
Yolanda Gil

Abstract

1 Introduction

Learning by Experimentation: Incremental Re�nement of
Incomplete Planning Domains

Proceedings of the Eleventh International Conference on Machine Learning

July 10-13, 1994, Rutgers, NJ.

automatically

et al.

et al.

et al.

et al.

Information Sciences Institute, USC
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi.edu

Building a knowledge base requires iterative
re�nement to correct imperfections that keep
lurking after each new version of the system.
This paper concentrates on the automatic re-
�nement of incomplete domain models for
planning systems, presenting both a method-
ology for addressing the problem and empir-
ical results. Planning knowledge may be re-
�ned through direct interaction
with the environment. Missing conditions
cause unreliable predictions of action out-
comes. Missing e�ects cause unreliable pre-
dictions of facts about the state. We present
a practical approach based on continuous and
selective interaction with the environment
that pinpoints the type of fault in the domain
knowledge that causes any unexpected be-
havior of the environment, and resorts to ex-
perimentation when additional information is
needed to correct the fault. Our approach
has been implemented in EXPO, a system
that uses PRODIGY as a baseline planner
and improves its domain knowledge in several
domains when initial domain knowledge is
up to 50% incomplete. The empirical results
presented show that EXPO dramatically im-
proves its prediction accuracy and reduces
the amount of unreliable action outcomes.

Building a knowledge base is a process that requires
iteration to correct errors that keep lurking after each
new version of the system. Several types of imper-
fections can appear simultaneously in any type of do-
main theory, including incompleteness, incorrectness,
and intractability [Mitchell , 1986, Rajamoney
and DeJong, 1987, Hu�man , 1992]. In an
EBL system, for example, the rules of the theory are
used to compose explanations and an imperfect the-
ory may greatly impair the system's ability to build

those explanations. In fact, EBL systems are very
brittle with respect to errors in the domain theory,
and a lot of the research in EBL concentrates on ei-
ther correcting them or making the system more ro-
bust [Danyluk, 1991, Hall, 1988, Rajamoney, 1993,
Rajamoney, 1988]. There is a well developed frame-
work to classify these errors and understand how they
a�ect the explanation process [Mitchell , 1986,
Rajamoney and DeJong, 1987].

In a planning system, the inaccuracies of the knowl-
edge base may rend problems unsolvable or produce
plans that yield unsuccessful executions. The di�er-
ent types of faults in a domain theory a�ect the plan-
ner's performance in di�erent ways. Exploring this
issue should provide a good framework for understand-
ing and evaluating systems that learn planning do-
main knowledge. In this paper, we concentrate on
the problematic of missing domain knowledge, which
is technically known as incompleteness. Known op-
erators may be missing preconditions and/or e�ects,
or entire operators may be absent from the domain
model. We describe the limitations of the capabili-
ties of a planner in terms of the types of incomplete-
ness of its domain knowledge. The imperfections of
the domain knowledge have been closely related to
planning and/or execution failures [Hammond, 1986,
Hu�man , 1992], but we show that this is not
necessarily the case: what they cause is prediction (or
expectation) failures, including unexpected successful
executions.

The second part of the paper presents a global perspec-
tive and empirical results of our work on autonomous
re�nement of incomplete planning domains [Carbonell
and Gil, 1990, Gil, 1993, Gil, 1992]. Learning is selec-
tive and task-directed: it is triggered only when the
missing knowledge is needed to achieve the task at
hand. Our approach is based on continuous and se-
lective interaction with the environment that leads to
identifying the type of fault in the domain knowledge
that causes any unexpected behavior of the environ-
ment, and resorts to experimentation when additional
information is needed to correct the fault. The new

prodigy

prodigy

2 Planning with Incomplete Models

et al.

et al.

et al.

unreliable

et al.

