
A Transformational Analysis of

Expensive Chunks

Jihie Kim and Paul S. Rosenbloom

Information Sciences Institute and Computer Science Department

University of Southern California

4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.

jihie@isi.edu, rosenbloom@isi.edu

(310) 822-1510 (x769)

Fax: (310) 823-6714

Key words: machine learning, utility problem, expensive chunks, Soar,
EBL

Abstract

Many learning systems must confront the problem of run time after

learning being greater than run time before learning. This utility prob-

lem has been a particular focus of research in explanation-based learning

(EBL). This paper shows how the cost increase of a learned rule in an

EBL system can be analyzed by characterizing the learning process as a

sequence of transformations from a problem solving episode to a learned

rule. The analysis of how the cost changes through the transformations

can be a useful tool for revealing the sources of cost increase in the

learning system. Once all of the sources are revealed, by avoiding these

sources, the learned rule will never be expensive. That is, the cost of

the learned rule will be bounded by the problem solving. We performed

such a transformational analysis of chunking in Soar. The chunking

process has been decomposed into a sequence of transformations from

the problem solving to a chunk. By analyzing these transformations,

we have identi�ed a set of sources which can make the output chunk

expensive.

1

1 Introduction

Many learning systems must confront the problem of run time after learning
being greater than run time before learning. This utility problem has been a
particular focus of research in explanation-based learning (EBL). There have
been approaches which are useful for producing cheaper rules [1, 2, 3, 4, 5, 6]
or �ltering out expensive rules [2, 7, 8, 9]. However, these approaches can-
not generally guarantee that the cost of using the learned rules will always be
bounded by the cost of the problem solving from which they are learned, given
the same situation. One way of �nding a solution which can guarantee such
cost boundness is to analyze all the sources of cost increase in the learning
process and then eliminate these sources. Here we propose to approach this
task by decomposing the learning process into a sequence of transformations
that go from a problem solving episode, through a sequence of intermediate
problem-solving/rule hybrids, to a learned rule. Analyses of these transforma-
tions then point out where extra cost is being added, and guide the proposal
of alternatives that do not introduce such added costs.

The focus of the analysis in this paper is chunking in Soar[10]. Soar is an
architecture that combines general problem solving abilities with a chunking
mechanism that is a variant of explanation-based learning [11]. In the context
of characterizing learning systems as a sequence of transformations, our prior
work has revealed one source of added expensiveness: in chunking (and other
EBL systems which use search control in the problem solving), eliminating

search control in learning can increase the cost of the learned rules [12]. The
critical consequence of the elimination of search control is that the learned
rules are not constrained by the path actually taken in the problem space,
and thus can perform an exponential amount of search even when the original
problem-space search was highly directed (by the control rules). This analysis
was based on one step (removal of search control) among the whole sequence
of transformations. To reveal all sources of additional cost, we need a complete
analysis of the whole sequence of transformations.

This approach is similar in spirit to [13] in its use of a transformational
analysis of the learning algorithm. However, the focus of their analysis and
resulting algorithm development was on speedup rather than on boundedness,
and on search-control-free EBL rather than on chunking.

Section 2 of this article briey reviews chunking in Soar. Section 3 then
describes and analyzes the sequence of transformations underlying chunking.
The key results of this analysis | in addition to the identi�cation of the trans-
formational sequence itself | are: (1) the identi�cation of the points in the
transformations at which extra cost is added; and (2) proposed modi�cations
that may eliminate the identi�ed sources of extra cost. Section 4 presents
preliminary experimental results backing up the analysis in Section 3. Finally,
Section 5 summarizes and discusses issues for future work.

2

Figure 1: An example of chunking process.

2 Background

In Soar, productions comprise the domain theory for EBL [14, 15]. Each
production consists of a set of conditions and a set of actions. Conditions test
working memory for the presence or absence of patterns of tuples, where each
tuple consists of an object identi�er, an attribute and a value. Actions create
preferences, each of which speci�es the relative or absolute worth of a value for
an attribute of a given object. Productions in Soar propose changes to working
memory through these preferences, and do not actually make the changes
themselves. Changes to working memory are made based on a synthesis of the
preferences (by a �xed decision procedure). The cycle of production �rings,
creation of preferences, and creation of working memory elements (WMEs)
underlies the problem solving.

