
On the Role of Humans in Enterprise Control Systems:
the Experience of INSPECT

Andre Valente, Jim Blythe, Yolanda Gil and William Swartout
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

fvalente,blythe,gil,swartoutg@isi.edu

Abstract

In this paper, we use the example of a successful mixed-
initiative plan evaluation tool for the domain of air cam-
paign planning to argue that the human-in-the-loop is an
important feature of enterprise control systems. Our tool,
called INSPECT, evaluates air campaign plans and alerts
the user about inconsistencies and potential problems. A
generalization of INSPECT called PSMTool is also capable
of limited interaction with a subject matter expert to cap-
ture new critiques of plans. The paper describes our work
on INSPECT and PSMTool, analyzes the key contributions of
these tools, and draws some conclusions about the role of
mixed-initiative tools in enterprise control systems.

1 Introduction

Working with Air Force experts from the “Checkmate”
Group at the Pentagon (HQ USAF XOOC), we developed
INSPECT, a tool for evaluating and critiquing the air-related
portion of a military campaign plan. INSPECT integrates
several AI technologies. It was built using the EXPECT

framework for knowledge-based systems development, that
incorporates knowledge acquisition techniques, a descrip-
tion logic-based knowledge representation system, and a
sophisticated problem-solving language and reasoner.

Our experience in developing INSPECT and several other
systems led us to argue for mixed-initiative systems as the
right approach for building enterprise control systems. The
air campaign planning domain experts we worked with felt
that it was essential that any system should keep human users
“in the loop.” For example, they argued that tools for air
campaign plan evaluation should allow users to understand
their plans, identify critical factors, and analyze tradeoffs
among options. More importantly, these domain experts ar-
gued that evaluation criteria need to be adapted in response

to new situations, user preferences, and institutional prac-
tices. These characteristics indicate that enterprise control
tools need to be adaptable and responsive to changes in
context.

Based on this insight we drew from our experiences with
INSPECT and other systems to design a reusable system for
critiquing and evaluating plans, which can be instantiated
and applied to any planning domain, such as air campaign
planning or army course of action critiquing. We used this
as a platform to develop a knowledge acquisition tool called
PSMTool that allows domain experts to enter new evaluation
criteria for plans. PSMTool makes use of general ontologies
that we developed for planning and plan critiquing to help
users define and organize the criteria through a simple dia-
log. In preliminary experiments at Fort Leavenworth BCBL
conducted through DARPA’s HPKB project, we found that
end users were able to use PSMTool with very little training
to add new critiques that without the tool could only be added
by a knowledge engineer. This system extends the approach
of keeping human users in the loop and building tools that
can easily be adapted in response to new conditions.

In this paper, we first describe the INSPECT system: the
problem it solves, its design, architecture and implemen-
tation. We emphasize some of the lessons learned in this
respect. Then we describe PSMTool and the further lessons
from building such a highly adaptable tool. Finally we
present our lessons learned for the contruction of enterprise
control systems.

2 The Air Campaign Planning Domain and
the Design of INSPECT

INSPECT was developed as a tool to support the air cam-
paign planning process. The tool had to provide support to
the adoption and use of a methodology for military plan-
ning called strategies-to-tasks [12, 11]. In this approach,
high-level national objectives are refined into lower level

1



National Goal

National Security
Objectives

National Military
Objectives

Campaign Objective

Operational Objective

Operational Task

Maintain survival

Deter/defeat aggression

Deter/defeat large-scale,
regional, military
aggression

Attain air superiority

Suppress enemy
air-sortie generation

Destroy key hardened
airbase-support facilities
OPERATION CONCEPT: F15E
squadrons with LGBS, supported
by EC-13, KC-135 and E-3A

Figure 1. Strategies-to-Tasks Example (from
[Todd 94])

military objectives and then into operational tasks. Figure 1
illustrates the hierarchy of objectives and how it links low
level operational activities to higher level objectives. By en-
couraging planners to think about how low-level decisions
relate to higher level objectives, this approach promotes air
campaign planning that is more rational and helps avoid the
sorts of mistakes that can arise from thinking about target-
ing too locally. The result should be air campaign plans that
achieve the desired results while reducing risks and min-
imizing unnecessary damage. These plans are also more
structured than traditional plans and capture more of the
rationale behind the plan.

