
INSPECT: A Tool to Evaluate Air Campaign Plans

Andre Valente, Yolanda Gil and William Swartout
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

fvalente,gil,swartoutg@isi.edu

Submitted for publication

Abstract

INSPECT is a mixed-initiative plan evaluation tool in the do-
main of air campaign planning that has been a central com-
ponent of several major DARPA demonstrations of integrated
planning environments and tools. The creation process of an
air campaign plan is manually driven at its higher levels, and
because plans are complex and always changing they often
(our experience says always) contain errors or inconsisten-
cies. INSPECT evaluates user-generated plans and alerts the
user about inconsistencies and potential problems. INSPECT
has received wide acceptance by air campaign planning ex-
perts, and is currently undergoing new extensions and further
integrations with other tools in this domain. The paper de-
scribes our work on INSPECT, analyzes the key contributions
of this tool, and draws some conclusionsabout the design and
integration of planning applications.

Introduction
EXPECT is a framework to develop knowledge based sys-
tems that we have applied to build applications in sev-
eral planning domains. Working with Air Force experts
from the “Checkmate” Group at the Pentagon (HQ USAF
XOOC), we developed INSPECT, a tool for evaluating and
critiquing the air-related portion of a military campaign plan.
Although INSPECT was originally intended to be just a
testbed, it has succeeded beyond our expectations. IN-
SPECT has been enthusiastically received by domain ex-
perts and has been a central component of the Fourth Inte-
grated Feasibility Demonstration of the DARPA/Rome Lab-
oratory Planning Initiative (ARPI), The Jumpstart Demon-
stration of the DARPA JFACC program, and more recently
the ARPI TIE97-1 demonstration. Subsequently, INSPECT
received independent funding to extend its capabilities un-
der the DARPA Joint Force Air Component Commander
(JFACC) program.

INSPECT integrates several AI technologies. It was built
using the EXPECT framework for knowledge-based sys-
tems development, that incorporates knowledge acquisition
techniques, a description logic-based knowledge representa-
tion system, and a sophisticated problem-solving language
and reasoner. Further, in the development of INSPECT we
defined a specialized representation for air campaign ob-
jectives based on case grammars (Fillmore 1968). Finally,
because INSPECT was part of a larger integrated air cam-
paign planning system, integration issues arose in coupling
INSPECT with other AI and conventional systems.

There were several important factors that contributed to
INSPECT’s success and are described throughout the pa-
per: 1) taking a mixed-initiative approach, 2) working in
a domain where experts had found the value added in cap-
turing information about the plan structure and rationale, 3)
integrating our application with an existing successful tool,
4) designing the application together with the experts and
future users, 5) surprising the experts by finding ways to
improve every one of their plans by using our tool, and 6)
developing a standard representation of planning objectives
that is having impact in the development of air campaign
planning tools.

In this paper, we describe the INSPECT system: the prob-
lem it solves, its design, architecture and implementation.
We emphasize some of the lessons learned in designing and
developing this system that we hope will be useful to devel-
opers of planning applications. First, we discuss our view
on decision support tools for planning. Second, we describe
the air campaign planning domain, and how it imposes re-
quirements on the design of INSPECT. Third, we describe
the INSPECT system. Fourth, we discuss integration issues
in building INSPECT. Fifth, we discuss the benefits of IN-
SPECT. Finally, we present our conclusions.

Decision Support Tools for Planning
The automatic generation of plans has traditionally been a
major focus of AI planning research. However, in large-
scale, real-world domains, completely automated planning
is often impracticable due to the scope and breadth of knowl-
edge required. Instead, a mixed-initiative approach where
machines and people work together is often more desir-
able to solve planning problems (Ferguson, Allen, & Miller
1996; Myers 1996). Because people will understand the
planning problem and context more broadly than machines,
they will be able to make better judgments about certain de-
cisions. Machines, on the other hand, will be able to carry
out mechanical tasks more effectively. For the collaboration
to work, people need to be able to input their own plans and
decisions, and computerized modules then need to be able
to make use of those plans and decisions in their own pro-
cessing.

As a result of this view on planning, the kinds of tools
that we have seeked to develop have the following charac-
teristics:



� Decisionsupport tools that help people make a decision
are often more desirable than tools that automatically
make a decision for them.

� The tools we construct must be designed to work with
people, rather than completely taking over processing.
This in turn means that the products of our tools must
be understandable by people and it must be possible for
people to easily input information and decisions into the
tools.