(unlocked <door>)

PUT-DOWN
(holding obj)

PUT-DOWN-NEXT-TO

2.1 Unreliable Action Outcomes

2.2 Unreliable Predicate Beliefs

(OPEN'
;the condition (unlocked <door>) is missing
(params (<door>))
(preconds
(and
(is-door <door>)
(next-to robot <door>)
(dr-closed <door>)))

(effects (
(del (dr-closed <door>))
(add (dr-open <door>)))))

(PUTDOWN-NEXT-TO'
;the effect (del (holding <ob>)) is missing
(params (<ob>))
(preconds
(and (holding <ob>)

(next-to robot <other-ob>)))
(effects
((add (arm-empty))
(add (next-to <ob> <another-ob)))))

knowledge learned by experimentation is incorporated
into the domain and is immediately available to the
planner. The planner in turn provides a performance
element to measure any improvements in the knowl-
edge base. This is a closed-loop integration of planning
and learning by experimentation. Research in the area
of acquiring action models is mostly subsymbolic [Ma-
hadevan and Connell, 1992, Maes, 1991]. An impor-
tant component of our approach is the ability to design
experiments to gather additional information that is
not available to the learner and yet is needed to ac-
quire the missing knowledge. Experimentation is vital
for e�ective learning and is a very powerful tool to re-
�ne scienti�c theories [Cheng, 1990, Rajamoney, 1993,
Rajamoney, 1988], but other research on learning
planning knowledge from the environment does not
address this issue directly [Shen, 1993, Shen, 1989,
Kedar , 1991].

The approach has been implemented in a system called
EXPO. EXPO's underlying planning architecture is
the system [Minton , 1989, Carbonell

, 1991] which provides a robust, expressive, and
e�cient planner. The examples included in this paper
are based on a robot planning domain [Gil, 1992], but
results are also shown for a complex process planning
domain.

The paper is organized as follows. Section 2 presents
a taxonomy of how incomplete domain knowledge can
a�ect the performance of a planning system. Section 3
describes our approach to the automatic re�nement of
incomplete planning domains and its implementation
in EXPO. Finally, the empirical results presented in
Section 4 show that EXPO dramatically improves its
prediction accuracy and reduces the amount of unreli-
able action outcomes.

This section groups the e�ects of incompleteness in
planning domains in three categories: unreliable ac-
tion outcomes, unreliable predicate beliefs, and unreli-
able coverage of the search space. The examples used
are based on 's robot planning domain [Gil,
1992].

Suppose that a planner is given the following incom-
plete operator:

OPEN' is incomplete: it is missing the condition
. If the planner uses OPEN' to

open an unlocked door, the execution will be success-
ful. If the planner uses OPEN' to open a door that
happens to be locked, the action will have no e�ect.
In this case, the planner made the wrong prediction
of the outcome of the action execution: that the door
would be open. So if the preconditions of an oper-
ator are incomplete, the planner's predictions of the
operator's outcome are , because the desired
e�ects of the operator may or may not be obtained.
Notice that an execution failure is not necessarily ob-
tained, since the missing conditions may happen to
be satis�ed. The success or failure of the action's ex-
ecution is thus beyond the planner's control, and it
depends solely on the chances that the unknown con-
ditions happen to be true.

Missing conditions of context-dependent e�ects also
cause unreliable action outcomes, since the planner
cannot predict when the e�ect will take place.

Consider the following incomplete operator:

If the planner uses this action to put down an ob-
ject, the action's execution will be reliable: the de-
sired e�ects of the operator will be obtained. The
planner will only notice the change in the status of
holding at this point if it is monitoring the environ-
ment beyond the known e�ects. Although it may
be possible in some applications [Kedar , 1991,
Shen, 1989], continuously monitoring the status of all
the known facts is highly impractical in real domains,
and furthermore it is not very cost-e�ective.

