A Problem-Solving Method for Plan Evaluation and Critiquing

Jim Blythe and Yolanda Gil

USC, Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292 USA
blythe@isi.edu, gil@isi.edu

Abstract

As intelligent systems become larger and work in increasingly more complex and knowledge
intensive environments, it becomes impractical to develop knowledge bases from scratch. A
practical alternative is to develop knowledge bases out of reusable components, either ontologies
or domain-independent problem solving methods. This paper describes a reusable knowledge
base of general principles about plan evaluation and critiquing. It includes ontologies to represent
plans and critiques, an ontology of evaluation criteria, and problem-solving knowledge about how
to evaluate plans with respect to those criteria. Currently, the evaluation criteria analyze various
aspects of the plan structure and its use of resources. We performed a study of three evaluation
and critiquing task domains, and found that our framework covers approximately 75 percent of
the critiquing criteria related to plan structure and resource use (and over 90 percent within
the framework’s declared scope). Our framework also enables a systematic approach to the
development of plan evaluation tools by following the organization of the criteria in the method.

1 Introduction

As intelligent systems tackle large-scale knowledge intensive tasks, it becomes impractical or even
impossible to develop knowledge bases from scratch. The cost of developing a large knowledge base
is high, and it would be useful to transfer as much of its contents as possible when building a new
system to perform a related task. Many researchers advocate the development of large, reusable
knowledge components, including ontologies (Neches et al., 1991), and Problem-Solving Methods
(PSMs) for tasks such as design and diagnosis (McDermott, 1988; Wielinga et al., 1992). These
components can be organized into libraries and can be combined together to develop the core of
new knowledge-based systems, which is then augmented with knowledge specific to the domain and
application at hand.

There are several benefits of reusable psMms. First, they support the initial stages of KBS design
by providing a systematic approach to eliciting knowledge from experts about the task and the
domain and by supporting a principled implementation of the evaluation and critiquing system.
Second, they support the development of systems in new domains by 1) reuse of ontologies and
problem solvers to implement parts of the new system and 2) enabling knowledge acquisition tools
to help users add task knowledge that is specific to the new domain. Third, they support knowledge
acquisition to populate the knowledge base based on the ontologies associated with the psMm that
specify the information required to do problem solving.

We are developing a domain-independent and reusable knowledge base that can be used to develop
plan evaluation and critiquing systems. The knowledge base is composed of ontologies and associ-
ated problem-solving knowledge to reason with them. Unlike other PSMs, our PSM is implemented
and has been used to develop a Course of Action Critiquer that reuses the ontologies and prob-
lem solving knowledge in the PSM. We implemented this PSM in the EXPECT framework (Gil &
Swartout, 1994), which provides a language to express problem-solving knowledge that is tightly

coupled with ontology representations. Our implementation follows the philosophy described in
(Gil & Melz, 1996) to represent the propose-and-revise PSM in EXPECT.

EXPECT’s Plan Evaluation psM is designed for analytical plan evaluation and plan critiquing tasks.
It is given an input plan that has been generated by a user, a system, or in mixed-initiative
mode. The input may include information about the initial world state assumed, about the desired
objectives, and about any constraints that the plan should comply with. The plan is analyzed with
respect to the set of principles embodied in the knowledge base. EXPECT’s Plan Evaluation psm
focuses on two types of evaluations: detecting ill-formed plan descriptions and the use of resources.
The psuM includes ontologies and problem-solving knowledge. The ontologies include an ontology of
dimensions for evaluation and types of critiques, and an ontology of resources and resource types.
In addition, there is a plan ontology that captures the assumptions made by the psm about the
plan representation. The problem-solving knowledge is represented in EXPECT methods, which
include methods that structure and control the execution of the critiques, methods that implement
critiques that are constant across domains, and methods that describe general principles that can
be customized to particular domains using EXPECT’s knowledge acquisition tools.