� Because it is impossible to anticipate in advance all the
knowledge a system might need in a broad domain, and
because knowledge frequently changes, our goal is to pro-
vide knowledge acquisition tools that allow for users to
augment and adapt a system’s knowledge in response to
new situations and new needs.

The domain experts we worked with endorsed these views
and felt that it was essential that any system should keep
human users “in the loop.” They also recognized that the
generation of an initial plan is only part of the planning pro-
cess. Another very important area where decision support
tools are needed isplan evaluation. Plan evaluation tools
allow users to understand their plans, identify critical fac-
tors, and analyze tradeoffs among options. Evaluation cri-
teria need to be adapted in response to new situations, user
preferences, and institutional practices. These characteris-
tics indicate that plan evaluation tools can benefit from au-
tomated knowledge acquisition tools, making them an in-
teresting area of application for applying and experimenting
with the EXPECT framework.

The Air Campaign Planning Domain and the
Design of INSPECT

There were two important aspects that made the domain
of air campaign planning an excellent environment for our
research: the strategies-to-tasks methodology and the Air
Campaign Planning Tool (ACPT). The strategies-to-tasks
methodology represents a move towards capturing more in-
formation about the rationale and the decisions behind the
air campaign plan, and ACPT is a tool that allows users to
specify this information. As a result, our systems had access
to information about the plan’s objectives and their realiza-
tion that turns out to be very useful to evaluate the overall
plan. As we will explain in our final discussion, we still had
to extend significantly the ACPT representations (and still
continue to do so) in order for our evaluations to be useful
and more meaningful. What turned out to be crucial is that
the strategies-to-tasks framework and ACPT provided a core
structure that turned out to be very valuable. Moreover, our
domain experts were already practitioners of this approach
and already understood the importance of representing and
capturing information about a task. The rest of this section
describes more details about strategies-to-tasks and ACPT.

Traditionally, planning an air campaign has involved iden-
tifying a set of possible targets, selecting from that set a sub-
set of targets to attack, and then assigning aircraft, crews and
munitions to actually carry out the missions. The problem
with this approach has been that this process does not en-
courage planners to think about how the selection of a par-

National Goal Maintain survival

|

|

V

National Security Objectives Deter/defeat aggression

|

|

V

National Military Objective Deter/defeat large-scale,

| regional, military

| aggression

V

Campaign Objective Attain air superiority

|

|

V

Operational Objective Suppress enemy air-sortie

| generation

|

V

Operational Task Destroy key hardened

airbase-support facilities

OPERATION CONCEPT:

F15E squadrons with LGBS,

supported by EC-13,

KC-135 and E-3A

Figure 1: Strategies-to-Tasks Example (from [Todd 94])

ticular target will help the overall goals of the military cam-
paign. Because targets are selected without relating them
back to higher objectives, sometimes the targets selected ac-
tually hinder the operation. For example, an enemy bridge
might be destroyed early in a campaign that could have been
used by friendly forces later if it had been preserved.

Recently, the Air Force has begun to investigate a new
approach to air campaign planning called the strategies-to-
tasks methodology (Todd 1994; Thaler 1993). In this ap-
proach, high-level national objectives are refined into lower
level military objectives and then into operational tasks. Fig-
ure 1 illustrates the hierarchy of objectives and how it links
low level operational activities to higher level objectives. By
encouraging planners to think about how low-level decisions
relate to higher level objectives, this approach promotes air
campaign planning that is more rational and helps avoid the
sorts of mistakes that can arise from thinking about target-
ing too locally. The result should be air campaign plans that
achieve the desired results while reducing risks and min-
imizing unnecessary damage. These plans are also more
structured than traditional plans and capture more of the ra-
tionale behind the plan.

Several editors have been developed to create plans, using
the strategies-to-tasks approach. The original one was the
Air Campaign Planning Tool (ACPT). Several other tools
based on ACPT were developed later, among them the Joint
Planning Tool (JPT), the Joint Operations Editor (JOE), and
the Mastermind+ Plan editor.1 Each of these tools is ba-

1INSPECT has been successfully integrated to date with ACPT,
JOE, and Mastermind+



sically a browser/editor for air campaign plans. It allows
users to create objectives and decompose them into sub-
objectives. The user can specify temporal constraints to se-
quence plan steps. The editor allows a user to view his plan
in a textual format or as a graph showing the interdepen-
dencies between the steps of the user’s plan. These editors
provide a way of browsing and editing a plan, but they do
not understand the plan in any sense: they provide no help
in refining objectives or in finding or correcting possible er-
rors in the plan.