Our goal was to design an application that integrated
well with this methodology and the air campaign planning
process. Our domain experts had a number of useful sugges-
tions about the design of the tool, most notably about issues
regarding its interaction with the user. First, they requested
that the user should not be locked in by the tool: the tool
should present suggestions, not definitive answers, and users
should be encouraged to think of alternatives. Second, they
requested that all problems identified in the plan should be
accompanied by an explanation and justification, so that the
user could understand the reasoning behind the tool’s rec-
ommendation and make an informed decision. Third, they

asked that the problems should be presented as constructive
criticism, includingsuggestions of possible fixes to the prob-
lem. Not surprisingly, following these suggestions allowed
us to make our tool more attractive to users.

3 INSPECT: An Air Campaign Plan Evalua-
tion Tool

Based on the design decisions described above, we de-
veloped INSPECT (INtelligent System for air campaign Plans
Evaluation based on expeCT). The architecture of INSPECT

is shown in Figure 2.

INSPECT

Plan
Editor

evaluation
(agenda)

USERS
(air campaign

planners)

EXPECT

EXPERTS

knowledge about:
•air campaign plans
•plan analysis/evaluation

Library of Critiques for
Air Campaign Plans

Model of Air Campaign Plans

air campaign
plans

Figure 2. Architecture of INSPECT.

After entering air campaign objectives with a plan editor,
a user invokes INSPECT to evaluate the plan. INSPECT looks
for several types of problems in the plan. For example, it
checks the hierarchical structure, identifies incomplete or
incoherent objectives, and performs rough feasibility esti-
mates based on the resources available for the campaign.
INSPECT shows the user an agenda with all the problems
found with the plan. The agenda items are marked accord-
ing to their seriousness using a convention very familiar
to Air Force pilots: WARNING, CAUTION, and NOTE
(warnings requiring immediate attentions, and notes being
non-critical). In addition to pointing out these problems,
INSPECT can provide a detailed explanation of each problem
and also suggest ways to fix it. Figure 3 shows a snapshot

2



of the agenda, including an explanation and suggested fixes
for one of the agenda items.

Figure 3. INSPECT's Evaluation of an Air
Campaign Plan. The explanation (lower frame)
refers to the selected item on the agenda (up-
per frame).

The types of problems detected by INSPECT include:

� Objective with no child/parent. According to the
strategy-to-task approach to air campaign planning, all
objectives must be subordinated to higher objectives
and be decomposed further (until a pre-specified “leaf”
level).

� No objective fulfilling one of the basic tenets of air
power. Air Force doctrine suggests that an air campaign
plan must contain objectives for all the tenets of air
power, such as force deployment and force protection.

� Objective with too many parents. An objective with too
many parents is an indication that the parent objective
is either too general (and should thus be divided) or that
the connections are meant to emphasize priority rather
than reflect a true decomposition.

� Incompatible sequence restrictions. This problem oc-
curs when temporal constraints of two or more objec-
tives are contradictory.

� No adequate aircraft currently available for an objec-
tive. This problem occurs when an objective requires a
type of mission for which none of the aircraft available
is considered adequate.

� Incoherent decomposition. In principle, an objective
must be decomposed into objectives which are more
specific or more detailed than their parent. This prob-

lem occurs when a parent objective is subsumed by one
of its child objectives.

There are a number of benefits for air campaign planning
that stem from using a tool like INSPECT:

� Catch errors introduced during manual plan de-
velopment: Air campaign plans are very large and
complex, and need to be changed over time. Because
the plan creation process is manual, it is conducive to
introducing errors and inconsistencies in the plan. In
fact, INSPECT has found unintentional errors in every
plan generated by our domain experts which would
otherwise have gone unnoticed.