This work builds in part on research on planning and scheduling algorithms and on practical ex-
perience in evaluation in planning domains. We are drawing from past experience in building plan
evaluation systems in real-world domains, notably in military domains such as logistics transporta-
tion and air campaign planning but also in manufacturing. In these domains, the plan creation
process is mostly manual and as a result it is prone to errors that a plan evaluation and critiquing
tool can help detect and correct. A first group of evaluation criteria in our PSM is concerned
with plan structure. Generative planners such as sIPE, NOAH, and NONLIN (Wilkins, 1988; Sac-
erdoti, 1977; Tate, 1977) use critics that detect problems in the plans that they generate while
planning. These critics detect, for example, harmful interactions between goals and inadequate
resource assignments. Some of our evaluations are inspired by these critics. In addition, plans that
are manually created have other potential flaws that the plans generated by these tools do not have
by definition (e.g. an unnecessary step). Our PSM checks such potential flaws. Formal analyses of
partial-order and hierarchical planning algorithms define some desirable properties of plans, such
as justifiability and correctness (Kambhampati et al., 1995; Yang, 1990; Tate, 1996), that can be
checked by a plan evaluation and critiquing tool. The second group of evaluation criteria in our
method is resource use, an important dimension for plan evaluation in many domains and a central
component of scheduling systems and in some cases of generative planners (Smith & Lassila, 1994;
Wilkins, 1988). Theories and models of resources have been developed that characterize the nature
of resources (e.g., reusable, linear, local) so they can be analyzed accordingly to evaluate their use
(Smith et al., 1996). Other recurring principles for plan evaluation that can be generalized across
domains include assessment of risk, execution properties, assessment in adversarial situations, and
comparison of alternatives based on a battery of evaluations of the plan under different perspectives.

In the next section we present some general principles of plan evaluation that are useful across a
number of planning domains, and in the subsequent section describe the psm for plan evaluation
based on these principles. We then describe the ontologies that are associated with this psM,
including a plan ontology, a resource ontology, and an evaluation ontology. Next we present our
experiences customizing the psMm for three different plan evaluation domains. Finally we discuss
related work and present the conclusions of this work.

2 Capture of General principles

We define some domain-independent principles of plan evaluation that will structure the psm. These
are divided into two types, the first concerned with checking a plan’s structure and the elements of
its description, and the second concerned with its use of available resources.

2.1 Checking plan and action structure

The PsM contains evaluations concerned with debugging ill-formed plan descriptions. They detect
problems in the subcomponents that describe the plan. These subcomponents include the goals that
are achieved by the plan, the actions taken in a plan, their interdependency relations, parent/child
relations, and ordering constraints. Notice that in different domains the representation of a plan may
use only some of these components. For obvious reasons, these evaluations are usually considered
before other aspects of the plan are evaluated.

2.1.1 Statement structure: checking the description of an individual plan component

complete statements: checking that all the necessary information is present in a description (ex:
stating an action but not specifying an agent to achieve it, as required.)

clear statements: checking that descriptions are not vague or inappropriate (ex: stating “conduct
operations” is a vacuous specification of what is to be done.)

correct statements: checking that no inappropriate item (agent, object, action description, etc.)
are used as part of a description (ex: stating that an attack mission will be done with a refueling
aircraft such as a tanker).

coherent statements: checking that descriptions refer to something that exists and/or makes
sense given the world state (ex: stating that a company will perform its task in an area outside of
its assigned area of responsibility)

2.1.2 Interdependency links: checking the links among components

Links include decomposition links (in hierarchical plans), sequencing links that specify orderings,
and establishment links that indicate that a subplan relies on a previous subplan to achieve (or
establish) something.

correct parent/child link: checking an assertion that a subtask is art of a higher-level task.
Note that some parent/child links are analyzed when checking whether plans are unjustified or
incomplete (see below)

missing parent/child link: checking that every task accomplishes a higher-level task and is de-
composed into subtasks when it is not a primitive task.

correct causal link: checking that assertions that a condition needed for a task is achieved by a
previous task is true given the nature of both tasks.

missing causal link: checking that there are links between every task and the tasks that achieve
the conditions that are needed by it.

correct ordering link: checking that all orderings are consistent.

missing ordering links: checking that all necessary orderings and precedence relations are spec-

ified.

2.1.3 Plan structure problems: checking the global composition of the plan.

complete plan: checking that the plan achieves the given objectives and includes all the required
tasks.

clear plan: checking that the plan is clear, simple, and understandable.

correct plan: checking that the plan complies with given constraints and preferences (for example,
with rules of engagement or user preferences).

consistent plan: checking that the plan is consistent with respect to the state of the world assumed
(for example, that the plan does not assume that some assets are the location where they will be
used if the assets are initially assumed to be in a central location).

justified plan: One can check whether some part of the plan is unnecessary, because it does
not achieve given objectives or because the intended effects are already true of the world state or
achieved by another task, thus making the plan suboptimal. However, the requirement of a single
task to achieve a goal may be too strict in some domains where redundancy is desired, so the notion
is generalized to allow a varying weighted sum of tasks for a goal (see Figure 1). This check may be
as complex as a probabilistic analysis of goal achievement or as simple as counting the tasks that
contribute to a goal.

