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Abstract

Autonomous systems require the ability to plan effective courses of action under potentially uncertain or
unpredictable contingencies.  Planning requires knowledge of the environment that is accurate enough to allow
reasoning about actions.  If the environment is too complex or very dynamic, goal-driven learning with reactive
feedback becomes a necessity. This chapter addresses the issue of learning by experimentation as an integral
component of PRODIGY. PRODIGY is a flexible planning system that encodes its domain knowledge as declarative
operators, and applies the operator refinement method to acquire additional preconditions or postconditions when
observed consequences diverge from internal expectations.  When multiple explanations for the observed divergence
are consistent with the existing domain knowledge, experiments to discriminate among these explanations are
generated. The experimentation process isolates the deficient operator and inserts the discriminant condition or
unforeseen side-effect to avoid similar impasses in future planning.  Thus, experimentation is demand-driven and
exploits both the internal state of the planner and any external feedback received.  A detailed example of integrated
experiment formulation in presented as the basis for a systematic approach to extending an incomplete domain

1theory or correcting a potentially inaccurate one.

1In Machine Learning: An Artificial Intelligence Approach, Volume III, Michalski, R. S. and Kodratoff, Y. (Eds.), Morgan Kaufmann, 1990.
This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA order No. 4976, monitored by the Air
Force Avionics Laboratory under contract F33615-84-K-1520, in part by the Office of Naval Research under contract N00014-84-K-0345, and in
part by a gift from the Hughes Corporation.  The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of DARPA, AFOSR, ONR, or the US government.  The authors
would like to acknowledge other past and present members of the PRODIGY project at CMU: Daniel Borrajo, Oren Etzioni, Robert Joseph, Craig
Knoblock, Dan Kuokka, Steve Minton, Henrik Nordin, Alicia Perez, Santiago Rementeria, Hiroshi Tsuji, and Manuela Veloso, and the help of
Dan Kahn, Michael Miller and Ellen Riloff in implementing the PRODIGY system.
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1. Introduction: The Need for Reactive Experimentation
Learning in the context of problem solving can occur in multiple ways, ranging from macro-operator formation

[Fikes 71, Cheng and Carbonell 86] and generalized chunking [Laird et al. 86], to analogical transfer of problem

solving strategies [Carbonell 83, Carbonell, 1986 86] and pure analytical or explanation-driven techniques [Mitchell

et al 86, DeJong and Mooney 86, Minton & Carbonell 87].  All of these techniques, however, focus on the

acquisition of control knowledge to solve problems faster, more effectively, and to avoid pitfalls encountered in

similar situations.  Newly acquired control knowledge may be encoded as preferred operator sequences (chunks and

macrooperators), improved heuristic left-hand sides on problem solving operators (as in LEX [Mitchell et al 83]), or

explicit search-control rules (as in PRODIGY [Minton87a 87, --- 89]).

However important the acquisition of search control knowledge may be, the problem of acquiring factual domain

knowledge and representing it effectively for problem solving is of at least equal significance.  Most systems that
2acquire new factual knowledge do so by some form of inductive generalization , but operate independently of a

goal-driven problem solver, and have no means of proactive interaction with an external environment.

When one observes real-world learners, ranging from children at play to scientists at work, it appears that active

experimentation plays a crucial role in formulating and extending domain theories, whether everyday "naive" ones,

or formal scientific ones.  Many actions are taken in order to gather information and learn whether or not predicted

results come to pass, or unforeseen consequences occur.  Experimentation is a powerful tool to gather knowledge

about the environment, both about properties of objects and about actions.

In general, experimentation may be targeted at the acquisition of different kinds of knowledge:

• Experimentation to augment an incomplete domain theory. Experiments may be formulated to
synthesize new operators, learn new consequences of existing operators, refine the applicability
conditions of existing operators, or determine previously unknown interactions among different
operators. Also, performing known actions on new objects in the task domain in a systematic manner,
and observing their consequences, serves to acquire properties of these new objects and classify them
according to pragmatic criteria determined by the task domain.  Thus, experimentation may be guided
towards acquiring new domain knowledge from the external environment.

• Experimentation to refine an incorrect domain theory. No comprehensive empirical theory is ever
perfect, as the history of science informs us, whether it be Newton’s laws of motion or more ill-
structured domain theories embedded in the knowledge bases of expert systems.  However, partially
correct theories often prove useful, and are gradually improved to match external reality (although they
may be totally replaced on occasion by a newer conceptual structure). Here we deal only with minor
errors of commission in the domain theory, which when locally corrected improve global performance.
We believe automated knowledge refinement is a very important aspect of autonomous learning, and
one where success is potentially much closer at hand than the far more difficult and seldomly
encountered phenomenon of formulating radically new theories from ground zero.  Thus,
experimentation may be guided at incremental correction of a domain theory.