� Raise the floor on plan quality: An evaluation tool
like INSPECT helps users avoid creating inconsistent or
low-quality plans. Because it works with the higher
levels of the plan, it can detect problems that could
percolate down to the lower levels and be accentuated
as the plan details are worked out.

� Enforce “good” practices in plan construction:
INSPECT’s evaluations enforce the strategy-to-tasks
methodology, and a number of style guidelines that
experienced air campaign planners developed using it.
Each of our domain experts liked to hear about the
evaluation criteria suggested by other experts, as a new
insight on how they could improve their own work
on planning air campaigns. Our experts liked that IN-
SPECT would point out that they were following their
own standards as it evaluated their plans.

� Training new planners: INSPECT’s knowledge base
captures the knowledge of experienced planners, and
novice users can learn as they use the tool. INSPECT’s
evaluations point out what experienced planners would
see as serious flaws in the plan, and the explanations
of each agenda item are designed to back up the eval-
uations with sources of information in the air cam-
paign planning domain (doctrine, typical capabilities
of weapon systems, etc.). INSPECT’s suggested fixes
show what an experienced planner would do differ-
ently.

4 Building INSPECT with EXPECT

INSPECT integrates several AI technologies. It was built
using the EXPECT framework for knowledge-based systems
development, that incorporates knowledge acquisition tech-
niques, a description logic-based knowledge representation
system, and a sophisticated problem-solving language and
reasoner. EXPECT also has a language to express problem
solving goals that is based on case grammars. Below, we
briefly describe these technologies, and how they were used.

The knowledge acquisition bottleneck is frequently cited
as a major impediment to broad dissemination of AI tech-

3



nology. The EXPECT project [6, 7] is addressing this problem
by developing a knowledge acquisition framework that em-
powers people to augment, modify and adapt knowledge
based systems without needing to understand the details of
the system’s implementation. The key to EXPECT’s approach
is that it captures the design rationale for knowledge based
systems, and uses that design knowledge to guide a user
in augmenting the system. In addition to INSPECT, EXPECT

has been used to build several knowledge based systems
in domains such as transportation planning and battlefield
assessment.

Most knowledge acquisition tools have a fixed set of
guidelines or expectations about how knowledge should be
added to a system. The problem with this approach is that
it is inflexible, and limits the range of systems that can be
supported. EXPECT takes a more flexible approach: it auto-
matically derives a knowledge-based system from abstract
domain facts and problem-solving methods. The derivation
process is recorded so that EXPECT captures the normally
implicit dependencies in a KBS, such as what factual knowl-
edge is needed to support problem solving, and how factual
knowledge is used in problem solving. EXPECT provides
tools that use this information to guide the user in adding
knowledge and tools (such as a natural language explana-
tion facility) that help make EXPECT’s representations more
understandable to non-computer experts. For example, the
system understands how various types of instances are used
in problem solving, so when a new instance is added the
acquisition tools can make sure that enough information is
specified about the instance so that it can be used. In this
way, EXPECT allows a user to add knowledge to a knowledge-
based system without requiring him to understand all the
details of how the knowledge interacts.

The EXPECT system is fully integrated with the LOOM
knowledge representation system [9]. LOOM is an im-
plementation of description logics, which emphasizes ef-
ficiency and expressiveness instead of completeness. In
EXPECT, LOOM is used to represent the factual and defini-
tional knowledge about a domain. For example, in INSPECT

there are LOOM definitions about what are the elements of
air campaign plans, what are objectives, what are known
types of aircraft, what kinds of missions they fly, etc. This
knowledge has proved to be an important byproduct of the
INSPECT development. It has been used as a basis for the
development of a broad ontology of air campaign planning,
which is being used and further developed under the JFACC
DARPA Program.