01~_5
02 —3 Goal
03— 2

FIGURE 1: Weighted links for threshold justifications on a step.

task reuse: Just as the justified plan check looks at the in-degree of nodes in the the structural
graph of the plan, so the task reuse check looks at their out-degree. In the two plan fragments if
Figure 2, the goals G1 and G2 are achieved by two separate steps in the first case and by one step
in the second. Which is preferable depends on the domain: the one-step case might be viewed as
economical or as placing the goals under too much jeopardy.

Gl
0l ——»G1

02 —»G2

03 <
G2
FIGURE 2: Reuse structures

Other structural evaluations may be specific to the domain at hand and not correspond to any of
the above categories. For example, checking that an objective is decomposed appropriately given
domain knowledge about what are correct decompositions.

2.2 Checking a plan’s use of resources

The Plan Evaluation PsM contains knowledge to evaluate the use of resources by a plan. Resource
use is central in planning domains because plans are built within given resource constraints. It is
useful to identify the types of objects in a domain that can be considered as resources and perform
an evaluation with respect to them. FEvaluating a plan with respect to its use of resources can

unveil aspects of the plan that are unfeasible because they incorrectly assume the availability of
some resource, and can also determine if the plan is using the given resources adequately. Note
that time can be and often is viewed as a resource.

Evaluating resource use can be broken down similarly to the structural checks on a plan:

Task-level resources: checking the use of resources for individual tasks in the plan (eg the
time taken by each task). The same components apply as for statement structure, for example
completeness means checking that necessary resources are identified

Interdependency links among resources: one task can be used to supply a needed resource
for another task. When this relation is explicit we can check correctness and completeness.

Plan-level resources: checking the use of resources across the entire plan (eg the time taken to
execute the whole plan).

Some evaluations detect problems in the use of resources (for example, a non-shareable resource
that cannot be used by two concurrent actions). Other evaluations do not point out problems but
rather generate an estimate of the use of resources in the plan that is interesting to report (for
example, “the total fuel consumption is 500 gallons”). The kinds of resources that are encountered
in plan evaluation are represented in a separate resource ontology, described in section 4.4.

3 Explicit Representations of PSMs in EXPECT

This section gives a short overview of how PSMs can be represented in EXPECT. (Gil & Melz,
1996) provide a more detailed account using propose-and-revise as an example. In EXPECT, both
factual knowledge and problem-solving knowledge are represented explicitly. Factual knowledge is
represented in LooM (MacGregor, 1991), a state-of-the-art knowledge representation system based
on description logic. Factual knowledge includes concepts, instances, and the relations among them.

Problem-solving knowledge is represented in a procedural-style language that was developed for
EES (Swartout et al., 1991), a predecessor of EXPECT. This language is tightly integrated with
the LooM representations. Subgoals that arise during problem solving are solved by methods. Fach
method description specifies: 1) the goal that the method can achieve, 2) the type of result that the
method returns, and 3) the method body that contains the procedure that must be followed in order
to achieve the method’s goal. A method body can contain nested expressions, including subgoal
expressions that need to be resolved by other methods; control expressions such as conditional
statements and some forms of iteration; and relational expressions to retrieve the fillers of a relation
over a concept. Some method bodies are calls to Lisp functions that are executed without further
subgoaling.

For example, Figure 3 shows an EXPECT method to estimate the amount of some linear resource
needed by a plan. The capability field describes this ability in a machine-readable form, and the
result-type field shows that the method will return a number. The method-body field finds the
amount of the resource used by each task in the plan, and adds those amounts (by definition of a
linear resource is one whose task requirements can be summed in this way).

(name estimate-linear-resource)
(capability (estimate
(obj (7f is (spec-of amount-used)))
(of (?r is (inst-of linear-resource)))
(needed-by (?p is (inst-of plan)))))
(result-type (inst-of number))
(method-body (add (obj (estimate
(obj amount-used)
(of (checked-resource 7r))
(needed-by (plan-tasks 7p))))))

FIGURE 3: Representing knowledge in EXPECT.
4 A Problem Solving Method for Plan Evaluation

The general principles of plan evaluation described earlier form the basis of our PSM. In some
frameworks, the planning ontology would be considered the input ontology and the evaluation
ontology would be called the output ontology. We do not make these distinctions explicitly in
EXPECT, since the system can analyze the problem solving methods and infer this information.
Furthermore, a given ontology may contain inputs, outputs, or terms internal to the PSM, and we
have not found a need to set strict boundaries in our KBs.