When a situation occurs so that a unique decision cannot be made because
of either incomplete or inconsistent preferences, the system reaches an impasse.
It creates a subgoal to deal with the impasse. In the subgoal created for
the impasse, Soar tries to resolve the impasse. Whenever a supergoal object
(called a result) is created in the subgoal, a new chunk is created. The chunk
summarizes the problem solving (rule �rings) that produced the result in the
subgoal.

To create chunks, Soar maintains an instantiated trace of the rules which
�red in the subgoal. The operationality criterion in chunking is that the con-
ditions in the chunk should be generated from the supergoal objects. By
extracting the part of the trace which participated in the result creation, the
system collects the supergoal (operational) elements which are connected to
the result. This process is called backtracing, and the instantiated trace is
called a backtrace. It corresponds to the proof tree (or explanation) in EBL.
The resulting supergoal elements are variabilized and reordered by a heuristic
algorithm, and become the conditions of the chunk. The action of the chunk
is the variabilization of the result. An example of chunking is shown schemat-
ically in Figure 1. The two striped vertical bars mark the beginning and the

3

Figure 2: Rete network of a rule.

end of the subgoal. The WMEs to the left of the �rst bar exist in the super-
goal (prior to the creation of the subgoal). The objects (WMEs) between the
two bars are internal to the subgoal. The object to the right of the second
bar is the result of the subgoal. T1, T2, T3 and T4 are traces of the rule
�rings. For example, T1 records a rule �ring which examined WMEs A and
B and generated a preference suggesting WME G. The highlighted rule traces
are those included in the backtrace; T2, T3, and T3 have participated in the
result creation.

The chunking process can also be characterized in a di�erent way | instead
of simply considering it as a procedure which has problem solving episodes as
input and learned rules (chunks) as output, it can be considered as a se-

quence of transformations from problem solving episodes, through intermedi-
ate pseudo-chunks, to chunks. The cost changes through the transformations
can be estimated by analyzing each step.

Note that when we compare the cost of a problem solving episode to the
cost of a chunk, by \cost" we will mean just the match cost of all of the rules
that �red to generate the result (whether this be via multiple rules during the
initial problem solving, or via a single chunk).1 Because computing match
cost is dependent on the match algorithm used, we briey review the Rete
algorithm [16] employed in Soar.

Rete is one of the most e�cient rule-match algorithms presently known.
Its e�ciency stems primarily from two key optimizations: sharing and state

saving. Sharing of common conditions in a production, or across a set of pro-
ductions, reduces the number of tests performed during match. State saving
preserves the previous (partial) matches for use in the future. Figure 2 illus-
trates a Rete network for a rule. Each WME consists of an object identi�er,
an attribute (indicated by an up-arrow(^)), and a value. Symbols enclosed

1Actually, the cost of a problem solving episode also includes the costs of �ring rules
and of making decisions. However, we will not explicitly focus on these factors here because
they drop out during the transformational process.

4

Figure 3: A sequence of transformations from a problem solving to a chunk.

in angle brackets are variables. The conditions of the rule are compiled into
a data ow network. The network has two parts. The alpha part performs
constant tests on WMEs, such as tests for at and yes. The output of these
tests are stored in alpha memories. Each alpha memory contains the set of
WMEs which pass all of the constant tests of a condition (or more than one,
if it is shared). The beta part of the network contains join nodes and beta
memories.2 Join nodes perform consistency tests on variables shared between
conditions, such as <loc1>, which is shared between C1 and C2. Beta memo-
ries store partial instantiations of productions, that is, instantiations of initial
subsequences of conditions. The partial instantiations are called tokens. Be-
cause match time per token is known to be approximately constant in Rete
[17, 6] | and because counting tokens yields a measure that is independent
of machines, optimizations, and implementation details | we will follow the
standard practice established within the match-algorithm community and use
the number of tokens, rather than time, as our comparative measure of match
cost.

3 Transforming problem solving to a chunk

Figure 3 shows the sequence of transformations that convert a problem solv-

2There also are negative nodes, into which negative conditions are compiled. A negative
node passes a partial instantiation when there are no consistent WMEs.

5

Figure 4: An example Soar task.

ing episode into a chunk. Each transformation (except for the last) creates an
intermediate structure, called a pseudo-chunk. As the sequence progresses, the
pseudo-chunks become more like chunks and less like problem solving. Each
pseudo-chunk can itself be matched and �red (given an appropriate interpreter)
and thus independently create the result. The cost of a pseudo-chunk can be
determined by counting the number of tokens generated during the match to
produce the result. By analyzing how the transformations alter these costs,
the sources of added expensiveness are revealed.