Our goal was to design an application that extended the
functionality of ACPT and was well integrated with it.

Selecting an Application Area
Involving the experts and users early in INSPECT’s design
was critical to its ultimate success. When we first analyzed
the air campaign planning domain and ACPT, we saw many
possibilities for evaluation tools and had our own opinion
about what kind of system we should build. However, we
felt that our views were based on our limited knowledge
about this domain and the planning process so we decided to
consult with our domain experts, who were also among the
potential users for the system. We presented them with six
tasks we identified in the domain that might be automated
by a plan evaluation tool:

1. prioritizing targets: determine target priority based on rel-
evant criteria.

2. feasibility: provide a rough evaluation of the feasibility
of the plan at the early stages of plan development, when
only higher level objectives are specified.

3. consistency checking: detect errors in the plan that are
introduced during the plan editing process.

4. compliance with rules of engagement: evaluate whether
a given plan violates any constraint (things that the plan
cannot include) or restraint (things that should not be
done) as dictated by a commander.

5. compliance with doctrine: evaluate whether a plan com-
plies with different aspects of military doctrine.

6. incompleteness detection: evaluate the plan with respect
to completeness and present the user with an agenda2 of
missing objectives and components that would guide fur-
ther plan edition.

In making the choice, we asked the domain experts to take
into account several issues. First, that theknowledge should
be available, both in terms of being agreed and understood
and in terms of having subject matter experts available to
us. Second, that the system would havehigh impact. Users
should get a high payoff in terms of added value to ACPT.
Finally, we asked that the problem should bechallenging
for our research on knowledge acquisition tools to modify
knowledge bases. We were interested in an application that
could have initiallya reasonable amount of knowledge about
the task, but that would need to be adapted and extended by
users.

2This idea was inspired on EXPECT, where the knowledge ac-
quisition tools notify users about missing knowledge and other
problems in a knowledge base through an agenda.

Our domain experts immediately focused on the consis-
tency checking option. They had reasons for ruling out op-
tions that we could not have anticipated ourselves. Enforc-
ing doctrine was seen as a potential quagmire. They saw
difficulty in building a useful tool to evaluate compliance
with rules of engagement because we would need to use in-
formation that was not readily available online.

The most surprising reaction was to the target priori-
tization. Because so much of the air campaign revolves
around selecting targets and sequencing them appropriately,
we thought that this option would be most attractive to pur-
sue. They had the insight of realizing that it was not clear
that anyone could articulate the knowledge required to prior-
itize targets. Many months later, our knowledge acquisition
sessions encovered that in fact the priorities of targets are
derived from the higher objectives that the targets are serv-
ing. The structure of the plan can be extended to capture im-
portant information about the importance, sequencing, and
priorities of these objectives. Target priorities should be de-
rived from them.

The final decision was to develop an evaluation tool to
check consistency of plans. We later extended the tool to
check completeness and to analyze rough feasibility.

This decision satisfied the requirements of knowledge
availability and high impact, two of the three that we out-
lined above. Although the evaluation knowledge that we
needed to incorporate in the tool would have to be teased
out from our domain experts based on their experience, they
were quite confident that they would be able to ultimately
articulate it to us. They often visited other groups within
the Air Force to provide support on using ACPT and the
strategies-to-tasks approach, and they felt they could capture
with our tool the advice and explanations that they provided
to these groups.

The tool would have high impact for several reasons.
First, the complexity and size of air campaign plans (typi-
cally hundreds or thousands of nodes) made it difficult to see
errors. A tool that could ferret out commonly occurring er-
rors could have a big impact on plan quality. As noted above,
existing tools such as ACPT provided little support for error
detection. Second, because the strategy-to-task approach is
new, not all planners are experienced with it, and inexperi-
enced users frequently make mistakes, some of which could
easily be detected by a tool. For inexperienced users, it was
felt that the tools could also have educational benefits.

What was not so clear to us at that time is that this applica-
tion would satisfy our last (and very important) requirement,
i.e., that it would exercise the benefits of our technology and
research in the EXPECT knowledge acquisition tools. As
we explain below, there were additional benefits from using
EXPECT that we had not anticipated.