4.1 PLANET: An Ontology of Planning Knowledge

Descriptions of plans and their features are captured in PLANET, an ontology of planning knowl-
edge. PLANET is used as a knowledge component within our PSM, but goes beyond the needs
specific to plan evaluation. It was designed to be reused as an independent component, for example
we are using PLANET as a knowledge component within an ontology-based translation service
for planning agents. PLANET complements recent efforts on formalizing, organizing, and unify-
ing Al planning algorithms (Kambhampati et al., 1995; Tate, 1996; Yang, 1990; de Barros et al.,
1997) by focusing on the representation of plans, and adds a practical perspective in that it is
designed to accomodate a diverse range of real-world plans (including manually created ones). A
detailed description of PLANET can be found in (Blythe & Gil, 1999). A few interesting features of
PLANET may be worth mentioning. First, planning contexts that refer to domain information and
constraints that form the background of a planning problem are represented explicitly. Planning
problems, which supplement the context with information about the initial state of the world and
the goals, are represented explicitly and are accessible from the context. Alternative plans them-
selves are then accessible from each planning problem for which they are relevant. Second, PLANET
maintains an explicit distinction between external constraints, which are imposed on a context or
planning problem externally to a planning agent, and commitments which are constraints that the
planning agent elects to add as a partial specification of a plan (for example, a step ordering com-
mitment). Plans themselves are represented as a set of commitments in addition to the constraints
that specify the planning domain and problem.

Figure 4 shows a diagram of the major concepts and relations in the ontology. We describe here
the portion that is more relevant to the plan evaluation PSM. Plan task descriptions represent
the actions or operations that can be taken in the world state. These include templates and
instantiations of them, and can be abstract or specific. Al planning systems often refer to these
as operators or task decompositions. A plan task description models one or more actions in the
external world. A plan task is a subclass of plan task description and represents an instantiation

capability
plan-task- descrlptlon effedts

plan-refinements precondltlons
/ sub-fask ﬁ \
) i planning-level
feasible task-template

plan-task » plan-task-template human-readable

plan-commitments >

consistent descrl tion
rejected accomplishes P
complete ordering
o feasible
ustified tempordl goal-speC|f|cat|on — planning - level
commitments ﬁ
candidate-plan: ﬁ state-based-goal -spec
unexplored

desired-goals obj ective-based-goal-spec

planning-problem-context initial-stte e _ resourceneeded
nming-oroblems external constraints _ resour ce-requirement __amount >
planning-p > when-needed -~

FIGURE 4: An overview of the PLANET ontology.

of a task as it appearsin a plan. It can be a partial or full instantiation. A plan task templateis a
subclass of plan task description that denotes an action or set of actions that can be performed in
the world state. In some Al planners the two classes correspond to operator instances and operator
schemas respectively, and in others they are called tasks and task decomposition patterns.

Plan task descriptions have a set of preconditions, a set of effects, a capability, and can be de-
composed into a set of subtasks. Not all these properties need to be specified for a given task
description, and typically planners represent tasks differently depending on their approach to rea-
soning about action. The capability of a task or task template describes a goal for which the task
can be used. A precondition is a necessary condition for the task. If the task is executed, its
effects take place in the given world state. Tasks can be decomposed into subtasks that are also
task descriptions. Hierarchical task network planners use task decomposition or operator templates
(represented here as plan task templates) and instantiate them to generate a plan. Each template
includes a statement of the kind of goal it can achieve (represented here as a capability)and a
decomposition network into subtasks, each of which is matched against the task templates all the
way down to primitive templates (represented here as primitive plan task descriptions. Other
planners compose plans as an ordered set of primitive plan steps (often called operators, as in
sTrIPS and ucpoP (Weld, 1994)). Plan steps are specializations of primitive plan task descriptions
that must have some set of effects, since they are typically used in means-ends analysis planners.

A goal specification represents anything that gets accomplished by a plan, subplan or task. This
is used to represent both capabilities and effects of actions and tasks (i.e., they are both subtypes of
goal specification), as well as posted goals and objectives. Goals may be variabilized or instantiated.
State-based goal specifications are a subclass of goal specifications that typically represent goals
that refer to some predicate used to describe the state of the world, for example ‘achieve (at Jim
LAX)’, ‘deny (at Red-Brigade South-Pass)’ or ‘maintain (temperature Room5 30)’. Objective-
based goal specifications are a subclass of goal specifications that are typically stated as verb-
or action-based expressions, such as ‘transport brigadeb to Ryad’.