INSPECT was built using EXPECT as follows. General
knowledge about air campaign plans, their structure and
contents, as well as general domain knowledge about air
fight was coded into a LOOM knowledge base. Procedural
knowledge on how to evaluate the plan according to the
critiques specified was acquired and represented as EXPECT

methods. The EXPECT system then put together these two
types of knowledge, indicating whether there were any gaps
or problems. The result of this process is an EXPECT model
that records all the dependencies between procedural and
domain knowledge. This model was then passed through
the EXPECT compiler, that transformed it into efficient Lisp
code that is able to solve the specified problem.

4.1 Representing Air Campaign Plans
and Objectives

A very prominent contribution of our work resulted from
integrating INSPECT with the plan editor tool. We designed
a representation for air campaign plans and objectives that
would allow both users and tools to exchange information
about the plan. This representation has been adopted by
other planning tools in the air campaign planning domain
throughout the ARPI and JFACC programs, and is now seen
as an important input to an ongoing effort in the US Air
Force to create a common representation of objectives and
tasks for air operations planning.

In integrating INSPECT with the plan editing tool
(ACPT), we found a representation gap. Objectives in
ACPT were represented with a sentence like “Gain air supe-
riority in the western region”, or “Destroy petroleum distri-
bution facilities before the 15th day of the campaign”. This
was an unconstrained string, and the planner could write
whatever came to his/her mind.

In order to be able to automate any interesting evaluation
of the plan, we needed to capture the objective statement in
a formal representation language. Parsing and interpreting
the natural language sentence was too complex (and a new
problem by itself). At the same time, the users were not
willing to write their objectives in a form substantially dif-
ferent from the one they already used. The representation
we proposed was therefore a middle-ground: we used a case
grammar.1 The basic idea of case grammars is that there is
normally a limited number of roles (called thematic or case
roles) that an argument of a verb can play with relation to the
verb. That was definitely true for the objective statements,
for several reasons. First, we found that the objective state-
ments followed a very regular grammar of the form <verb>

<roles>. Second, we found out that there were several
regularities on the use of this structure. For example, only
a handful of verbs (less than 30) are used. Third, each of
these verbs introduces limitations with respect to the types
of roles that can be used. For instance, most occurrences of
the action type Destroy refer to a (physical) object type like
“missile launch sites” or “military headquarters”. We were

1While case grammars have been dismissed as a general solution for
natural language interpretation, they can be an interesting and powerful
device in restricted settings such as the one we have in the air campaign
planning domain.

4



able to establish reasonably exhaustive lists of terminals for
each of the main types specified for role fillers. Fourth, we
found that certain roles were actually modifiers that are used
to specify restrictions or constraints on the objective. There
are three types of restrictions, for time (e.g., within 21 days),
space/area (in Western Region) and resources (using B-52s

from base XYZ). A diagram showing the structure of the
proposed grammar is shown in Figure 4.

Action-type (verb)

Role-specification*

[Area restriction]

[Time restriction]

[Sequence restriction]

Role name

Role object

Action/
activity

Object

Aspect/
state

Action
capability

Figure 4. Overall structure of the case grammar
to represent air campaign objectives.

There were several benefits to this representation. On
the systemic side, it allowed the integration of ACPT and
INSPECT. A syntax-oriented editor was built that helps the
users enter valid sentences by offering lists of valid comple-
tions (according to the grammar) for the text being entered.
This provides a proactive support for using for the grammar
in the edition of objectives, without unnecessarily constrain-
ing the planner, who still has the liberty to write free text if
he/she deems necessary. The case grammar became a shared
representation that allowed other applications to make use
of the more semantic representation.

Somewhat unforeseen were a number of methodological
benefits, i.e., the benefits of using a grammar to the planning
process itself, independently of any tools used. These bene-
fits were so important that the structured representation took
a life of its own and is often seen as a key contributionof our
work on INSPECT. First, the knowledge acquisition process
involved in building the representation forced the experts to
explain and reflect over the way they write air campaign
objectives. For instance, they came to the conclusion that
frequently occurring objectives like “Conduct operations”
should not be allowed because they in fact do not mean any-
thing — in a air campaign plan, basically everything can be
seen as conducting operations. Second, the resulting gram-
mar embeds the notion of “reasonable” objectives, which
had never been made explicit before then. Third, the ad-
ditional structure provided by the grammar was considered
particularly useful for training. Fourth, the case grammar
became an input to an ongoing standardization process in

the Air Force on specifying valid types of tasks and objec-
tives. Indeed, the success with this representation has led us
to participate in the development of specialized representa-
tions for other elements of air campaign plans, as well as in
extending the existing representation of objectives.