Our User’s Requirements
Our domain experts had a number of useful suggestions
about the design of the tool, most notably about issues re-
garding its interaction with the user. First, they requested
that the user should not be locked in by the tool: the tool
should present suggestions, not definitive answers, and users
should be encouraged to think of alternatives. Second, they



requested that all problems identified in the plan should be
accompanied by an explanation and justification, so that the
user could understand the reasoning behind the tool’s rec-
ommendation and make an informed decision. Third, they
asked that the problems should be presented as constructive
criticism, including suggestions of possible fixes to the prob-
lem. Not surprisingly, following these suggestions allowed
us to make our tool more attractive to users.

INSPECT: An Air Campaign Plan Evaluation
Tool

Based on the design decisions described above, we devel-
oped INSPECT (INtelligent System for air campaign Plans
Evaluation based on expeCT). The architecture of INSPECT
is shown in Figure 2.

INSPECT

Plan
Editor

evaluation
(agenda)

USERS
(air campaign

planners)

EXPECT

EXPERTS

knowledge about:
•air campaign plans
•plan analysis/evaluation

Library of Critiques for
Air Campaign Plans

Model of Air Campaign Plans

air campaign
plans

Figure 2: Architecture of INSPECT.

After entering air campaign objectives with a plan editor,
a user invokes INSPECT to evaluate the plan. INSPECT
looks for several types of problems in the plan. For exam-
ple, it checks the hierarchical structure, identifies incomplete
or incoherent objectives, and performs rough feasibility es-
timates based on the resources available for the campaign.
INSPECT shows the user an agenda with all the problems
found with the plan. The agenda items are marked accord-
ing to their seriousness using a convention very familiar to
Air Force pilots: WARNING, CAUTION, and NOTE (warn-
ings requiring immediate attentions, and notes being non-
critical). In addition to pointing our these problems, IN-
SPECT can provide a detailed explanation of each problem

and also suggest ways to fix it. Figure 3 shows a snapshot of
the agenda, including an explanation and suggested fixes for
one of the agenda items.

Figure 3: INSPECT’s Evaluation of an Air Campaign Plan.
The explanation (lower frame) refers to the selected item on
the agenda (upper frame).

The types of problems detected by INSPECT include:

� Objective with no child/parent. According to the strategy-
to-task approach to air campaign planning, all objectives
must be subordinated to higher objectives and be decom-
posed further (until a pre-specified “ leaf” level).

� No objective fulfilling one of the basic tenets of air power.
Air Force doctrine suggest that an air campaign plan must
contain objectives for all the tenets of air power, such as
force deployment and force protection.

� Objective with too many parents. An objective with too
many parents is an indication that the parent objective is
either too general (and should thus be divided) or that the
connections are meant to emphasize priority rather than
reflect a true decomposition.

� Incompatible sequence restrictions. This problem occurs
when temporal constraints of two or more objectives are
contradictory.

� No adequate aircraft currently available for an objective.
This problem occurs when an objective requires a type of
mission for which none of the aircraft available is consid-
ered adequate.

� Incoherent decomposition. In principle, an objective must
be decomposed into objectives which are more specific
or more detailed than their parent. This problem occurs
when a parent objective is subsumed by one of its child
objectives.

Our domain experts suggested these types of problems
because they anticipated that novice air campaign planners
would make these kinds of mistakes. What they were not



expecting is that INSPECT found these kinds of problems in
every plan created by the experts themselves.

Currently, we are extending INSPECT to cover several
new areas. These include being able to critique other types
of objectives (initial versions were restricted to force appli-
cation (“attack” ) objectives, being able to critique logistics
issues (e.g. if an objective requires an aircraft to land in a
base that has inadequate runways for that type of aircraft),
and having more “global” critiques, that evaluate the overall
plan (e.g., checking for balance in the use of forces).

Building INSPECT with EXPECT
INSPECT integrates several AI technologies. It was built us-
ing the EXPECT framework for knowledge-based systems
development, that incorporates knowledge acquisition tech-
niques, a description logic-based knowledge representation
system, and a sophisticated problem-solving language and
reasoner. EXPECT also has a language to express prob-
lem solving goals that is based on case grammars (Fillmore
1968). Inspired in this representation, we developed a spe-
cialized representation for air campaign objectives. Below,
we briefly describe these technologies, and how they were
used.