The following subsections discuss each transformation shown in Figure 3,
including their resulting (pseudo-)chunks and their e�ects on cost. These
discussions are presented in the context of a simple illustrative task | that
of evaluating which mode of transportation is best in particular situations
(Figure 4). There are four rules and �fteen WMEs to begin with in this
task. In the �gure, a number in front of a rule condition denotes the number

6

Figure 5: Problem solving episode excluding unnecessary rule �rings. This

structure embodies PS-chunk.

of tokens generated by in the problem solving episode shown in Figure 5 by
joining the tokens passed on from the previous conditions with the WMEs
in the condition's alpha memory. Figure 5 shows how the sequence of rule
�rings during the problem solving episode creates the result (G1 ^object Q1
BEST)3, given the rules and theWMEs. A connection from one rule to another
rule through a decision means that preferences created by the former rule
participated in the decision for the WME which is matched to a condition of
the latter rule. The trivial decision steps | creation of one candidate and
the following creation of a WME from the candidate | are not shown for
brevity. Actual problem solving normally includes other rule �rings which are
not linked to the result creation; however, those are omitted here.

3.1 Filtering out unnecessary rule �rings ()PS-chunk)

As a �rst step toward producing a chunk, we can �lter out the unnecessary
rule �rings which did not participate in the result creation. For the given
example, this transformation eliminates all other rule �rings, if there were
any, beyond those shown in Figure 5. The resulting pseudo-chunk | called
a PS-chunk (Problem-Solving-like chunk) | looks very similar to the original
problem solving, aside from the missing unnecessary parts.4 However, its

3This preference means that Q1 is the best alternative among the candidate values, given
the identi�er G1 and the attribute object.

4In addition, architectural actions that occurred during the problem solving episode are
replaced in the PS-rule by dummy rules that have the same e�ect, much in the way that
architectural axioms are used in Prodigy/EBL[2].

7

Figure 6: E-chunk: results from eliminating search control in the PS-chunk.

processing di�ers signi�cantly from the initial problem solving by being closed
o� from intermediateWMEs generated outside of this structure.5 For example,
the link between R3 and R4 through W22 means that no other WMEs except
for those created by R3 are matched to the condition of R4. The only parts
of a PS-chunk that are exposed to the full set of WMEs are the conditions
matched to the supergoal elements, and the result creation. The key di�erence
between a PS-chunk and a normal chunk is that matching a PS-chunk requires
replaying (part of) problem solving, while matching a normal chunk requires
just one rule match. Either can create the result in a similar circumstance.

The cost (number of tokens) of a PS-chunk is bounded by the cost of
problem solving. If there were unnecessary rule �rings in the problem solving
(as is usually the case), the cost of a PS-chunk is strictly less than the cost of
the problem solving. If not, the cost is the same as the problem solving.

3.2 Removing search control () E-chunk)

PS-chunks contain all rules involved in the result creation. However, chunk-
ing employs only traces from task-de�nition rules; that is, rules that directly
propose values of WMEs. Search-control rules, as distinguished from task-
de�nition rules, suggest the relative worth of the proposed values. The search-
control rules are missing in chunking [18, 10] (and other EBL systems [19])
based on the assumption that they only a�ect the e�ciency, not the correct-
ness of learned rules. This omission is intended to increase the generality of
the learned rules | reducing the number of conditions by leaving out search
control rules means less restriction on the test of applicability of the rules,

5It is not di�erent in how it uses such optimizations as sharing and state saving; for
example, the tokens from the �rst two conditions of R4 are shared with the tokens from the
�rst two conditions of R3.

8

Figure 7: I-chunk: created by constraining variables (by instantiations) in an

E-chunk. The structure remains the same as in the E-chunk (Figure 6) for

this example.

and thus implies increased generality. An E-chunk (Explanation-structure-like
chunk) is the intermediate structure which is formed by removing search con-
trol from a PS-chunk. Figure 6 shows the E-chunk created from the PS-chunk
in Figure 5. The search-control rule R2 is gone, and all proposed candidates
becomeWMEs without �ltering through the search control in the decision pro-
cess. This structure can be mapped onto the normal backtrace in chunking.
The only di�erence between an E-chunk and a backtrace is that a backtrace
consists of instantiations while an E-chunk consists of rules. By replacing the
rules in the trace, a backtrace can be directly mapped to an E-chunk. An
E-chunk is similar to an EBL explanation structure.