A plan represents a set of commitments to actions taken by an agent in order to achieve some
specified goals. We define the following subclasses of plans: superset A feasible plan P is one
for which there exists some plan that has a consistent superset of the commitments in P and will
successfully achieve the goals. A justified plan is a plan with a minimal set of commitments. A
consistent plan is one whose commitments are consistent with each other, with what is known

about the state and with the model of action. A complete plan is one that includes the tasks
necessary to achieve the goals to the required level of detail (this depends on the planning agent’s
concerns). These definitions are useful to describe properties of plans and to accomodate different
approaches that planners use. For example, we can represent that a hierarchical planner generates
a feasible plan at each planning level, while generating a complete plan only at the lowest level.
A partial-order planner, such as ucroP, would successively refine feasible plans (called candidate
plans) until finding a solution which is a complete plan. There is no requirement for a plan to be
justified or consistent in order for it to be represented in PLANET. This is important because we
can represent not only machine-generated plans but also human-generated plans, which are likely
to contain errors. Notice that plans can be represented as instances or classes, the ontology does
not commit to either and leaves the option open.

In searching or designing a plan, a number of choices typically need to be made to find or create a
solution. At a given choice point, several alternatives may be considered, and one (or more) chosen
as selected. Such choices are represented in PLANET as a type of commitment. Commitments can
be made in both plans and tasks. Plan commitments are a subclass of commitments on the plan
as a whole. Commitments may be in the form of actions at variously detailed levels of specification,
orderings among actions, a decision that a certain action will be used to establish a particular
condition and other requirements on a plan such as a cost profile. The tasks that will form part of the
plan are represented as a subset of the commitments made by the plan. Task commitments are a
subclass of commitments that affect individual tasks or pairs of tasks. An ordering commitment
is a relation between tasks such as (before A B). A temporal commitment is a commitment on
a task with respect to time, such as (before ?task ?time-stamp). Another kind of commitment is
the selection of a plan task description because it accomplishes a goal specification. This relation
records the intent of the planning agent for the task, and is used in PLANET to represent causal

links.

We have used PLANET to represent plans in three different domains: Air Campaign Planning (ACP),
Army courses of action (COA), and enemy workarounds to target damage (WA) (Blythe & Gil,
1999). Although all three are military domains, the plans are of a radically different nature in
each case. In two domains, the plans were built manually by users and needed to be represented
as given, i.e., containing potential flaws and often serious errors. In the ACP domain, plans are
hierarchically decomposed and have verb-based objectives. Information about causal links and task
decomposition templates is not provided. The COA domain has plans with a hierarchical flavor
that is not always explicitly represented in the plan. In the WA domain, plans were generated
automatically by an Al planner and are not hierarchical, consisting of a set of partially ordered
steps and causal information in terms of the enabling conditions and achieved effects of each step.

4.2 An Ontology of Evaluations

This ontology is used to represent the results of the evaluations and captures a wide range of
evaluation results, including but not limited to the evaluations that can be generated using our
PSM. Generally speaking, plan evaluations yield a wide range of conceptually different results.
Sometimes, an evaluation is made to derive a property of the plan that is not explicitly stated
initially, such as how many units of a certain resource are used in the plan. These evaluations
range from simple inferences to very detailed analysis. Other times, an evaluation is done through
a simulation of the execution of the plan. Another aspect of what this kind of ontology needs
to capture is that there may be more than one value for a given evaluation criterion, since the
evaluation system may have more than one algorithm at its disposal for providing an estimate for

Evaluation-structure % threspect-to . . eneralonm

\ \ '
severity ub-c

»Obj ect-property

sub-structure critari

AnaIySIs with-respect-to

Stated-property ~ Deduced-property

OBJ plan/goal
RIT cost, fuel-cost
NORM: 5miles/gallon

PROP: fuel-
consumption

EST1: 150 gallons,
(gross estimate)

Evaluation Estlmate value EST2: 162 gallons,
(simulation)
~_ —>Normal value urce

NORMAL VALUE:

Value-comparison 100 gallons

confldence quility method used VAL UE COMPARED:
Constructive Evaluation— 32

NORM: | 5%

suggested-corrective-actions
norm

L DEGREE: serious
Critique__degree-of-violation ,,

FIGURE 5: An overview of the ontology of evaluations.

that value. For example, a system may be able to provide a quick initial estimate of fuel usage
based on back-of-the-envelope calculations, as well as a finer estimate based on a detailed slower

simulation of the plan execution.