The knowledge acquisition bottleneck is frequently cited
as a major impediment to broad dissemination of AI tech-
nology. The EXPECT project (Gil & Melz 1996; Gil &
Swartout 1995) is addressing this problem by developing a
knowledge acquisition framework that empowers people to
augment, modify and adapt knowledge based systems with-
out needing to understand the details of the system’s imple-
mentation. The key to EXPECT’s approach is that it cap-
tures the design rationale for knowledge based systems, and
uses that design knowledge to guide a user in augmenting the
system. In addition to INSPECT, EXPECT has been used to
build several knowledge based systems in domains such as
transportation planning and battlefield assessment.

Most knowledge acquisition tools have a fixed set of
guidelines or expectations about how knowledge should be
added to a system. The problem with this approach is that
it is inflexible, and limits the range of systems that can be
supported. EXPECT takes a more flexible approach: it au-
tomatically derives a knowledge-based system from abstract
domain facts and problem-solving methods. The derivation
process is recorded so that EXPECT captures the normally
implicit dependencies in a KBS, such as what factual knowl-
edge is needed to support problem solving, and how factual
knowledge is used in problem solving. EXPECT provides
tools that use this information to guide the user in adding
knowledge and tools (such as a natural language explanation
facility) that help make EXPECT’s representations more un-
derstandable to non-computer experts. For example, the sys-
tem understands how various types of instances are used in
problem solving, so when a new instance is added the acqui-
sition tools can make sure that enough information is spec-
ified about the instance so that it can be used. In this way,
EXPECT allows a user to add knowledge to a knowledge-
based system without requiring him to understand all the
details of how the knowledge interacts.

The EXPECT system is fully integrated with the LOOM
knowledge representation system (MacGregor & Bates
1991). LOOM is an implementation of description logics,
which emphasizes efficiency and expressiveness instead of
completeness. In EXPECT, LOOM is used to represent the
factual and definitional knowledge about a domain. For ex-
ample, in INSPECT there are LOOM definitions about what
are the elements of air campaign plans, what are objectives,
what are known types of aircraft, what kinds of missions
they fly, etc. This knowledge has proved to be an important
byproduct of the INSPECT development. It has been used as
a basis for the development of a broad ontology of air cam-
paign planning, which is being used and further developed
under the JFACC DARPA Program.

INSPECT was built using EXPECT as follows. Gen-
eral knowledge about air campaign plans, their structure and
contents, as well as general domain knowledge about air
fight was coded into a LOOM knowledge base. Procedural
knowledge on how to evaluate the plan according to the cri-
tiques specified was acquired and represented as EXPECT
methods. The EXPECT system then put together these two
types of knowledge, indicating whether there were any gaps
or problems. The result of this process is an EXPECT model
that records all the dependencies between procedural and
domain knowledge. This model was then passed through
the EXPECT compiler, that transformed it into efficient Lisp
code that is able to solve the specified problem.

Representing Air Campaign Plans and
Objectives

A very prominent contribution of our work resulted from in-
tegrating INSPECT with the plan editor tool. We designed
a representation for air campaign plans and objectives that
would allow both users and tools to exchange information
about the plan. This representation has been adopted by
other planning tools in the air campaign planning domain
throughout the ARPI and JFACC programs, and is now seen
as an important input to an ongoing effort in the US Air
Force to create a common representation of objectives and
tasks for air operations planning.

In integrating INSPECT with the plan editing tool
(ACPT), we found a representation gap. Objectives in ACPT
were represented with a sentence like “Gain air superiority
in the western region” , or “Destroy petroleum distribution
facilities before the 15th day of the campaign” . This was an
unconstrained string, and the planner could write whatever
came to his/her mind.

In order to be able to automate any interesting evaluation
of the plan, we needed to capture the objective statement in
a formal representation language. Parsing and interpreting
the natural language sentence was too complex (and a new
problem by itself). At the same time, the users were not
willing to write their objectives in a form substantially dif-
ferent from the one they already used. The representation
we proposed was therefore a middle-ground: we used a case
grammar.3 The basic idea of case grammars is that there is

3While case grammars have been dismissed as a general solu-



normally a limited number of roles (called thematic or case
roles) that an argument of a verb can play with relation to the
verb. That was definitely true for the objective statements,
for several reasons. First, we found that the objective state-
ments followed a very regular grammar of the form <verb>
<roles>. Second, we found out that there were several
regularities on the use of this structure. For example, only
a handful of verbs (less than 30) are used. Third, each of
these verbs introduces limitations with respect to the types
of roles that can be used. For instance, most occurrences of
the action type Destroy refer to a (physical) object type like
“missile launch sites” or “military headquarters” . We were
able to establish reasonably exhaustive lists of terminals for
each of the main types specified for role fillers. Fourth, we
found that certain roles were actually modifiers that are used
to specify restrictions or constraints on the objective on the
objective. There are three types of restrictions, for time (e.g.,
within 21 days), space/area (in Western Region) and re-
sources (using B-52s from base XYZ). A diagram show-
ing the structure of the proposed grammar is shown in Fig-
ure 4.