However, the planner may notice this change in the fu-
ture. Suppose that it continues executing actions suc-
cessfully. Now it wants to put the same object down
again. Since it believes to be still holding the object it
considers this operator to put the object down. It is
when the system is checking the preconditions of the

operator that now that it notices that the
truth value of the predicate changed
inadvertently. The incompleteness in the e�ects of the
operator does not cause an unre-

2.3 Unreliable Coverage of Search Space

2.4 Summary

et al.

the unreliable

prediction did not have any negative implication

3 Incremental Re�nement of Planning

Domains through Experimentation

PUTDOWN-NEXT-TO

next-to

(add (dr-open
<door>))

Door45
Room4 Room5

Door45

OPEN

(PUTDOWN-NEXT-TO''
;the effect (add (next-to <ob> <o>)) is missing
(params (<ob>))
(preconds
(and (holding <ob>)

(next-to robot <o>)))
(effects
((add (arm-empty))
(del (holding <ob>)))))

liable action outcome. The action of putting down is
reliable for the planner since it can predict the out-
come of the action: the arm will be empty, and the
object will be next to another one.

Notice that although the planner's prediction of the
truth value of the predicate failed, in this case the plan-
ner does not obtain an execution failure. A missing
e�ect is often mistakenly associated with an execution
failure [Hammond, 1986, Hu�man , 1992], prob-
ably because of its negative implication: the planner
needs to patch the plan and achieve the desired value
of the predicate. In our example, holding needs to be
reachieved. However, this is not necessarily the case.
Incomplete e�ects do not always require plan repairs,
as we illustrate in the following example.

Incomplete e�ects may cause the elimination of un-
necessary subplans that achieve a goal that is already
satis�ed in the world. Consider the following alterna-
tive description of the operator :

Now suppose that the goal is not to hold a key and
to have it next to a certain box. The planner uses
PUTDOWN-NEXT-TO" to achieve not holding the
key, and then PUSH-OBJ to put the key next to
the box. The planner is unaware that PUTDOWN-
NEXT-TO" actually achieves both subgoals, and that
PUSH-OBJ is thus an unnecessary subplan (provided
that the subplan is not needed to achieve other goals).
When the planner notices that the truth value of

was changed inadvertently, it can eliminate
the unnecessary subplan. In this case,

for the
planner: it even saved some extra work in achieving
the goals.

The two previous sections describe how missing condi-
tions and e�ects case undesirable behavior during plan
execution. Incomplete domains may also cause unreli-
able coverage of the search space. Notice that a�ecting
the search space can cause complications at problem
solving time, not at execution time.

Consider the case of a missing operator. If there are
no alternative operators to use during the search, then
problems may have no solution (even though they
would be solvable if the complete domain were avail-
able to the planner). For example, if OPEN is missing

from the domain then no other operator would achieve
the goal of opening a door, which would cause all the
problems that include this subgoal to have no solu-
tion. The same type of behavior occurs if the missing
e�ects of an operator were to be used for subgoaling.
Consider for example that the domain included an op-
erator OPEN that is missing the e�ect

. Any problem that needs to achieve the sub-
goal of opening a door would have no solution.

Notice that in the previous section the missing e�ects
caused di�erent complications. They did not preclude
the operator from being part of a plan, since some
other known e�ect of the operator allowed its use for
subgoaling. So as long as some primary e�ect of each
operator is known to the planner, the missing e�ects
could be detected eventually as described in the pre-
vious section.

Another case of incompleteness occurs when a state is
missing facts about the world. For example, consider
a state containing a description of a door that
connects and . The state does not con-
tain information about the door being either locked or
unlocked. In this case, some operator's preconditions
cannot be matched in the state. For example, OPEN
has a precondition that the door must be unlocked,
and the planner cannot consider using it for opening

. So when facts are missing from the state, the
applicability of operators is restricted to the known
facts and thus it may not be possible to explore parts
of the search space until more information becomes
available. [Gil, 1992] describes how to take advantage
of this fact to learn whether the door is open by ex-
perimenting with .

Table 1 summarizes the taxonomy of limitations of
a planner caused by incomplete domain knowledge.
Missing conditions cause action execution failures. If
the missing condition is identi�ed, a plan is needed to
achieve it before the action can be executed success-
fully. Missing side e�ects may cause either unnecessary
subplans or additional planning, but they do not cause
execution failures. Missing primary e�ects, operators,
or data about the state may cause that some problems
have no solution (even though they would be solvable
if the complete domain were available to the planner).