• Experimentation to acquire control knowledge in an otherwise intractable domain theory. When
multiple sequences of actions appear to achieve the same goal, experimentation and analysis are
required to determine which actions to take in formulating the most cost-effective or robust plan, and to
generalize and compile the appropriate conditions so as to formulate the preferred plan directly in future
problem solving instances where the same goal and relevant initial conditions are present.  Thus,
experimentation may be guided towards making more effective use of existing domain knowledge.

2The reader is referred to the two previous machine learning books [Michalski, Carbonell and Mitchell 83, Michalski, Carbonell and Mitchell
86] and other chapters of this book for several good examples of inductive methodologies and systems built upon them.
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• Experimentation to acquire or correct knowledge about the external state of the world. Given a
3partial description of the external world , it often proves necessary to acquire a missing piece of

knowledge in order to synthesize or elaborate a plan -- regardless of the accuracy, tractability, or
completeness of the domain theory itself.  This kind of observation (or "exploration" or
"experimentation") is a common data-seeking behavior prototyped in systems such as MAX [--- 90], but
missing from most idealized work on planning, including all theoretical treatments of non-linear
constraint-based planning.

We have investigated a series of methods for learning by experimentation in the context of planning, that can

yield factual knowledge, as well as search control preferences.  The work described here is a method for refining the

specifications of operators, and it has been implemented in a version of the PRODIGY system augmented with

capabilities for execution monitoring and dynamic replanning.

2. The Role of Experimentation in PRODIGY

The PRODIGY system [Minton et al. 89, --- 89, Carbonell et al. 90] is a general purpose problem solver designed to

provide an underlying basis for machine learning research. The appendix presents an overview of the basic

architecture and the different learning mechanisms in the system. PRODIGY can improve its performance, by

learning search control rules [Minton88 88, Etzioni 90], by storing and replaying derivational traces in an

analogy/case-based reasoning mode [Veloso and Carbonell 89], by learning useful abstractions for hierarchical

planning [Knoblock 89], and by acquiring knowledge from domain experts via graphically-oriented static and

dynamic knowledge acquisition interfaces [Joseph 89]. Our work is focused on the acquisition of the domain theory

through external feedback from targeted actions: execution monitoring of plans as they unfold and targeted

experiments to resolve apparent indeterminacies in the environment.

Of the possible imperfections in a domain theory described in the previous section, we focus our work on the

refinement of incomplete theories.  The specification of a domain can be incomplete in several different ways:

• Attributes of objects in the world could be unknown − factual properties could be missing (size, color,
category, functional properties, etc.) or even knowledge about to which objects the operators may be
applied to achieve the desired effects.  Totally new attributes could be learned, or the range of already
known ones could be further specified.  Additionally, attributes of objects can be combined to form new
attributes. For example, density and volume under constant gravity define the attribute "weight."
Inference rules can also define new attributes expressing more complex relations.

• Entire operators could be missing − the planner may not know all the capabilities of the performance
component.

• Operators could be partially specified − the planner may know only some of their preconditions or
some of their consequences.

• Interactions among operators could be unknown, causing planning failures or planning inefficiencies.

Our goal is to develop learning methods and experimentation strategies to acquire missing domain knowledge in

general. This paper focuses on one central approach, the operator refinement method, to acquire missing pre and

post conditions of operators in the domain theory.  In a forthcoming paper [Carbonell et al. ng], we describe other

techniques for learning by experimentation in the context of problem solving that address other types of

incompleteness in the domain theory.

3All descriptions of a real robotic environment, for instance, are necessarily partial -- as are all computational models of a complex external
reality.
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We first present a detailed implemented example of the operator refinement method in action.  Then, we describe

the method itself more formally.

2.1. The Operator Refinement Method: A Detailed Example
Consider an example domain of expertise: crafting a primary telescope mirror from raw materials (such as pyrex

4glass, pure aluminum, distilled water, etc.) and pertinent tools (such as grinding equipment, aluminum vaporizers,

etc.). A telescope mirror will be considered here as a reflective and polished surface that has a parabolic shape.  The

operators in the domain include: GRIND-CONCAVE, POLISH, ALUMINIZE, and CLEAN and are presented in

detail in figure 2-1 with the inference rules. As we will see through the example, this is an imcomplete specification

of the domain.