Role-specification *

[Area restriction]

Role name

Role object

[Time restriction]

Action-type (verb)
Action/
activity

Object

Action
capability[Sequence restriction]

Aspect/
State

Figure 4: Overall structure of the case grammar to represent
air campaign objectives.

There were several benefits to this representation. On the
systemic side, it allowed the integration of ACPT and IN-
SPECT. A syntax-oriented editor was built that helps the
users enter valid sentences by offering lists of valid comple-
tions (according to the grammar) for the text being entered.
This provides a proactive support for using for the grammar
in the edition of objectives, without unnecessarily constrain-
ing the planner, who still has the liberty to write free text if
he/she deems necessary. The case grammar became a shared
representation that allowed other applications to make use of
the more semantic representation.

Somewhat unforeseen were a number of methodological
benefits, i.e., the benefits of using a grammar to the plan-
ning process itself, independently of any tools used. These
benefits were so important that the structured representation
took a life of its own and is often seen as a key contribu-
tion of our work on INSPECT. First, because the knowl-
edge acquisition process involved in building the represen-
tation forced the experts to explain and reflect over the way
they write air campaign objectives. For instance, they came

tion for natural language interpretation, they can be an interesting
and powerful device in restricted settings such as the one we have
in the air campaign planning domain.

to the conclusion that frequently occurring objectives like
“Conduct operations” should not be allowed because they in
fact do not mean anything — in a air campaign plan, basi-
cally everything can be seen as conducting operations. Sec-
ond, the resulting grammar embeds the notion of “ reason-
able” objectives, which had never been made explicit before
then. Third, the additional structure provided by the gram-
mar was considered particularly useful for training. Fourth,
the case grammar became an input to an ongoing standard-
ization process in the Air Force on specifying valid types of
tasks and objectives. Indeed, the success with this represen-
tation has led us to participate in the development of spe-
cialized representations for other elements of air campaign
plans, as well as in extending the existing representation of
objectives.

Benefits of INSPECT
There are a number of benefits for air campaign planning
that stem from adopting the user of a tool like INSPECT:

� Catch errors introduced during manual plan develop-
ment: Air campaign plans are very large and complex,
and need to be changed over time. Because the plan cre-
ation process is manually done, it is conducive to intro-
ducing errors and inconsistencies in the plan. In fact, IN-
SPECT has found unintentional errors in every plan gen-
erated by our domain experts which would otherwise have
gone unnoticed.

� Raise the floor on plan quality: An evaluation tool like
INSPECT helps users avoid creating inconsistent or low-
quality plans. Because it works with the higher levels of
the plan, it can detect problems that could percolate down
to the lower levels and be accentuated as the plan details
are worked out.

� Enforce “ good” practices in plan construction:
INSPECT’s evaluations enforce the strategy-to-tasks
methodology, and a number of style guidelines that ex-
perienced air campaign planners developed using it. Each
of our domain experts liked to hear about the evaluation
criteria suggested by other experts, as a new insight on
how they could improve their own work on planning air
campaigns. Our experts liked that INSPECT would point
out that they were following their own standards as it eval-
uated their plans.

� Training new planners: INSPECT’s knowledge base
captures the knowledge of experienced planners, and
novice users can learn as they use the tool. INSPECT’s
evaluations point out what experienced planners would
see as serious flaws in the plan, and the explanations of
each agenda item are designed to back up the evaluations
with sources of information in the air campaign planning
domain (doctrine, typical capabilities of weapon systems,
etc.). INSPECT’s suggested fixes show what an experi-
enced planner would do differently.