5 Adding new critiques with PSMTool

INSPECT supports the user in simple modification and
maintenance tasks by virtue of the underlying EXPECT sys-
tem. However we wanted to provide support for adding
new critiques to a critiquing tool such as INSPECT. From our
experiences with INSPECT as well as critiquers for logistics
planning [8] and army courses of action [2] we observed that
plan critiques often follow one of a set of generic patterns
which could be captured using an ontology of planning and
critiquing. This ontology can be used by a computer pro-
gram to provide guidance for adding new critiques through
dialogue with users. It can also help to organize the cri-
tiques and give a baseline estimate of the completeness of
the critiquing system, all of which helps to increase user ac-
ceptance of the plans that are generated. More details about
the ontologies and their coverage of real-world critiquing
tasks can be found in [2].

We implemented a knowledge acquisition tool called
PSMTool that uses these principles to acquire new critiques
from users. The tool is domain-independent but requires
that the domain has been aligned with the generic ontol-
ogy of planning and critiquing, which it uses to express the
new critiques. Even with this tool, specifying a new cri-
tique involves specifying problem-solving knowledge, so
PSMTool also makes use of an editor developed to enter
problem-solving knowledge for the Expect system using
English-like syntax [4]. We tested PSMTool at Fort Leav-
enworth with the help of the Battle Command Battle Labs
and found that Army officers with very little training were
able to add significant new critiques to an Army battle course
of action critiquer. In this section we describe the design and
implementation of PSMTool and briefly describe the results
of the user tests.

PSMTool uses two ontologies to represent general plan
critiquing strategies: an ontology of plans and an ontol-
ogy of critiques. Generic problem-solving knowledge is
attached to the critiques as we now describe. The planning
ontology, called Planet [1], was developed under the Darpa-
ran HPKB project and is a general ontology that allows both
machine-generated and human-generated plans to be repre-
sented and also explicitly represents different assumptions
made by planners. It has also been used as the basis of
a translation service for software agents collaborating on a
planning task [3].

The critiquing ontology represents domain-independent
critiques of two types: those based on the structure of the

5



plan and those based on its use of resources. Consider,
for example, the problems detected by INSPECT that are de-
scribed in the previous section.

� The critiques objective with no child, objective with too
many parents and objective with incompatible sequence
restrictions are based on the structure of the plan. They
are independent of the air campaign domain and the first
two are included in our ontologyof critiques along with
the problem-solving knowledge required to implement
them.

� The objective incoherent decomposition is also based
on plan structure but requires domain knowledge to
know if a parent objective is subsumed by one of its
parents. In this case the critique ontology provides
support for evaluating a set of objectives with respect
to their parents, and the details are fleshed out as part
of the domain definition.

� The objective No adequate aircraft currently available
for an objective is a resource-based critique that re-
quires domain knowledge to implement. Again, the
critiquing ontology provides partial support.

PSMTool uses these ontologies to classify a new critique
added by the user in a question-answering process. Once
the critique is classified in the ontologies, the appropriate
generic problem-solving knowledge can be applied and the
domain-dependent knowledge that is required can be iden-
tified. In many cases, this process also breaks down the
knowledge that needs to be acquired into small chunks that
are easier for a domain expert to express.