OPERATORS

(GRIND-CONCAVE (CLEAN
(params (<obj>)) (params (<obj>))
(preconds (preconds

(is-solid <obj>)) (is-solid <obj>))
(effects ( (effects (

(add (is-parabolic <obj>))))) (add (is-clean <obj>)))))

(POLISH (ALUMINIZE
(params (<obj>)) (params (<obj>))
(preconds (preconds

(and (is-clean <obj>) (and (is-clean <obj>)
(is-glass <obj>))) (is-solid <obj>)))

(effects ( (effects (
(add (is-polished <obj>))))) (add (is-reflective <obj>)))))

INFERENCE RULES

(IS-TELESCOPE-MIRROR (IS-MIRROR
(params (<obj>)) (params (<obj>))
(preconds (preconds

(and (is-mirror <obj>) (and (is-reflective <obj>)
(is-parabolic <obj>))) (is-polished <obj>)))

(effects ( (effects (
(add (is-telescope-mirror <obj>))))) (add (is-mirror <obj>)))))

Figure 2-1: Incomplete domain theory, as given initially to the system.

Let us suppose that the goal of producing a telescope mirror arises, and we have glass blanks and a wood pieces to

work with, none of them with clean or polished surfaces. PRODIGY starts backchaining by matching the goal state

against the right hand side of operators and inference rules, concluding that in order to make a telescope mirror it

4Aluminum is placed on the primary reflecting surface of a glass mirror blank by placing the blank in a vacuum chamber and passing a strong
current through a thin pure aluminum strip, which then vaporizes and is deposited evenly, several molecules thick, on the glass surface to produce
optical-quality mirrors. For simplicity in our discussion, these details of the aluminizing process are suppressed, as are internal details of the
grinding and polishing processes. Hence, though the domain we have chose is very much a real one, we discuss it at suitable level of abstraction
and simplification.
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should first make a mirror, and then make its shape parabolic.  Then seeing how to make a mirror, it concludes that

it should make it reflective and then polish it (by matching IS-MIRROR against the right hand side of the second

inference rule).  Let us assume for now that PRODIGY correctly selected the glass blank (it was listed first) as the

starting object.  Now it must apply the operator ALUMINIZE to the glass, which requires that it be a solid, and that

it be clean.  The first precondition is satisfied (glass is a solid), and the second one requires applying the CLEAN

operator, which succeeds because any solid thing may be cleaned. These conditions enable the ALUMINIZE

operator to apply successfully, and go on to the next goal in the conjunctive subgoal set:  IS-POLISHED.  Thus far

(as shown in figure 2-2), there have been no surprises and no learning, just locally successful performance.

However, whereas PRODIGY believed that the POLISH operator preconditions were satisfied (it believes in

temporal persistence of states, such as IS-CLEAN, unless it learns otherwise), the environment states the contrary:

the glass was not clean.  The first learning step occurs in the attribution of this state change (the glass becoming

dirty again) to one of the actions that occurred since the state IS-CLEAN was brought about.  Since there was only

one intervening operator invocation (ALUMINIZE), it infers that a previously unknown consequence of this

operator is ~IS-CLEAN (meaning retracting IS-CLEAN from the current state).  If there had been many

intermediate operators, specific experiments to perform some but not other steps would have been required to isolate

the culprit operator.  The operator ALUMINIZE is corrected, and PRODIGY tries now to achieve its goal of making

a telescope mirror with the new domain knowledge.

Since the glass is dirty, the CLEAN operator is applied once more.  It again attempts to POLISH, but the operator

does not result in the expected state: IS-POLISHED.  This means that either it is missing some knowledge (some

other precondition for POLISH is required), or its existing knowledge is incorrect (IS-POLISHED is not a

consequence of POLISH).  Always preferring to believe its knowledge correct unless forced otherwise, it prefers to

examine the former alternative.  But, how can it determine what precondition could be missing?

Figure 2-2: Initial planning attempts. PRODIGY learns that
~(IS-CLEAN <obj>) is a new postcondition of ALUMINIZE (from failure 1),

and ~(IS-REFLECTIVE <obj>) is a new precondition of POLISH (from failure 2)

It is time to formulate an experiment:  Are there other objects on which it could attempt the POLISH operation?
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The only possibilities are un-aluminized dirty glass blanks and dirty wood blanks. Only glass can be polished (see

the preconditions of POLISH), and all the glass blanks are identical to each other, but different from the current

object in that they are both dirty and unaluminized, so it chooses a glass blank.  After cleaning it, the POLISH

operator succeeds, and PRODIGY must establish a reason for the operator succeeding this time, but failing earlier: the

only difference is the glass not being aluminized.  Thus a new precondition for POLISH is learned as a result of a

simple directed experiment: ~IS-REFLECTIVE(<OBJ>), meaning that once coated with aluminum, the substrate

substance (e.g.  the glass) cannot be polished.