When users de�ne operators for a planning system,
the resulting operators turn out to be operational for
planning (i.e., the planner has some model of the
actions that it can use to build plans) but are in-
complete in that users often forget to include un-
usual preconditions or side e�ects. This section

1

1

O

O

O

O

O

suc

suc

O S

O

C C

O

S O

S

O

O S

S

S

O S

S S

S

O

P

P

P

P

selectively continuously

et al.

what is missing what it may cause when noticed how noticed

3.1 Detection of an Imperfection

3.2 Operator Re�nement

Acquiring New Preconditions

Acquiring New E�ects

preconditions action execution failure plan execution unreliable action outcomes
conditions of followed by

context-dependent e�ects plan repair

e�ects unnecessary subplans plan execution unreliable predicate beliefs

not needed for subgoaling or plan repair

e�ects unreliable coverage problem solving problems without solution
needed for subgoaling of search space
operators
predicate beliefs

The generalization of states is done through the oper-
ator's bindings and uses a version space framework.

Table 1: Limitations Caused by Incomplete Domain Knowledge in a Planner.

presents our approach to the problem of re�ning in-
complete operators that are missing preconditions and
e�ects. More details of our method for operator
re�nement can be found in [Gil, 1992, Gil, 1993,
Carbonell and Gil, 1990]. We describe elsewhere
[Gil, 1992] how our system addresses other limita-
tions caused by incomplete domain knowledge in a
planner, including how to acquire completely new op-
erators that are missing from the domain and how
to acquire new data about the state. [Gil, 1993,
Gil, 1992] describe the experiment design process in
more detail.

A planner's ability to interact with its environment
allows the detection of knowledge faults. EXPO mon-
itors the external world and .
Before the execution of an operator, EXPO expects
the operator's known preconditions to be satis�ed, so
it checks them in the external world. If they are in-
deed satis�ed, then EXPO executes the corresponding
action. The operator's known e�ects are now expected
to have occurred in the world, so EXPO checks them
in the internal world. Any time that the observations
disagree with the expectations, EXPO signals an im-
perfection and learning triggered.

EXPO uses the Operator Re�nement Method [Car-
bonell and Gil, 1990] to learn new preconditions and
e�ects of operators. We brie
y describe now the im-
plementation of this method in EXPO.

When an operator executed in state has an un-
predicted outcome, EXPO considers the working hy-
pothesis that the preconditions of are incomplete
and triggers learning to �nd out the missing condition
. must have been true (by coincidence) every time

that was executed before. EXPO keeps track of ev-
ery state in which each operator is executed. It looks
up , a generalization of all the states in which

was successfully executed in the past. All the pred-
icates in are considered potential preconditions of
. (Notice that the currently known preconditions of
must be in). EXPO then engages an experimen-

tation process to discern which of those predicates is
the missing condition.

Because of the bias needed in the generalization of ,
the missing condition may not appear in . If this is
the case, none of the experiments would be successful.
EXPO then would retrieve any successful past appli-
cation of , , and builds a new set of candidate
preconditions with the di�erences between and .
If experimentation is not successful in this stage, the
current implementation of EXPO prompts the user for
help. Ideally, it would look for additional candidates
(for example, predicates that are not included in the
state because they were never observed), and even
consider the alternative working hypothesis that has
conditional e�ects (instead of missing a precondition).

Previous work on re�nement of left-hand sides (LHS)
of rules has used the concept learning paradigm in
considering each LHS as a generalization of states
where the rule is applicable [Mitchell, 1978, Mitchell

, 1983, Langley, 1987]. However, EXPO uses this
paradigm as a heuristic that guides the search for a
new condition, and not as a basis for �nding it. EXPO
uses other heuristics to make the experimentation pro-
cess more e�cient. This is described in detail in [Gil,
1993, Gil, 1992].