Figure 5 shows an overview of the main entities in this ontology, together with an example on
the right-hand side. In this ontology, an evaluation structure indicates the criterion that the
evaluation is addressing (e.g., fuel cost), the general norm that the plan is expected to follow
(e.g., 5 miles per gallon), and the severity or relative importance of this criterion. Notice that the
criteria can be grouped, so the fuel consumption evaluation can be a sub-structure of the cost.
An analysis is done of several properties of the plan, for example the actual fuel consumption. The
overall result may be derived from several of these analyses, for example fuel cost can be derived
from an estimate of fuel consumption when vehicles have no load combined with an estimate of the
expected load to be moved. In some domains, this analysis may be sufficient as an evaluation of
the plan (Gil & Swartout, 1994). Often times, the estimated value is compared to the norm, and
the result is what we call here an evaluation properly. For instance, we might expect some plan
to use 100 gallons of fuel and find that it actually uses 150 gallons, giving a comparison ratio of
3:2. A constructive evaluation would go one step further and include suggested corrective
actions that can be taken to modify the plan so that the estimate comes out closer to what may
be desirable. Sometimes in evaluating a plan we want to be alerted if some evaluation has exceeded
certain limits from its normal value, and this is expressed in this ontology by critique, which is a
kind of evaluation. This entity has a norm, that typically indicates a range around the normal value
that is acceptable, and a degree of violation, that records by how much, if at all, the critique
is violated. For example, we may state that fuel usage may deviate from the normal amount by
15levels of deviation represent a violation. Critiques may or may not be constructive evaluations.

4.3 An Ontology of Checks on Plan Structure

The different kinds of checks on plan structure exist as entities in this ontology, with a class hierarchy
that follows the generic kinds of evaluation, as shown in Figure 6. Within the PsMm there are generic
sub-methods that are associated to each class. The sub-methods described earlier perform the

evaluation of a plan based on any critique that is an instance of the class.
) complete statement
Entity-level
clear statement
causal link correct causal link
Link < . .
missing causal link

Constraint
check check
Plan complete plan
Crlthue structure
reusable resource
consumable resource
Resource
check

tdiscrete resource
capacitated resource
FIGURE 6: The class hierarchy of plan checks is based on the generic kinds of evaluation from the previous section.

Reusable sub-methods in the PsM are attached to each critique which can be specialized for a new domain by creating
instances and/or subclasses of this ontology. For reasons of space, only a subset of the classes is shown here.

4.4 An Ontology of Resources

This ontology builds on the OZONE ontology (Smith & Becker, 1997), an ontology of resources
that was developed for a scheduling tool. We identified several distinct patterns of resource usage
that are used to build general resource checking mechanisms. A capacitated resource can exist in
different quantities, and a numeric check of the amount required against the amount available is
appropriate. For example to move a ship over some distance one must have a certain amount of
fuel. A discrete resource is simply present or absent and no numeric check is made. For example a
key is needed to open a door, but ten keys are usually no better than one.

The standard notions of consumable and reusable resources have been generalized to improve their
applicability. Typically a consumable resource is no longer available after it has been used by some
task (for example fuel) and a reusable resource becomes available again after the task using it has
completed (for example a spanner). We generalize these two types of resource by considering which
pairs of tasks could both use the same resource. In the case of fuel there are no such pairs, while
the reusability of the spanner is represented by all pairs of tasks that do not overlap in time. This
more precise representation allows us to capture other important cases with precise semantics. For
example some resources, like information, are universally reusable in the sense that any pair of tasks
can use the resource once it is acquired. Other resources, like ship berths, are partially reusable in
the sense that for two tasks to use the same resource, they must not only have no temporal overlap
but also must be spatially co-located.

4.5 CHECKERS: A Suite of Fine-Grained Plan Evaluation Sub-Methods

Problem-solving knowledge is represented explicitly as described in Section 3. Currently, the plan
evaluation PSM contains 35 sub-methods. We include here a few examples that illustrate the range

10

and variety of the sub-methods in this PSM.

Some sub-methods do specific structural checks. For example, this is a method to check that there
are parent links for all subtasks within the plan:

(capability (evaluate (obj (7t is (inst-of plan-task)))

(with-respect-to (missing-parent-link))))
(result-type (inst-of boolean))
(method-body (determine-whether-there-are (obj (plan-task-parents 7t))))

EXPECT achieves the sub-goal in this method body by using one of its general-purpose primitive
methods that takes a set of objects and determines whether it is empty. Notice that this method
applies directly to plans in any domains, i.e., there is no need for the user to add domain-specific
knowledge in order for this evaluation to be done with this sub-method.