Figure 5 shows the PSMTool interface while a new cri-
tique is being added. This is a critique from the army course
of action domain that checks that the friendly forces have
enough force ratio for each of the tasks in the battle, ac-
cording to standard practice. The window on the left shows
how a three-part script is being followed to add the cri-
tique. In the first part, four questions were answered that
allowed PSMTool to classify the critique, showing that it
is a quantity-based check made on each task in the plan.
In the second part, PSMTool explains how the critique will
be implemented based on this classification, and identifies
pieces of problem-solving knowledge to acquire from the
user to complete the critique. In the third part, which has
not yet been reached, PSMTool will run the critique on an
existing course of action so the user can check the results.

In the case of the force ratio critique, PSMTool asks for
two pieces of problem-solving knowledge: how to estimate
the amount of force ratio required for a task and how to
estimate the amount available for a task. In the right-hand
window in Figure 5, the English-based editor is being used to
specify how to estimate the amount of force ratio available
to a task. More details about the editor, how it produces
an English paraphrase of the procedure body and a set of

alternatives that allow users to create and modify procedures
through navigation can be found in [4].

6 Experiences with PSMTool

Preliminary experiments were run with PSMTool at Fort
Leavenworth. Four subjects who had been given one day
of training with Expect and the representation of the course
of action (COA) domain were presented with four new cri-
tiques to add to the system. The subjects were army officers
who were reasonably familiar with the COA generation and
whose use of computers ranged from reading email to having
been exposed to java. Two of the critiques were added using
PSMTool and two without the tool. In order to minimize
learning effects on our results, two of the subjects worked
without PSMTool for two critiques and then worked with the
tool, and two of the subjects worked the other way around.

Our results, although preliminary, show that not only
can users add more critiques using the tool than without,
they are also faster and less error-prone when using the tool.
Moreover, the subjects reported the critiques that they added
using the tool as being simpler, even though they were in fact
isomorphic. This provides some support for the idea that,
by classifying the new critiques with the ontologies as they
are added, PSMTool helps users to organize the critiques in
their own minds.

In a second experiment we tested whether PSMTool
could be used with little or no training. A fifth subject, an
army officer with no programming experience, was asked to
add two of the same critiques as in the previous experiment,
but without the day of training in Expect and the domain,
instead the tool was demonstrated and explained for ap-
proximately 45 minutes. The subject successfully added the
critiques, in time comparable with that of the earlier subjects
who had received training.

We are currently designing more thorough user exper-
iments to test these highly encouraging results. However
they seem to indicate that the goal of allowing subject mat-
ter experts to add new evaluation criteria to a plan critiquer
by directly interacting with an automated system is attain-
able, even if the experts have little training with the system.
If this is the case, we can hope to greatly increase the range
of scenarios in which an enterprise control system can be
usefully applied, by allowing it to be modifiable by its users.

7 Lessons Learned: Mixed-Initiative Tools
for Enterprise Control Systems

In order to obtain cost savings and scalability, the ideal
scenario for enterprise control systems seems to argue for a
completely automated control system. However, our experi-
ence with INSPECT has shown that in large-scale, real-world

6



Figure 5. Adding a new critique with PSMTool. The window on the left shows the questions that were
asked to de�ne the critique and the new knowledge that is required. In the window on the right, some
of that knowledge is entered using the English-based editor.

domains, completely automated control is often impracti-
cable due to the scope and breadth of knowledge required.
We are not alone with this view. For example, [5, 10] argue
that for planning — a key task in enterprise control — a
mixed-initiative approach where machines and people work
together is often more desirable.

The key insight is that people can understand the en-
terprise problems and their context more broadly than ma-
chines, and thus will be able to make better judgments about
certain decisions. Machines, on the other hand, are able
to carry out tasks with a well-defined context much more
effectively. Another issue is adaptability: humans are able
to understand that their knowledge about a certain kind of
control process is no longer valid and seek to revise this
knowledge at the light of the new information. Machines
simply do not have that capability at the moment, and thus
behave with brittleness.