When a predicate is found to have an unpredicted
value, EXPO considers the working hypothesis that
some operator that was applied since the last time
was observed had the unknown e�ect of changing .
EXPO retrieves all operators executed since then, and
considers them candidates for having incomplete ef-
fects. Experiments with each operator monitoring
closely yield the incomplete operator.

f g

f g

i

i

i i

i

0

0

0

0

0

0

0 0

0

D

D

D D

D

D D

D

D

D D

D

20

20

20

50

20 50

20

O P O

O O

O P

O

P O O P P

O

P P

4 Empirical Results

task-directed

et al.

strips

prodigy

prodigy

3.3 Summary

4.1 Results

prec

post

prec

prec

prec prec

prec

what is working candidates state before operator in observations

noticed hypothesis experiment experiment in experiment

before after

robot process

planning planning

unreliable is missing Predicates Preconditions | e�ects

outcome some condition that were true of and of

of in previous some are
executions of satis�ed

unreliable is an unknown Operators Preconditions

belief e�ect of some executed since of some

of previously executed last time are satis�ed
operator was observed

number of rules 14 120

average number of preconditions 4 8

average number of e�ects 4 6

number of predicates 11 93

number of object types 4 33

Table 2: Operator Re�nement in EXPO.

Table 3: The robot planning and the process planning
domains.

Table 2 summarizes operator re�nement in EXPO.
EXPO triggers learning when something unpredicted
happens, and focuses on experiments that �nd the
missing information that yields the correct predic-
tion. Experimentation is : always engaged
within a particular context that sets speci�c aims and
purpose for what is to be learned.

This section contains results that show the e�ective-
ness of EXPO, i.e., that it can indeed be used to ac-
quire new knowledge that is useful to the problem
solver.

The results presented in this section show EXPO learn-
ing in two di�erent domains: a robot planning domain
and a complex process planning domain. The robot
planning domain is an extension of the one used by

that has been used in other learning research
in (see [Carbonell , 1991] for references).
The process planning domain contains a large body of
knowledge about the operations necessary to machine
and �nish metal parts, and was chosen because of its
large size. The domain is described in detail in [Gil,
1991] The domains are compared along some dimen-
sions in Table 3. [Gil, 1992] describes them in detail.

We want to control the degree of incompleteness of a
domain in the tests. We have available a complete do-
main which has all the operators with all their cor-
responding conditions and e�ects. With this complete
domain, we can arti�cially produce domains that

have certain percentage of incompleteness (i.e., 20% of
the preconditions are missing) by randomly removing
preconditions or e�ects from . We will use
to denote a domain that is incomplete and is missing
20% of the conditions. is a domain missing

20% of the postconditions. Notice that EXPO never
has access to , only to some incomplete domain .

EXPO learns new conditions and e�ects of incomplete
operators. What is a good measure of the amount
of new knowledge acquired by EXPO in each case?
Missing preconditions may cause action execution fail-
ures. To show that EXPO is e�ectively learning new
preconditions, we run the test set several times dur-
ing training. We compared the cumulative number
of wrong predictions during training with the num-
ber of problems in the test set that could be executed
successfully to completion. Missing e�ects may cause
wrong predictions of literals. We compared the cumu-
lative number of incorrect literals found during train-
ing with the number of incorrect literals in the �nal
state of the problems in the test set. Each wrong pre-
diction encountered during training, is an opportunity
for learning. At certain points during learning, we run
the test set. Learning is turned o� at test time, so
when a wrong prediction is found the internal state is
corrected to re
ect the observations but no learning
occurs.

Training set and test set were generated randomly, and
they were independent in all cases.

Figure 1 shows the number of action execution failures
that EXPO detects during training with and

in the robot planning domain. The �gure also
shows how many solutions for problems in the test set
were successfully executed with and .
The number of plans that is able to execute
correctly increases with learning.

