constraints be repre-

sented?

3. Finding solutions

search strategy | how does the system �nd solutions?

search control | are there domain-independent search-control mechanisms? how

is domain-dependent search-control knowledge formulated?

abstraction | is there an abstraction mechanism in the system?

4. Building blocks used to construe the problem and phrase the solution

generic building blocks

grain size of building blocks

knowledge-level vs. symbol-level building blocks

formal vs. operational vs. informal

process vs. structure oriented building blocks

5. Activities supported in the development cycle of an application

elicitation

knowledge structuring

acquisition of detailed knowledge

knowledge implementation

testing

maintenance
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3.2 Describing a Problem

6. Adaptability | can the system evolve as its environment requires?

execution | can the system handle unexpected events during plan execution?

learning | does the system adapt autonomously, or does it require manual adap-

tation?

factual knowledge | how can objects and facts be added/deleted/updated? can

the same factual knowledge be used for a di�erent task?

task knowledge | can the de�nition of the task be changed? can the goal be

changed and in which ways?

7. Prototyping

fast prototyping | how much e�ort is required to produce a working prototype?

prototype complexity | how much complexity of representation is required for

simple problems?

8. User-system communication

User intervention | Does the system share the task with the user? This is

a dimension spawned by the following extreme points: (1) the user keys in an

instance of the problem statement; the system comes back with a ready-made

solution; and (2) the user and the system cooperate in solving problems.

inspection | can the user understand how the system is solving a problem?

explanation | can the system justify its behavior?

1. Entities

types of objects

properties of individual objects

properties of classes of objects

properties that relate objects

2. Actions and Change

temporal considerations | reasoning about events and durations

state transformations | transitions and action models

3. Restrictions | can be preferences or hard-set restrictions

restrictions on objects
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3.3 Describing an Application System

restrictions on actions

4. Solutions

are there solutions to all the instances of the problem?

criteria satisfaction | does the problem require satis�cing solutions or are par-

tially satis�cing solutions su�cient?

solution quality | is there a notion of better quality solutions? can the user

specify a range for the quality of the resulting solution?

A problem does not necessarily need to be modelled in these terms. Our intention in

enumerating the above set is rather to provide a list of issues that need to be addressed in

modelling the problem.

Data sets instantiate the problem statement in all the respects listed above. Data sets

may consist of a description of all the objects of each type and their properties.

1. Representation | the knowledge necessary for solving problems

object types | how many di�erent types of objects?

constraints | are there restrictions in the way the objects interact?

relations | are there relations among objects?

actions | what changes and transitions are possible?

time | does the system do some type of temporal reasoning?

2. Search Space | is the system exploring a search space in �nding a solution?

branching factor | what is the branching factor?

search depth | what is the depth of the search tree?

goal interactions | how can the interactions between goals be characterized?

(independent, serializable vs non-serializable, positive vs negative)

backtracking | does the system ever need to backtrack?

solution density | what is the average solution density when comparing the size

of the search tree to the number of solutions?

3. E�ciency | how does the system address the combinatorial complexity of the prob-

lem?

quantitative measures | empirical results on the system e�ciency
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4 Describing the Sisyphus O�ce Assignment Prob-

lem

qualitative measures | a description of the mechanisms used to make the system

e�cient

4. Delivery | what happens when the system is put to use?

users | who are the users of the application? does the system achieve a useful

task according to users?

environment | how does it �t in the overall work environment?

The description of the application can also include a more detailed account of the dimen-

sions for describing an architecture.

The Sisyphus o�ce assignment problem statement [Linster, 1994] asks for the design of a

running system that assigns members of an imaginary research group to their o�ces. The

problem statement consists of a description of o�ces, members of the research group, the roles

they play in the group (such as, manager, senior researcher, etc.), an annotated transcription

of a thinking-aloud protocol of a wizard who routinely solves this kind of task, and a list

of constraints and preferences for the solution (such as, management and secretaries should

be assigned close o�ces, senior researchers should be assigned single o�ces, smokers and

non-smokers should not share o�ces, etc.). A second version of the problem statement is a

variant of the �rst data set but with one more smoker. This small change produced a data

set that had no satis�cing solution.