Other sub-methods do checks on resources. For example, this is a method that evaluates the use of
resources that are both consumable and capacitated by checking whether the amount used in the
plan is greater than the amount available:

(capability (evaluate (obj (7p is (inst-of plan)))
(with-respect-to (?r is (inst-of (and resource consumable-resource
capacitated-resource))))))
(result-type (inst-of boolean))
(method-body (is-greater-or-equal
(obj (estimate (obj amount-used) (of 7r) (by 7p)))
(than (estimate (obj amount-available) (of 7r) (for 7p)))))

Notice that this method applies directly to resources in any domains without being modified. The
only information that a user needs to specify in order for the method to work is to place the resources
in the domain within the classes in the resource ontology (i.e., whether it is consumable, capacitated,
etc.) The user needs to also add two pieces of domain-specific problem-solving knowledge: how to
estimate the amount used by a task and how to find out how much is available for that task. We
will show in the next section how this is done.

Finally, there is a group of sub-methods that captures the top-level structure of the PSM by
organizing the subgoals to evaluate the plan with respect to specific criteria. For example, the
following sub-method states that in order to evaluate a plan, one evaluates a plan with respect to
each of the evaluation criteria as defined for the particular application domain:

(capability (evaluate (obj (7p is (inst-of plan)))
(with-respect-to (7a is (inst-of evaluation-structure)))))
(result-type (inst-of evaluation-structure))
(method-body (combine (obj (evaluate (obj 7p)
(with-respect-to (sub-structure 7a))))
(with (evaluate (obj 7p)
(with-respect-to (factor 7a))))

5 Developing Domain-Specific Plan Evaluation Tools with the
PSM

This section illustrates how the psM can be specialized in a new application domain. The user
typically starts by defining a new evaluation in a domain by defining the criterion of the evaluation
as a subclass of some existing criterion class. When this new class is defined, it allows more specific
sub-methods to be created for part or all of the evaluation. Through these the user can complete or

11

specialize parts of the process of performing the evaluation. In some cases, the generic sub-methods
are sufficient and no new sub-methods need to be added to complete the evaluation.

As an example, we create a new critique in a transportation planning domain. Plans in this domain
must move a given payload, distributed across a number of cities, to some destination by air or sea.
The critique we add measures “sealift”, which is the capacity by weight available for transportation
by sea — in other words the sum of the load capacity of all available transport ships. A transport
plan will contain tasks moving packages by sea, where a package is a unit of payload at a seaport.
For each package we will ensure that there is enough sealift capacity at that seaport.

We create the class sealift-capacity as a sub-class of capacitated-resource and sealift-available
as a class of critique that checks this resource. This makes problem-solving knowledge available
in the PsM to compare for any task an amount of sealift-capacity required with an amount
available. Sub-methods are also available to report violations of the new critique by gathering the
set of tasks for which demand exceeds supply. We add two new sub-methods, as shown in Figure 7,
for computing how much sealift-capacity a task needs and how much is available. The amount
needed is simply the weight of the package to be moved, and the amount available is the sum of
the load capacities of the ships at the seaport where the package is located. By using the generic
sub-methods of the psMm, we can create an application that critiques a plan and warns a planner
of any violations with only these two new sub-methods. Six generic sub-methods from the psm
are used to create the application, by finding relevant critiques, checking individual task or global
properties as appropriate, collecting problems raised by the critiques and communicating them to
the user.

— | 7 — -
Goalcritique a plan wrt L Goal: estimate sealift
a capacitated resource s equired by a task
|
|
|

Method: for groups of tasks, Method. find the weight
compare the amount available f the task package.
with the amount required.

Method: critique plan Method: sum capacity of
wrt all known critiques all ships at task seaport.

GOé_l/Z estimate sealift
Goal.critique a plan available to a task

|

|
Goalfind groups of tasks that l
share a capacitated resource | |
|

|

|

|

Method....

Generic methods] Specific methods

FIGURE 7: Generic and specific methods used to implement the critiqe sealift-available in the transportation
planning domain.