INSPECT benefits from several AI technologies that are
integrated in EXPECT:

� Explicit representations of knowledge: A cornerstone
to the EXPECT approach is to represent different types



of knowledge separately and explicitly. For example, IN-
SPECT checks that a plan fulfills all the basic tenets of
air power. Instead of hand-coding a rule that checks for
all five tenets, EXPECT represents the tenets as a sepa-
rate piece of knowledge and in doing so it represents not
only the knowledge required to produce the evaluation but
it is capturing first principles behind these evaluations.
Another example is representing explicitly the structure
of each objective in the plan. For example, an objec-
tive such as “Destroy enemy naval activity in the West-
ern Sea throughout conflict” is referring to “ the Western
Sea” , which is a kind of geospatial region that is related
to the theater of operations and so on. EXPECT’s repre-
sentations are tightly coupled with ontologies of the air
campaign planning domain.

� Description-based reasoning: A significant part of the
reasoning that takes part in generating INSPECT’s evalu-
ations is to detect the presence and the absence of many
types of objective patterns in the plan. INSPECT’s knowl-
edge base includes descriptions of many different types
of objectives expressed as LOOM class descriptions. IN-
SPECT relies on LOOM’s description logic technology to
classify the objective definitions and match them against
the objectives in the plan at hand.

� Explanation and knowledge acquisition: EXPECT’s
explicit representations were designed to support explana-
tion and knowledge acquisition. INSPECT’s explanations
of its evaluations were initially hand-coded, and work is
under way to generate them automatically based on EX-
PECT’s representations and reasoning behind INSPECT’s
evaluations. Another important area of our current work
on INSPECT is to use EXPECT’s knowledge acquisition
tools to extend and update INSPECT to add new evalu-
ation criteria and to adapt it to different crisis, different
users and command structures, and different institutional
practices.

� Knowledge compilation: Using a high-level language to
represent knowledge has many advantages, but can slow
down execution significantly. EXPECT’s language is de-
signed to support explanation and knowledge acquisition,
yet it does not affect performance because it can be com-
piled into efficient code. We were able to reduce the ex-
ecution times of INSPECT by two orders of magnitude
when we run the EXPECT compiler and executed the gen-
erated code.

Conclusion

Our work in INSPECT has clearly demonstrated the value
of a plan evaluation tool. An additional conclusion from our
experience with INSPECT is the value of shared plan repre-
sentations. In our current work, we continue to develop and
extend current air campaign plan representations to capture
additional information, including strategy, additional inter-
dependencies and constraints. At the same time, INSPECT
is being extended to produce new evaluations based on this
information about the plan. A very interesting new direc-
tion is the tight integration of the manually-driven plan cre-
ation process that ACPT and INSPECT facilitate with au-

tomated generative planning tools, whis is encovering new
challenges for plan representation and sharing across appli-
cations.

Acknowledgments
INSPECT was initially developed under contract DABT63-
95-C-0059, as part of the Fourth Integrated Feasibility
Demonstration (IFD-4) of the DARPA/Rome Laboratory
Planning Initiative. Knowledge acquisition was a critical
task in building INSPECT, and demanded much effort from
the experts. Many thanks to all Checkmate members who
helped us in the process; most Col Plebanek, who allowed
us to have this interaction, LtCol Cardenas, who coordinated
the knowledge acquisition sessions and was a central expert,
and the experts we worked with more closely: Maj Alli-
son, LtCol Alred, LtCol Cardenas, Maj Cunico, and Maj
Jackson. Many thanks to all other participants in IFD-4,
specially Lou Hoebel and the ISX Team (in particular Jim
Shoop, Doug Holmes, Gary Edwards and Joe Roberts).

References
Ferguson, G.; Allen, J.; and Miller, B. 1996. TRAINS-95
towards a mixed-initiative planning assistant. In Proceed-
ings of AIPS-96.
Fillmore, C. 1968. The case for case. In Universals of
Linguistic Theory. Holt, New York.
Gil, Y., and Melz, E. 1996. Explicit representations of
problem-solving strategies to support knowledge acquisi-
tion. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence.
Gil, Y., and Swartout, W. 1995. Expect: Explicit repre-
sentations for flexible acquisition. In Proceedings of the
Ninth Knowledge-Acquisition for Knowledge-Based Sys-
tems Workshop.
MacGregor, R., and Bates, R. 1991. Inside the LOOM
description classifier. SIGART Bulletin 2(3):88–92.
Myers, K. 1996. Strategic advice for hierarchical planners.
In Proceedings of KR-96.
Thaler, D. 1993. Strategies to tasks, a framework for link-
ing means and ends. technical report, RAND Corporation.
Todd, D. 1994. Strategies-to-tasks baseline for usaf plan-
ning. Internal document, Strategic Planning Division, HQ
United States Air Force.