The maximumnumber of unexpected action outcomes,
indicated by the upper limit of the y-axis, corresponds
to learning all the missing preconditions. For ,
notice that although EXPO does not acquire all the

D D

D

D D

D D

0 0

0

0 0

0 0

4.2 Discussion

prodigy

prodigy

20 50

50

10 30

20 50

prec prec

prec

prec prec

post post

(a) Cumulative number of unexpected action outcomes during training

(b) Number of plans successfully executed in the test set

Figure 1: E�ectiveness of EXPO in the robot planning domain with 20% and 50% of the preconditions missing
(and). (a) Cumulative number of unexpected action outcomes as the size of the training set

increases. (b) The number of plans successfully executed in the test set increases as EXPO learns.

missing domain knowledge, it has learned the knowl-
edge necessary to execute successfully the solutions to
all the problems in the test set. In fact, after training
with 40 problems EXPO can solve all the problems in
the test set. Even though EXPO learns new conditions
with further training they do not cause any improve-
ment in the performance. For , very few solu-
tions to the test problems are executed successfully in
one case. This is because the situations encountered
during training do not cover the situations encountered
in the test problems in that the knowledge needed to
solve the test problems is not needed to solve the train-
ing problems. (In fact, after training with the test set
one more new condition is learned which turns out to
be common in the test set and thus the solutions to all
the test problems can be successfully executed).

In the process planning domain, the tests were run
in domains with 10% and 30% incompleteness using
two training sets and two test sets. Figure 2 presents
results for and when EXPO acquires
new preconditions. Even though this is a more com-
plex domain, the curves show results very similar to
the results obtained for the robot planning domain.

We also ran tests with domains where postconditions
of operators were missing. Figure 3 shows the results
for and respectively in the robot plan-

ning domain. As more incorrect literals are found
in the state, EXPO acquires new e�ects of opera-
tors. Thus, the number of incorrectly predicted literals
when running the test set is reduced continuously.

The new preconditions and postconditions learned
through EXPO improve 's performance by re-
ducing the amount of wrong predictions during plan
execution. The e�ectiveness of learning is not solely a
characteristic of the learning algorithm: it is heavily
dependent on the situations presented to EXPO dur-
ing training. This is expected of any learning system:
if the training problems cover situations that are com-
parable to the ones in the test problems, then learning
is more e�ective.

Another e�ect of the nature of the training problems
is that EXPO rarely acquires all the knowledge that
is missing from the domain. However, 's per-
formance is always improved, and in many cases all
the test problems can be executed successfully after
learning even though the improved domain may not be
complete. EXPO's knowledge is becoming increasingly
more complete, because learning is directed to �nd the
missing knowledge needed to solve the task at hand.

0 0
D D

10 30prec prec

5 Conclusion

proactive

et al.

(a) Cumulative number of unexpected action outcomes during training

(b) Number of plans successfully executed in the test set

Figure 2: E�ectiveness of EXPO in the process planning domain with 10% and 30% of the preconditions missing
(and).

Even though an action may have many more condi-
tions and e�ects than those currently known, only the
ones that are relevant to the current situation are ac-
quired. EXPO shows that learning can improve a sys-
tem's performance and bring it to a point where it can
function reasonably well with whatever knowledge is
available, be it a perfect model of the world or not.

Finally, EXPO is a learning system. When
a fault in the current knowledge is detected, the infor-
mation available to the learner may well be insu�cient
for overcoming the fault. An important component of
EXPO's learning is the ability to design experiments
to gather any additional information needed to acquire
the missing knowledge. Work on learning theory has
shown that the active participation of the learner in
selecting the situations that it is exposed to is an im-
portant consideration for the design of e�ective learn-
ing systems [Angluin, 1987, Rivest and Sloan, 1988,
Ling, 1991, Kulkarni , 1993].

Learning from the environment is a necessary capabil-
ity of autonomous intelligent agents that must solve
tasks in the real world. Planning systems that model
a physical system can be given the ability to interact
with it, and thus they can directly examine the ac-

tual behavior of the physical system that the domain
is supposed to model. This presents an opportunity
for autonomous re�nement of the imperfections of a
domain theory. Our approach combines selective and
continuous monitoring of the environment to detect
knowledge faults with directed manipulation through
experiments that lead to the missing knowledge. The
results presented in this paper show the e�ectiveness
of this approach to improve a planner's prediction ac-
curacy and to reduce the amount of unreliable action
outcomes in several domains through the acquisition
of new preconditions and e�ects of operators.