Now back to the problem at hand.  In order to POLISH the glass it must unaluminize it, but there is no known
5operator that removes aluminum (see figure 2-2). So the IS-POLISHED subgoal fails, and failure propagates to the

IS-MIRROR subgoal, with the cause of failure being that the IS-REFLECTIVE prevented POLISH from applying.
6Here there is a goal interaction that can be solved by reordering the interacting components:

If the cause of failure of one conjunctive subgoal is a consequence of an operator in an earlier subgoal in
the same conjunctive set, try reordering the subgoals.

That heuristic succeeds by POLISHing before ALUMINIZing.  Having obtained success in one ordering and failure

in another, the system tries to prove to itself that this ordering is always required, and succeeds by constructing the

proof: ALUMINIZE will always produce IS-REFLECTIVE which blocks POLISH, and since there are no other

known ways to achieve IS-POLISHED, failure is guaranteed.  The present version of PRODIGY is capable of

producing such proofs in failure-driven EBL mode [Minton & Carbonell 87]. Thus, a goal-ordering control rule is

acquired for this domain: always choose POLISH before ALUMINIZE, if both are in the same conjunctive goal set

and both apply to the same object.

Figure 2-3: Second planning attempt: new postconditions of GRIND-CONCAVE
are learned: ~(IS-REFLECTIVE <obj>) and ~(IS-POLISHED <obj>)

5If its domain knowledge were greater, it would know that grinding removes aluminum and well as changing shape and removing surface
polish. In fact, this knowledge is acquired later in the example, as an unfortunate side effect of attempting to make a flat mirror into a parabolic
one by grinding it.

6Sussman would call it a "clobber-brother-subgoal" interaction in HACKER [Sussman 73].
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PRODIGY tries again to produce a telescope mirror.  The system succeeds in producing a mirror, but now needs to

make it parabolic.  The only operator to make IS-PARABOLIC true is GRIND-CONCAVE.  Its only precondition is

that the object be solid, and so it applies.  At this point the system checks whether it finally has achieved the

top-level goal IS-TELESCOPE-MIRROR, and discovers (much to its dismay, were it capable of emotions), that all

its work polishing and aluminizing has disappeared (see figure 2-3).  The only operator that applied since the mirror

was polished and aluminized was GRIND-CONCAVE, and so it learns two new consequences for GRIND-

CONCAVE: ~IS-POLISHED and ~IS-REFLECTIVE.  No explicit experiment was needed as only one operator

(GRIND-CONCAVE) could have caused those changes.

At this point PRODIGY spawns off the subgoal to make the parabolic glass back into a mirror, using all it learned

earlier (POLISH before ALUMINIZE, etc.) to produce the plan more efficiently.  Finally, the top level goal of

IS-TELESCOPE-MIRROR is achieved (see figure 2-4).

Figure 2-4: Final search tree after learning

The learning system, however, is seldom quiescent, and though global success was achieved, some states (IS-

MIRROR, IS-REFLECTIVE, IS-POLISHED, IS-CLEAN) had to be achieved multiple times.  Retrospective

examination of the less-than-optimal solution suggests that another goal reordering heuristic applies:

If a result of a subgoal was undone when pursuing a later subgoal in the same conjunctive set, try
reordering these two subgoals.

So, PRODIGY goes off and tries the experiment of achieving IS-PARABOLIC before achieving IS-MIRROR,
7resulting in a more efficient plan. A proof process is again invoked to determine whether to make it a reordering

rule, concluding that it is always better to achieve IS-PARABOLIC first.

Figure 2-5 summarizes the new knowledge acquired (in italics) as a result of the problem solving episodes,

7In general we are measuring relative efficiency by requiring fewer total steps and no repeated subgoals.  In the instance case we have a
stronger condition: the leaf-node actions of the more efficient plan constitute a proper subset of the leaf-node actions of the previous less efficient
plan.
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experiments, and proofs.  Such is the process of fleshing out incomplete domain and control knowledge through

experience and focused interaction with the task environment. We present now a formal description of the method

used through this example.