Morover, even if we do develop techniques that can over-
come these limitations, it is an open question whether giving
all the power to the machine is a desirable choice. Humans
tend to be afraid of giving up control on certain key de-
cisions, and particularly so when they do not have access
to an explanation as to why the decision was made, what
other decisions were possible, and what are other choices.
Black-boxes are simply not acceptable for many key control
decisions, particularly in applications such as military air

campaign planning, where lives are at stake.
As a result of this view on enterprise control systems,

we argue that these systems should adopt a mixed-initiative
approach with two main characteristics. First, they must be
designed to work with people, rather than completely taking
over processing. This in turn means that the products of
our tools must be understandable by people and it must be
possible for people to easily input information and decisions
into the tools. Second, because it is impossible to anticipate
in advance all the knowledge a system might need in a broad
domain, and because knowledge frequently changes, our
goal is to provide knowledge acquisition tools that allow
for users to augment and adapt a system’s knowledge in
response to new situations and new needs.

Acknowledgments

The work reported here relates to research sponsored by
the Defense Advanced Research Projects Agency (DARPA)
under Ft. Huachuca Contract DABT63-95-C-0059 and Air
Force Research Laboratory Agreements F30602-97-C-0118
and F30602-97-C-0068. Many thanks to all Checkmate
members who helped us in the process; most Col Plebanek,
who allowed us to have this interaction, LtCol Cardenas,
who coordinated the knowledge acquisition sessions and

7



was a central expert, and the experts we worked with more
closely: Maj Allison, LtCol Alred, LtCol Cardenas, Maj
Cunico, and Maj Jackson. We are also grateful to the staff
of the Battle Command Battle Labs at Fort Leavenworth
for their assistance in running user experiments, especially
Capt Rasch and Col Duquette. The views and conclusions
contained in this article are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

References

[1] J. Blythe and Y. Gil. Planet: A shareable and reusable
ontology for representing plans. Technical report, Expect
internal report, 1999.

[2] J. Blythe and Y. Gil. A problem-solving method for plan
evaluation and critiquing. In Proc. Twelfth Knowledge Ac-
quisition for Knowledge-Based Systems Workshop, Banff,
Alberta, 1999.

[3] J. Blythe, Y. Gil, H. Chalupsky, and R. MacGregor. Sup-
porting translation among planning agents. In Submitted to
the Fifth International Conference on Artificial Intelligence
Planning Systems, 2000.

[4] J. Blythe and S. Ramachandran. Knowledge acquisition us-
ing and english-based method editor. In Proc. Twelfth Knowl-
edge Acquisition for Knowledge-Based Systems Workshop,
Banff, Alberta, 1999.

[5] G. Ferguson, J. Allen, and B. Miller. Trains-95: Towards
a mixed-initiative planning assistant. In B. Drabble, edi-
tor, Proc. Third International Conference on Artificial In-
telligence Planning Systems, University of Edinburgh, May
1996. AAAI Press.

[6] Y. Gil and E. Melz. Explicit representations of problem-
solving strategies to support knowledge acquisition. In Proc.
Thirteenth National Conference on Artificial Intelligence.
AAAI Press, 1996.

[7] Y. Gil and B. Swartout. Expect: Explicit representations
for flexible acquisition. In Proc. Ninth Knowledge Acqui-
sition for Knowledge-Based Systems Workshop, Banff, Al-
berta, 1995.

[8] Y. Gil and W. R. Swartout. Expect: A reflective architec-
ture for knowledge acquisition. In Proceedings of the 1994
Workshop of the ARPA-Rome Laboratory Knowledge-Based
Planning and Scheduling Initiative, Tucson, AZ, February
1994.

[9] R. MacGregor and R. Bates. Inside the LOOM description
classifier. SIGART Bulletin, 2(3):88–92, June 1991.

[10] K. Myers. Strategic advice for hierarchical planners. In
Proceedings of the International Conference on Knowledge
Representation, 1996.

[11] D. Thaler. Strategies to tasks, a framework for linking means
and ends. technical report, RAND Corporation, 1993.

[12] D. Todd. Strategies-to-tasks baseline for usaf planning. In-
ternal document, Strategic Planning Division, HQ United
States Air Force, 1994.

8