This work is applicable to a wide range of planning
task, but there are some limitations. The state of
the world must be describable with discrete-valued fea-
tures, and reliable observations must be available on
demand. Actions must be axiomatizable as determin-
istic operators in terms of those features.

Our work assumes an initially incomplete knowledge
base. Future work is needed to address other types
of imperfections, including incorrectness of planning
domain knowledge.

prodigy

prodigy

Acknowledgments

References

Machine Learning

Machine Learning, An Ar-

ti�cial Intelligence Approach, Volume III

et al.

Architectures for Intelli-

gence

Modelling Scienti�c

Discovery

Extraction and

Use of Contextual Attributes of Theory Comple-

tion: An Integration of Explanation-Based and

Similarity-Based Learning

Acquiring Domain Knowl-

edge for Planning by Experimentation

Proceedings of the Tenth Inter-

national Conference on Machine Leaning

Machine Learning

Case-based

Planning: An Integrated Theory of Planning, Learn-

ing, and Memory

et al.

Ma-

chine Learning: Induction, Analogy and Discovery

et al.

Proceedings of the Eight Machine Learning Work-

shop

et al.

Machine Learning

Production System Mod-

els of Learning and Development

Proceedings of the Twelfth Inter-

national Joint Conference on Arti�cial Intelligence

Proceedings of the Thirteenth Annual Conference

of the Cognitive Science Society

Arti�cial Intelligence

et al.

Arti�cial Intel-

ligence

et al.

Machine Learning, An Arti�cial Intelligence Ap-

proach, Volume I

et al.

Machine Learning

Version Spaces: An

Approach to Concept Learning

This work was done while the author was at Carnegie
Mellon University. I would like to thank Jaime Car-
bonell, Tom Mitchell, Herb Simon, and Nils Nilsson
for their suggestions and support throughout my thesis
work. Thanks also to all the members of the
group for many helpful suggestions.

This research was supported by the Avionics Labora-
tory, Wright Research and Development Center, Aero-
nautical Systems Division (AFSC), U.S. Air Force,
Wright-Patterson AFB, Ohio 45433-6543 under Con-
tract F33615-90-C-1465, ARPA Order No. 7597. The
view and conclusions contained in this document are
those of the author and should not be interpreted as
representing the o�cial policies, either expressed or
implied, of DARPA or the U.S. government.

[Angluin, 1987] Dana Angluin. Queries and concept
learning. , 2(4):319{342, 1987.

[Carbonell and Gil, 1990] Jaime G. Carbonell and
Yolanda Gil. Learning by experimentation: The
operator re�nement method. In Y. Kodrato� and
R. S. Michalski, editors,

. Morgan
Kaufmann, San Mateo, CA, 1990.

[Carbonell , 1991] Jaime G. Carbonell, Craig A.
Knoblock, and Steven Minton. : An in-
tegrated architecture for planning and learning.
In Kurt VanLehn, editor,

. Lawrence Erlbaum Associates, Hillsdale, NJ,
1991.

[Cheng, 1990] Peter C-H. Cheng.
. PhD thesis, The Open University, Milton

Keynes, England, 1990.

[Danyluk, 1991] Andrea D. Danyluk.

. PhD thesis, Columbia
University, New York, NY, 1991.

[Gil, 1991] Yolanda Gil. A speci�cation of manu-
facturing processes for planning. Technical Re-
port CMU-CS-91-179, School of Computer Science,
Carnegie Mellon University, 1991.

[Gil, 1992] Yolanda Gil.
. PhD the-

sis, Carnegie Mellon University, School of Computer
Science, 1992.

[Gil, 1993] Yolanda Gil. E�cient domain-independent
experimentation. In

, Amherst,
MA, 1993. Morgan Kaufmann.