OPERATORS

(GRIND-CONCAVE (CLEAN
(params (<obj>)) (params (<obj>))
(preconds (preconds

(is-solid <obj>)) (is-solid <obj>))
(effects ( (effects (

(add (is-parabolic <obj>)) (add (is-clean <obj>)))))
(del (is-planar <obj>))
(del (is-reflective <obj>))
(del (is-polished <obj>)))))

(POLISH (ALUMINIZE
(params (<obj>)) (params (<obj>))
(preconds (preconds

(and (is-clean <obj>) (and (is-clean <obj>)
(is-glass <obj>)) (is-solid <obj>)))
(~ (is-reflective <obj>)))) (effects (

(effects ( (add (is-reflective <obj>))
(add (is-polished <obj>))))) (del (is-clean <obj>)))))

INFERENCE RULES

(IS-TELESCOPE-MIRROR (IS-MIRROR
(params (<obj>)) (params (<obj>))
(preconds (preconds

(and (is-mirror <obj>) (and (is-reflective <obj>)
(is-parabolic <obj>))) (is-polished <obj>)))

(effects ( (effects (
(add (is-telescope-mirror <obj>))))) (add (is-mirror <obj>)))))

LEARNED CONTROL RULES

Select IS-POLISHED(<obj>) before IS-REFLECTIVE(<obj>) if both are present
in the same conjunctive subgoal set.

Select IS-PARABOLIC(<obj>) before IS-MIRROR(<obj>) if both are present
in the same conjunctive subgoal set.

Figure 2-5: Complete domain theory after experimentation. Items in italics
denote new knowledge acquired through the operator refinement method.

2.2. The Operator Refinement Method
In the current implementation, PRODIGY continually monitors the outside world for external compliance when

operator preconditions are matched in the internal state, and when new effects (adds and deletes) are asserted upon

operator application. In doing this, for each precondition or efffect P we obtain a value of the predicate

Consistent(World, State, P) as follows:
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Consistent(World, State, P)
if P is satisfied in both the internal state and the external world
or P is not satisfied in either the internal state or external world

then True
else False

The predicate Consistent is false whenever P is satisfied in either world or state but not in the other, signifying a

discrepancy between internal belief and external reality.

PRODIGY applies an operator O only after establishing that all its preconditions are satisfied in the internal state.

If these are verified in the external world, planning proceeds normally, but if not, it attempts to extend the domain

theory as follows:

For every operator O selected

for every precondition P of operator O
if Consistent(World, State, P)
then continue planning

if NOT(Consistent(World, State, P))
then one of the operators applied

after P was established has a
previously unknown postcondition. CASE 1

1) Select candidate operators. The candidate set
consists of all operators applied since the
consistency of P was last checked.

2) Identify responsible operator. Formulate
experiments by selecting an operator in a
binary search over the ordered candidate set,
applying it and then checking P in the World. If as a
result of an experiment with operator O , P isE
unexpectedly changed in the World, then O isE
incompletely specified.

3) Add P as a new postcondition of operator O .E

This case corresponds to the first discrepancy discussed in our example:  the planner’s internal state contained the

belief that the glass was clean, while in reality it was not. PRODIGY learned that ALUMINIZE should delete the

literal IS-CLEAN from the internal state.

Whenever an operator O is applied, PRODIGY verifies that its postconditions have been realized in the external

world. If not, the domain theory is refined as follows:
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for every postcondition P of operator O
if Consistent(World, State, P)
then continue planning

if NOT(Consistent(World, State, P))
then

if ∃ Q precondition of O such that NOT(Consistent(World, State, Q))
then one of the operators applied after Q was established

should have had a postcondition affecting Q.] CASE 2

1) Select candidate operators. The candidate set
consists of all operators applied since the
consistency of Q was last checked.

2) Identify responsible operators. Formulate
experiments by selecting an operator.
Each experiment will consist of applying one of the
operators and checking Q in the World. If as a
result of an experiment with operator O Q isE
unexpectedly changed in the World, O isE
incompletely specified.

3) Add Q as a new postcondition of operator O .E

if ∀ preconditions Q of O Consistent(World, State, Q)
then a precondition of operator O might be missing. CASE 3

1) Select candidate preconditions. The candidate
set ∆(S ,S ) is formed by calculating all the differencesold current
between the most similar earlier state in the previous
problem solving history in which O was applied
successfully S and the current state Sold current
(an unsuccessful application of O).

2) Identify missing precondition. Formulate
experiments using a binary search over ∆(S ,S )old current
by generating new state S which CONTAINSexperiment
half of the differences between S and Sold current
and determining whether O produces the desired effect.
If so, continue the binary search over that half of
of ∆(S ,S ), and if not over the other halfold current
until only one condition R is left in the ∆ set.