The consequence of eliminating search control is that the E-chunk is not
constrained by the path actually taken in the problem space, and thus can
perform an exponential amount of search even when the original problem-
space search was highly directed (by the control rules), as analyzed in [12]. In
the above example, without constraining eval-operator to the best candidate |
which has priority 1 | the number of tokens in the match of rule R3 increases
from 7 to 14. Overall, the total number of tokens increases from 17 to 20.
This is thus one of the star-marked (i.e., cost increasing) transformations in
Figure 3.

One promising way of avoiding this problem is to incorporate search control
in chunking[12]. By incorporating search control in the explanation structure,
the match process for the learned rule can focus on the path that was actually
followed.

3.3 Constraining variables by instantiations()I-chunk)

The variabilization step in chunking is performed by examining the back-
trace (explanation). All constants are left alone; they are never replaced by
variables. All object identi�ers in the instantiations are replaced by variables;
and in particular, all occurrences of the same identi�ers are replaced by the
same variable. Since E-chunks consist of rules rather than instantiations, we
need to model chunking's variabilization step as the strengthening of con-
straints on the match rather than as the weakening of them. If a variable
is instantiated as a constant, it is replaced by that constant. If a variable
is instantiated by an identi�er, it remains as a variable, but may possibly

9

Figure 8: U-chunk: results from eliminating intermediate rule �rings in the
I-chunk.

undergo a name change; in particular, all occurrences of variables which are
instantiated by the same identi�er are replaced by the same variable. For ex-
ample, the variables in Figure 6 can be constrained as shown in Figure 7. The
pseudo-chunk generated by this step is called an I-chunk (instantiation-based
chunk).

This transformation can overspecialize learned rules when distinct variables
in the original rules accidentally happen to match the same identi�er; for
example, although variable <g2> in R1 and variable <g3> in R4 (Figure 6)
is instantiated by same the identi�er G1, and changed to the same variable
<g1>, they can correctly be generalized as di�erent variables. However, from
the perspective of cost, this transformation doesn't increase the number of
tokens. The number of tokens generated should remain the same, or be reduced
by the introduced constraints.

3.4 Eliminating intermediate rule �rings ()U-chunk)

This step uni�es the separate rules in an I-chunk into a single rule, called
a U-chunk (uni�ed chunk). Figure 8 shows the result of unifying the example
problem I-chunk into the corresponding U-chunk. Although R1, R3, and R4
still have their own identi�able conditions in the U-chunk, there are now no
intermediate rule �rings. The boundaries between the rules are eliminated by
removing the intermediate processes of rule �ring and WME creation. In lieu
of these processes, the instantiations generated by matching the earlier rules
in the �ring sequence (i.e., the tokens produced by their �nal conditions) are
passed directly to the match of the later rules. In e�ect, this step replaces the
intermediate WMEs with the instantiations which created the WMEs. For
example, one of R4's conditions receives the instantiations of R3 directly as
intermediate tokens, rather than receiving WMEs created from the instantia-
tions. Thus, R1, R3, and R4 are no longer (separate) rules.

10

Figure 9: Number of tokens can increase in a U-chunk.

To match U-chunks, an extension is required to the Rete algorithm. The
traditional form of the algorithm, as shown in Figure 2, requires a linear match
network, in the sense that a total ordering must be imposed on the conditions
to be matched; such as C1, then C2, and then C3. In (linear) Rete, each join
node checks the consistency of a token (a partial instantiation) and a WME,
with each token itself being a sequence of WMEs, each of which matches
one condition. However, U-chunks require the ability to perform non-linear

matches, in which conditions are matched hierarchically via join nodes that
compare pairs of tokens, rather than just a single token and a WME. They
also require the ability to create hierarchically structured tokens (when pairs
of incoming tokens are consistent); that is, a token must now be a sequence of
WMEs or tokens (instantiations of a rule).

One bene�t of going with U-chunks, rather than I-chunks, is that they
enable equality tests across sub-structures which previously represented sepa-
rate rules. For example, we can now test equality between the instantiations
of <q1> in R1 and R3. However, cost problems are introduced in going to
U-chunks because the number of instantiations of a rule can be greater than
the number of WMEs created from those instantiations. For example, given
the rule and WMEs in Figure 9-(a), two instantiations | (1 ^x 3) (3 ^y 5) and
(1 ^x 4) (4 ^y 5) | are created. Because these two instantiations generate
the same bindings for variables <a> and <c>, only one tuple (WME) is gen-
erated in the problem solving.6 In this case, the number of tokens is increased
after we replace the WMEs with the instantiations. This really happens in our
example. While the two instantiations of R3 are collapsed into one WME and
supplied to the fourth condition of R4 in the I-chunk, the two instantiations
are directly used in the U-chunk, and create one more token. A worst case
can arise when the working memory is structured as in Figure 9-(b). While
the number of instantiations is exponential in the number of conditions, the
number of WMEs is only one.