[Hall, 1988] Robert J. Hall. Learning by failure to
explain: Using partial explanation to learn in in-
complete or intractable domains. ,
3(1):45{78, 1988.

[Hammond, 1986] Chris J. Hammond.

. PhD thesis, Yale University, New
Haven, CN, 1986.

[Hu�man , 1992] Scott B. Hu�man, Douglas J.
Pearson, and John E. Laird. Correcting imperfect
domain theories: A knowledge-level analysis. In

.
Kluman Academic Press, Boston, MA, 1992.

[Kedar , 1991] Smadar T. Kedar, John L.
Bresina, and C. Lisa Dent. The blind leading the
blind: Mutual re�nement of approximate theories.
In

, Evanston, IL, 1991.

[Kulkarni , 1993] S. R. Kulkarni, S. K. Mitter,
and J. N. Tsitsiklis. Active learning using arbitrary
binary valued queries. , 11(1),
1993.

[Langley, 1987] Pat Langley. A general theory of dis-
crimination learning. In

. MIT Press, Cam-
bridge, MA, 1987.

[Ling, 1991] Xiaofeng Ling. Inductive learning from
good examples. In

,
Sydney, Australia, 1991.

[Maes, 1991] Pattie Maes. Adaptive action selection.
In

, Chicago, IL, 1991.

[Mahadevan and Connell, 1992] Sridhar Mahadevan
and Jonathan Connell. Automatic programming of
behavior-based robots using reinforcement learning.

, 55(2-3):311{365, 1992.

[Minton , 1989] Steve Minton, Jaime G. Car-
bonell, Craig A. Knoblock, Dan R. Kuokka, Oren
Etzioni, and Yolanda Gil. Explanation-based learn-
ing: A problem solving perspective.

, 40(1-3):63{118, 1989.

[Mitchell , 1983] Tom Mitchell, Paul Utgo�, and
Ranan Banerji. Learning by experimentation: Ac-
quiring and re�ning problem-solving heuristics. In

. Tioga Press, Palo Alto, CA, 1983.

[Mitchell , 1986] Tom M. Mitchell, Richard M.
Keller, and Smadar T. Kedar-Cabelli. Explanation-
based learning: A unifying view. ,
1(1):47{80, 1986.

[Mitchell, 1978] TomM. Mitchell.
. PhD thesis, Stan-

ford University, Stanford, CA, 1978.

Proceedings of the Tenth Inter-

national Joint Conference on Arti�cial Intelligence

Explanation-Based Theory

Revision: An Approach to the Problems of Incom-

plete and Incorrect Theories

Machine Learn-

ing

Proceedings of the Workshop on Com-

putational Learning Theory

Learning from the Envi-

ronment Based on Percepts and Actions

Machine Learning

[Rajamoney and DeJong, 1987]

Shankar A. Rajamoney and Gerald F. DeJong. The
classi�cation, detection, and handling of imperfect
theory problems. In

,
Milano, Italy, 1987.

[Rajamoney, 1988]

Shankar A. Rajamoney.

. PhD thesis, University
of Illinois at Urbana-Champaign, Urbana, IL, 1988.

[Rajamoney, 1993] Shankar A. Rajamoney. The de-
sign of discrimination experiments.

, 12(1/2/3), 1993.

[Rivest and Sloan, 1988] Ron L. Rivest and Robert
Sloan. Learning complicated concepts reliably and
usefully. In

, Pittsburgh, PA, 1988.

[Shen, 1989] Wei-Min Shen.
. PhD the-

sis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 1989.

[Shen, 1993] Wei-Min Shen. Discovery as autonomous
learning from the environment. ,
12(1/2/3), 1993.

D D
0 0

20 50post post

(a) Cumulative number of incorrect literals found during training

(b) Incorrect literals in the �nal state of test problems

Figure 3: Acquisition of new e�ects in the robot planning domain with 20% and 50% of the e�ects missing
(and). (a) Cumulative number of incorrect literals found in the internal state as the size of the

training set increases. (b) The number of incorrect literals of the �nal state in the test set decreases as EXPO
learns.