3) Add R as a new precondition of operator O.

Case 2 corresponds to the last situation described in our example.  After applying GRIND-CONCAVE the

planner assumed that the glass was still a mirror (i.e., that it was still REFLECTIVE and POLISHED). Since the

external world did not confirm this expectation, the planner acquired the previously unknown consequences of the

grinding operator.

Case 3 also occurred in our example. When the system applied the operator POLISH, its effects were not realized

in the external world. The method hypothesizes that a precondition must be missing from the operator. Through

experimentation, the new precondition is found, and the hypothesis is confirmed.

Although in the example all the learned preconditions are negated predicates (absence tests) and the new

consequences are deletions from the current state, the same basic process applies to acquiring non-negated

preconditions and consequences that add assertions to the state.
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In addition the system used the following heuristics for cases of goal interaction and plan optimization:

If the cause of failure of one conjunctive subgoal is a consequence of an operator in an earlier subgoal in
the same conjunctive set, try reordering the subgoals.

If a result of a subgoal was undone when pursuing a later subgoal in the same conjunctive set, try
reordering these two subgoals.

The method for acquiring the missing pre and post conditions of operators are summarized in the table below.  In

essence, plan execution failures trigger the experimentation and replanning process.  Thus, each method is indexed

by the failure condition to which it applies, encoded as differences between expected and observed outcomes. The

first two cases are the focus of the current chapter.  A forthcoming paper [Carbonell et al. ng] expands the method to

address the last case on the table.

EXPECTED OBSERVED RECOVERY LEARNING METHOD
OUTCOME BEHAVIOR STRATEGY (EXPERIMENT

GENERATOR)

all the known at least one plan to binary search on operator
preconditions precondition achieve sequence from establishment

satisfied is violated the missing of precondition to present,
earlier at present precondition adding negated precondition

as postcondition of the
culprit operator

all the known all the known attempt to compare present failure
preconditions preconditions plan without to the last time operator

satisfied satisfied this operator, applied successfully,
earlier but operator or failing generating in a binary

fails to apply; that, suspend search intermediate world
postconditions plan till the descriptions to identify
remain undone experiment is the necessary part of the

complete state, adding it to the
operator preconditions

operator at least one if the unmet compare to last time all
applies and postcondition postcondition postconditions were met,

all the fails to be is incidental perform binary search on
postconditions satisfied ignore it, world state to determine
are satisfied but if it is necessary part to achieve

a goal state all postconditions - then
try different replace operator with two
operator(s) new ones: one with the new

precondition and all the
postconditions, the other
with the new precondition
negated and without the
postcondition in question

Operator refinement is always applied in an active planning context:  there is a goal, a state and a (partially)

formulated plan.  We are not modeling idle curiosity. Thus, we characterize our work as purposeful and task-driven

experimentation. Experiments are always directed at overcoming a current impasse in the planning processes.
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3. Related Work
Experimentation techniques have been used in recent work on various areas of Machine Learning, including

learning from examples [Gross 88] and discovery programs [Langley et al 87, Nordhausen et al. 89]. Kulkarni and

Simon [Kulkarni and Simon 89, Kulkarni 88] developed a system called KEKADA that simulates the reasoning

process followed by scientists when they encounter surprising phenomena.  In essence, they developed a set of

heuristics to propose experiments to confirm, magnify and elaborate the extent of a previously unexpected

observation.

In similar spirit to the work reported here, Rajamoney focused on on the problem of refining incorrect theories of

qualitative physics in the ADEPT system [Rajamoney 86].  When a contradiction arises in the process of explaining

an observation, ADEPT proposes hypotheses, and experimentation is used to confirm or reject a single hypothesis at

a time.  Several kinds of experiments are proposed to test these hypotheses.  In COAST [Rajamoney 88],

experimentation-based hypothesis refutation is also used to revise an incorrect theory. Experiments are designed

using the predictions made by the current hypothesized theory, and their results are used to reject possible theories.

Rajamoney proposes four dimensions to evaluate the design of experiments: efficacy, efficiency, tolerance in the

presence of unavailable data, and feasibility.

In contrast with these systems, our work is focused on learning by experimentation to improve the domain theory

of a planning system, and more specifically to overcome impasses when external reality differs from planning

expectations. The LIVE system, by Shen and Simon [Shen and Simon 89, Shen 89] shares some of our objectives.