Our proposed solution to this problem is to preprocess instantiations before
they are used so that the number of tokens passed from a substructure of a
U-chunk is no greater than the number of WMEs passed in the corresponding

6Working memory is a set in Soar (and other Ops-like languages), and does not include
duplicate elements.

11

Figure 11: Linearization can increase the number of tokens.

I-chunk. This could potentially be done either be grouping instantiations that
generate the same WME or by selecting one of them as a representative.

3.5 Linearizing () Chunk)

A U-chunk can be linearized to become a chunk. The hierarchical structure
of U-chunks is attened into a single layer, and the conditions are totally
ordered. For example, the non-linear structure in Figure 8 can be attened
to the structure in Figure 10. After the attening, chunking uses a heuristic
condition-ordering algorithm to further optimize the resulting match.

The linearization transformation turns out to introduce three ways in which
match costs can increase. The �rst way arises directly from the attening
of the U-chunk's hierarchical structure. In a U-chunk, the conditions in a
sub-hierarchy (e.g. the conditions in R1) are matched independently from the
other parts of the structure before its created instantiations are joined with the
others. By combining these sub-hierarchies together | through linearization
| some of the previously independent conditions get joined with other parts

12

Number of tokens

Problem Solving 52

PS-chunk 42

E-chunk 108

I-chunk 108

U-chunk 198

L-chunk 215

Table 1: Number of tokens of each step in a Grid Task.

of the structure before they �nish their sub-hierarchy match. This change can
increase the number of tokens. For example, after linearizing the U-chunk
in Figure 11-(a), the number of tokens increases no matter what condition
ordering is used. In the worst case, the increase can be exponential in the
number of hierarchical levels in the U-chunk.

The second way arises from the impact attening can have on sharing.
As long as the implementation of Rete cannot capture the sharing from the
non-linear structure (of the U-chunk), the number of tokens can increase. For
example, in Figure 11-(b), sharing of sub-tokens from R1 for C2 and C3 in R2
cannot be realized in a linearized structure.

The third way arises because the heuristic condition-ordering algorithm
cannot guarantee optimal orderings. Whenever this algorithm creates a non-
optimal ordering, additional cost may be occurred.

Our proposed solution to this set of problems is to eliminate the lineariza-

tion step. By keeping the hierarchical structure | that is, by replacing chunks
with U-chunks | all three causes of cost increase can be avoided. The key
thing that this requires is an e�cient generalization of Rete for non-linear
match.

4 Experimental Results

In order to supplement the abstract analysis provided in the previous sec-
tion with experimental evidence, we have implemented a set of learning algo-
rithms that correspond to the set of initial subsequences of the overall trans-
formation sequence; that is, each learning algorithm in the set starts with the
problem solving episode and generates a distinct type of (pseudo-)chunk. We
have also implemented the extensions to the Rete algorithm necessary to al-
low all of the types of pseudo-chunks to match and �re. At each stage from
problem solving to chunks, match cost is evaluated by counting the number of
tokens required during the match to generate the result.

So far, the resulting experimental system has been applied to a simple Grid-
task problem[6] which creates one subgoal to break a tie (impasse) among the
candidate operators and creates a chunk. The results of this experiment are
shown in table 1. The pattern of cost increases matches the expectations

13

generated from the earlier analysis in that a transformation led to increased
cost on this task if and only if it was identi�ed by the analysis as a cost
increasing transformation.

5 Summary and Future Work

We have performed an analysis of the chunking process as a sequence of trans-
formations from a problem solving episode to a chunk. By analyzing these
transformations, we have identi�ed a set of sources which can make the out-
put chunk expensive. We conjecture there are no other sources of cost increase,
but cannot yet prove this.

Based on the above analysis and the proposed potential solutions to the
sources of expensiveness, we are currently working towards the speci�cation
and implementation of a variant of chunking which does not introduce any of
these sources. If it works, the cost of using a chunk should always be bounded
by the cost of the corresponding problem solving.