In our set of dimensions we would characterize this problem as follows:

1. Objects

types of objects: rooms, people, projects, job types (group head, project head,

manager, secretary, project member)

properties of classes of objects: person x is a smoker or a non-smoker, person x is

a hacker or a sta� member, room x is double or single size

properties that relate objects: person x has job of type y, person x works with

person y, person x works with person y.

properties of individual objects: the actual people, projects, and rooms (not in-

cluded here for lack of space).

2. Actions and Change
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temporal considerations | reasoning about events and durations: temporal con-

siderations do not apply | except for the sequence of activities when assigning

people to o�ces. The sequence of assignements (i.e., who is assigned �rst) may

be an important factor in the user-interactioon aspects of the system.

state transformations | transitions and action models: At �rst sight, a state

transition model may apply; states being partial assignments (who is in which

o�ce, and who is not assigned yet) and transitions/actions being the assignment

of people to o�ces.

3. Restrictions and preferences

restrictions

(a) single rooms accomodate one person, double rooms accomodate two.

(b) there is only one group head

(c) there is only one manager

(d) there is only a project head per project

preferences

(a) o�ces of the group head and sta� should be close.

(b) group heads should be given a double-size o�ce.

(c) project heads should be close to the group head.

(d) twin o�ces should be shared by people in di�erent projects.

(e) researchers are not eligible for single o�ces.

(f) a non-smoker cannot share a room with a smoker.

4. Solutions

are there solutions to all the instances of the problem? Not all problems can be

solved | at least not without relaxing some of the criteria. For example, the

second problem statement | characterized through an odd number of smoking

junior researchers | can only be solved by relaxing some constraints, for example,

by putting a junior researcher into a single o�ce, or by assigning a smoking senior

researcher to a twin o�ce together with a smoking junior researcher.

criteria satisfaction | If �nding a solution requires violating some constraints,

there was no speci�cation of how the human expert would solve the problem.

solution quality | Solutions that satis�ed all the constraints were presumable

preferred to solutions that violated some constraints. No other characterisation

of the relative quality of solutions was given in the problem statement.
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5 Discussion

The data sets provided often determine whether a constraint in the problem de�nition is

making the problem hard to solve. The data set provided made the problem relatively

simple. For example, there were a lot of double-size and single-size o�ces compared to how

many people needed to be assigned. There were only 4 smokers. There were 8 projects, each

of 1-3 people. These data made the constraints relatively easy to satisfy. In this case, the

fact that the number of smokers is even makes this data set simpler to solve with regard to

the non-smoking constraint, compared to data sets that include many smokers. And in the

extreme, if there are no smokers at all then the constraint becomes nonrelevant. Similarly,

if there are many more rooms than people, then this constraint does not really a�ect the

complexity of the problem.

The second statement of the Sisyphus problem had no satis�cing solution, which made

some architectures fail to return any solution at all. This sort of exercise is very useful to

understand the strengths and weaknesses of an architecture. But it is nonetheless a small

variation along one single direction.

Despite the wide variation in the approaches taken by the di�erent Sisyphus participants,

the fact is that each one could successfully implement the problem statements published to

date. The question that we should pose is not whether we can implement an application

using a certain kind of approach, since this seems to have a clearly positive answer. Rather,

we should ask whether our implementations can provide solutions to complex data sets,

whether they can satisfy interacting restrictions, and whether they can support the additional

functionalities that real applications demand. This last question is central to evaluating the

knowledge acquisition tools that we build for our systems, which is the ultimate goal of the

Sisyphus participants. Can our systems be corrected if the designers had any misconceptions

or misunderstandings about the task they were automating? Can our systems support

additional functionalities that applications may require, such as explanation, adaptation,

and scaling up? How could we use our knowledge acquisition tools to modify the current

implementations of the Sisyphus problem to accomodate new requirements that our human

expert may get in his job in subsequent months? Could we update our systems to accomodate

requirements such as:

More rooms, more people, more projects (this would test scaling up issues)

More (and more problematic) smokers (as in second Sisyphus task, but more than one)

More managers

More people in each project

Absolutely no assignments with smoker/non-smoker

Hackers cannot share rooms with non-hackers
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