LIVE acquires new operators and refines old ones by interacting with the environment in order to formulate

indirectly observable features of objects in the domain, and uses these features in creating new preconditions to split

overgeneral operators.  This method differs from our work in several ways.  First, in order to gather information

about the world, it checks every instantiated predicate that is known to the system. In our system, the only predicates

that are attended to in the external world are those that the planner checks or changes in the internal state.  We

consider this a more practical approach to larger domains.  Second, the definition of new features causes a real

overload for the system, since it must find out the value of every new feature for every object in order to apply its

operators. Nevertheless, this capability for defining new features gives the system the capability to acquire a more

powerful language to express the domain knowledge.  Finally, LIVE keeps no history of its past behavior, retaining

only the current set of operators, objects and features.

There is a significant amount of work on recovery from planning failures, both in the context of case-based

reasoning and of reactive systems ( [Hammond 89, Schoppers 87, Georgeff and Lansky 87, Kaelbling 86], and

others). However our work is more focused on the techniques for learning from these failures rather than the

process of plan recovery itself.

There are a number of systems that use different techniques to learn in the context of planning and interacting

with an external environment.  Robo-Soar [Laird et al. 89] is a system implemented in Soar that learns control

knowledge from outside guidance. The Theo-Agent [Blythe and Mitchell 89] is an autonomous robot that starts out

building plans to solve new problems and learns rules that allow it to have a reactive behavior.



12

4. Discussion and Further Work
The operators in the domains that we have used to test out methods are expressed using only conjunction and

negation. Further work should expand these techniques to learn more complex expressions of the preconditions of

operators. The method was also described assuming that only one condition is acquired in each learning episode. To

increase efficiency, we are currently extending it to consider cases where the experimentation phase can find several

unknown preconditions or postconditions.

More comprehensive learning could occur by attempting to generalize the newly acquired preconditions and

consequences to other sibling operators in the operator hierarchy (see figure 4-1).  For instance, the newly learned

consequences of destroying a polished or aluminized surface apply not just to GRIND-CONCAVE, but to any

GRIND operation (such as GRIND-CONVEX, GRIND-PLANAR). However, these consequences do not apply to

other RESHAPE operations such as BEND, COMPRESS, etc.  The process to determine the appropriate level of

generalization again requires experimentation (or asking focused questions to a human expert).  For instance,

observing the consequences of GRIND-PLANAR on a previously aluminized mirror, provides evidence that all

GRINDs behave alike with respect to destroying surface attributes, and observing the consequences of bending a

polished reflective glass tube without adverse effects on surface attributes prevents generalization above GRIND.

Figure 4-1: Fragment of operator "isa" hierarchy

In addition to proposing experiments to guide generalization, we are starting to investigate tradeoffs between

experimentation and resource consumption (minimizing the latter, while maximizing the information gained from

the former), and tradeoffs between experimentation and other goals such jeopardizing safety of the robot or person

conducting the experiment.  The entire planning context can be used to formulate and guide the experiment, in order

to focus on the most direct and economical way of inferring the missing knowledge.  Thus, experiment formulation,

once invoked with the appropriate constraints, becomes itself a meta-problem amenable to all the methods in the

general purpose planner.  The EBL method (or perhaps a similarity-based method − SBL) may then be invoked to

retain not just the result of the instance experiment, but its provably correct generalization (or empirically

appropriate one if SBL is used).

The experimentation methods discussed here focused only on operator refinement (both preconditions and

consequences), but not on acquiring new operators, new features of the state or domain, or new meta-level control
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structures. In a forthcoming paper [Carbonell et al. ng], we present other techniques for learning by experimentation

in the context of problem solving. That paper describes how PRODIGY can acquire knowledge about the state, such as

values of attributes not known when needed to expand the current plan. Another method allows the systen to learn

multiple more specific versions of overgeneral operators that failed to predict outcomes consistently.

The methods described here and in [Carbonell et al. ng] apply when PRODIGY is given a correct but incomplete

domain theory, and learning is always incremental: the initial knowledge is monotonically augmented. This

metaprinciple of "cognitive inertia" dictates that monotonic changes (adding new information) be preferred over

non-monotonic ones (changing previous information), so long as no overt inconsistencies are discovered.  Further

work should address the problem of modifying an incorrect domain theory.