A similar transformational analysis can also be performed for EBL. As with
the analysis of chunking, this analysis should identify sources of expensiveness
in EBL, and help guide the design of safer EBL mechanisms. In addition,
a parallel analysis of EBL and chunking should further clarify the relation-
ship between the two. An earlier comparison related the four basic structural
components (goal concept, domain theory, training example, operationality
criterion) of the two systems[11]; however, a transformational analysis should
allow us to go beyond this to a deeper analysis of the processes underlying
the two algorithms. A preliminary analysis of EBL shows that the sequence of
transformations underlying EBL is very similar to that in chunking, except for
the regression process, where chunking uses instantiations. In addition, EBL
systems seem to su�er from cost problems similar to those that show up for
chunking.

Acknowledgments

This research was supported under subcontract to the University of South-
ern California Information Sciences Institute from the University of Michigan
as part of contract N00014-92-K-2015 from the Advanced Research Projects
Agency (ARPA) and the Naval Research Laboratory (NRL). We would like to
thank Milind Tambe and Bob Doorenbos for helpful comments on this work.

References

[1] A. E. Prieditis and J. Mostow. Prolearn: Towards a prolog interpreter
that learns. In Proceedings of the Sixth National Conference on Arti�cial
Intelligence, pages 494{498, 1987.

14

[2] S. Minton. Quantitative results concerning the utility of explanation-
based learning. In Proceedings of the Seventh National Conference on
Arti�cial Intelligence, pages 564{569, 1988.

[3] P. Shell and J. Carbonell. Empirical and analytical performance of itera-
tive operators. In The 13th Annual Conference of The Cognitive Science
Society, pages 898{902. Lawrence Erlbaum Associates, 1991.

[4] Jude W. Shavlik. Aquiring recursive and iterative concepts with
explanation-based learning. Machine Learning, 5:39{70, 1990.

[5] O. Etzioni. Why prodigy/ebl works. In Proceedings of the Eighth National
Conference on Arti�cial Intelligence, pages 916{922, 1990.

[6] M. Tambe. Eliminating combinatorics from production match. PhD thesis,
Carnegie-Mellon University, 1991.

[7] R. Greiner and I. Jurisica. A statistical approach to solving the ebl utility
problem. In Proceedings of the Tenth National Conference on Arti�cial
Intelligence, pages 241{248, 1992.

[8] J. Gratch and G. Dejong. Composer: A probabilistic solution to the
utility problem in speed-up learning. In Proceedings of the Tenth National
Conference on Ariti�cial Intelligence, pages 235{240, 1992.

[9] S. Markovitch and P. D. Scott. Information �ltering : Selection mecha-
nism in learning systems. Machine Learning, 10(2):113{151, 1993.

[10] P. S. Rosenbloom, J. E. Laird, A. Newell, and R. McCarl. A prelimi-
nary analysis of the soar architecture as a basis for general intelligence.
Arti�cial Intelligence, 47(1-3):289{325, 1991.

[11] P. S. Rosenbloom and J. E. Laird. Mapping explanation-based gener-
alization onto soar. In Proceedings of the Fifth National Conference on
Arti�cial Intelligence, pages 561{567, Philadelphia, 1986. AAAI.

[12] J. Kim and P. S. Rosenbloom. Constraining learning with search con-
trol. In Proceedings of the Tenth International Conference on Machine
Learning, pages 174{181, 1993.

[13] A. Segre and C. Elkan. A high-performance explanation-based learning
algorithm. Arti�cial Intelligence, 69:1{50, 1994.

[14] T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli. Explanation-based
generalization { a unifying view. Machine Learning, 1(1):47{80, 1986.

[15] G. F. DeJong and R. Mooney. Explanation-based learning: An alternative
view. Machine Learning, 1(2):145{176, 1986.

[16] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Arti�cial Intelligence, 19(1):17{37, 1982.

[17] M. Tambe, D. Kalp, A. Gupta, C. L. Forgy, B. G. Milnes, and A. Newell.
Soar/psm-e: Investigating match parallelism in a learning production sys-
tem. In Proceedings of the ACM/SIGPLAN Symposium on Parallel Pro-
gramming: Experience with applications, languages, and systems, pages
146{160, 1988.

15

[18] J. E. Laird, P. S. Rosenbloom, and A. Newell. Overgeneralization dur-
ing knowledge compilation in soar. In Proceedings of the Workshop on
Knowledge Compilation, pages 46{57, 1986.

[19] S. Minton. Personal communication. 1993.

16