In order to avoid the complexities of full interleaving of planning and execution, we constructed an expository

domain where environmental feedback can be provided by a domain-knowledgeable user (that answers only yes-or-

no questions about the state of the external environment), and one where the search space is of manageable size

(e.g., there are no difficult decision points with multiple applicable operators).  Moreover, we assume environmental

feedback is correct and not deterministic.  Clearly, not every domain permits such a limited manipulation and

interchange of information as the one used to describe the operator refinement method. In other work on

experimentation we connected PRODIGY to a full 3D newtonian kinematics robotic simulator [Carbonell and Hood

86, Carbonell et al. 89] for more realistic environmental feedback [Carbonell et al. ng]. The MAX system (a

PRODIGY progeny) exhibits a richer communication channel [--- 90].  Finally, we assume that the environment is

only affected by the actions of our system.  There are no environmental changes unless PRODIGY produces them,

although of course PRODIGY is not always aware of all the changes that each of its actions may produce.

Our ultimate aim is to develop a set of general techniques for an AI system to acquire knowledge of its task

domain systematically under its own initiative, starting from a partial domain theory and little if any a-priori control

knowledge. The impact of this work should be felt in robotic and other autonomous planning domains, as well as in

expert systems that must deal with a potentially changing environment of which they cannot possibly have complete

and accurate knowledge beforehand.  The operator refinement method is but the first step in this long term

endeavor.
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I. The PRODIGY Architecture
PRODIGY is a general problem solver combined with several learning modules.  The PRODIGY architecture, in fact,

was designed both as a unified testbed for different learning methods and as a general architecture to solve

interesting problems in complex task domains.  Let us now focus on the architecture itself, as diagrammed in Figure

I-1.
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Figure I-1: The PRODIGY architecture: multiple learning modules unified by
a common representation language and a shared general problem solver

The operator-based problem solver produces a complete search tree, encapsulating all decisions -- right ones and

wrong ones -- as well as the final solution.  This information is used by each learning component in different ways,
8including the EBL component, which learns search control rules.  In addition to the central problem solver,

PRODIGY has the following learning components:

• A user-interface that can participate in an apprentice-like dialogue, enabling the user to evaluate and
guide the system’s problem solving and learning. The interface is graphic-based and tied directly to the
problem solver, so that it can accept advice as it is solving a problem (i.e., coaching) or replay and
analyze earlier solution attempts, all-the-while refining the factual or control knowledge.

• An explanation-based learning facility [Minton88 88] for acquiring control rules from a problem-
solving trace, as indicated in Figure I-1.  Explanations are constructed from an axiomatized theory
describing both the domain and relevant aspects of the problem solver’s architecture. Then the resulting
descriptions are expressed in control rule form, and control rules whose utility in search reduction
outweighs their application overhead are retained.

• A method for learning control rules by analyzing PRODIGY’s domain descriptions prior to problem

8The problem solver is an advanced operator-based planner that includes a simple reason-maintenance system and allows operators to have
conditional effects.  The problem solver’s search (means-ends analysis) is guided by explicit domain-independent and domain-specific control
rules. All of PRODIGY’s learning modules share the same general problem solver and the same knowledge representation language, PDL.
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solving. This investigation has culminated in the STATIC program [Etzioni 90], which produces
control rules without utilizing any training examples.  STATIC matches EBL’s performance on some
domains but exhibits one to two orders of magnitude faster learning rate. However, not all problem
spaces permit purely static learning, requiring EBL to learn control rules dynamically.

• A derivational analogy engine [Carbonell and Veloso 88, Veloso and Carbonell 89] that is able to replay
entire solutions to similar past problems, calling the problem solver recursively to reduce any new
subgoals brought about by known differences between the old and new problems. As indicated in
Figure I-1, both analogy and EBL are independent mechanisms to acquire domain-specific control
knowledge. They coexist in PRODIGY and should be more tightly coupled than in the present
architecture.

• A multi-level abstraction planning capability [Knoblock 89].  First, the axiomatized domain knowledge
is divided into multiple abstraction layers based on an in-depth analysis of the domain.  Then, during
problem solving, PRODIGY proceeds to build abstract solutions and refine them by adding back details
from the domain, solving new subgoals as they arise. This method is orthogonal to analogy and EBL, in
that both can apply at each level of abstraction.

• A learning-by-experimentation module for refining domain knowledge that is incompletely or
incorrectly specified (as described in the body of the paper). Experimentation is triggered when plan
execution monitoring detects a divergence between internal expectations and external expectations.  As
indicated in the figure, the main focus of experimentation is to refine the factual domain knowledge,
rather than the control knowledge.

The problem solver and EBL component of PRODIGY have been fully implemented, and tested on several task

domains including the blocksworld domain, a machine shop scheduling domain, and a 3-D robotics construction

domain. The other components, while successfully prototyped, are at various stages of development and

implementation.

A more complete description of PRODIGY’s architecture can be found in [Minton et al. 89].
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