As it stands, the critique checks the sealift-capacity for individual tasks. We would like to extend
it to check the combined demand from tasks that leave the same seaport at the same time, to make
sure there is enough load capacity for all of them. This can be achieved by specializing the default
behaviour to determine how reusable a resource is, which assumes that the resource is completely
reusable, i.e. that no pair of tasks impedes each other’s use of the resource. We specialize this sub-
method, as shown in Figure 8, to say that two tasks must share the same resource if they leave the
same seaport on the same day. Now our critiquer both checks the sealift-capacity used per tasks
and also checks the daily useage at each seaport. It does this by finding groups of tasks that must

12

share the same capacitated resource and summing their demand, using two generic sub-methods
that are not shown.

Goal-determine if two tasks must
share the same sealift-capacity

Method:Do the tasks leave on the
same day from the same seaport?

FIGURE 8: A method to determine whether two tasks must share the same pool of sealift-capacity

In this section we saw how the psM provides an infrastructure for performing an evaluation based
on a subclass of a partially reusable capacitated resource. Generic sub-methods also exist for the
other evaluation criteria in the library. EXPECT’s KA capabilities can be brought to bear on the
process by prompting the user for missing knowledge, both problem-solving knowledge and domain
knowledge. For instance if the problem solver is run after defining sealift-capacity and sealift-
available but nothing else, EXPECT’s analyzer will detect the subgoals that it is unable to solve
and ask the user to supply them, allowing the appropriate methods to be created by analogy from
already existing ones. Also, once the method in Figure 8 is added, EXPECT will check all the tasks it
knows about to see if it knows the time and seaport they leave from, and bring missing information
to the user’s attention.

6 Experiences with the evaluation PSM

The section shows the results of various analyses that we performed on three different plan evalua-
tion task domains. In the COA domain, the plan is an Army Course of Action at the Division level
and is manually developed. The evaluation criteria range from simple structural checks (e.g., a task
has no stated purpose) to complex ones that require sophisticated tactical and spatial reasoning
(for example, the COA does not focus combat power at the decisive point of battle.) Our starting
point was a reference document (Jones, 1998) that published the results from extensive interviews
with domain experts describing a total of 62 evaluation criteria.! In the air-campaign planning
(ACP) domain, users start with high-level objectives and decompose them into subobjectives using
an editing tool. Evaluation criteria were gathered in knowledge elicitation sessions with air force
personnel. The third domain critiques military transportation plans for crisis situations.

6.1 Coverage

To test the coverage of the evaluation criteria contained in the PsM, we analyzed the evaluation and
critiquing criteria that had been suggested by domain experts in each domain to determine which
ones could be implemented as specializations of the evaluation criteria in the psMm. The results are
shown in Table 1.

The results are very encouraging: around 75% of the criteria in these domains were special cases
of the general criteria that were defined for the psMm. If we restrict attention to criteria related to
statement, link and plan structure and resources, coverage is 95%. In the COA domain, 44 out of the
62 criteria could be well described as specializations of the domain-independent evaluation criteria
in the PsM described earlier. Of the remaining 18, 11 are concerned with adversarial planning

'Some of the original criteria were split to ensure they are all of the same granularity.

13

Type of evaluation | COA | ACP | TRANSP |
Statement Structure complete statement 20
clear statement

correct statement
coherent statement

Interdependency links correct causal link
missing causal link
correct parent/child link
missing parent/child link
correct sequence link
missing sequence link

Plan Structure justified plan
step reuse
complete plan
clear plan
correct plan
consistent plan

Use of resources task-level resources
resource links

WO OO N OO OOO O RSN
OO N0 O ON OO NSO ORI O W
[R eniien) ool e e B e B e B an) e B an B ao i an B oo B oo § [en B e B o i an}

—_

plan-level resources

W
o~
(3]
o
—
o

Criteria covered

—_
[oe]
o
—_

Criteria not covered

=]
(]
V]
(]
—_
w

Total criteria

TABLE 1: Domain-independent evaluations in the PsM and the number of evaluations that instantiate them in three
different task domains.

(analyzing risk from the enemy or the use of deception in the coa) and 5 are concerned with
spatial reasoning. Both of these topics are currently beyond the scope of the psMm. The remaining
2 were criteria that we think perform some useful abstraction over the plan that users find useful
to look at in this particular domain, and do not seem to generalize or correspond to any general
principles that could be captured in the method. All the critiques in the ACP domain were covered.
In the Transportation domain, there was one evaluation that was not covered by the method and
that seemed to also express an abstraction that users find useful in this domain but that does not
correspond to any general principles that could be included in our pPsum.

6.2 Systematic Design of Critiques

The framework of evaluation criteria defined in the psMm provides a structure that can be used to
design a plan evaluation tool in a new domain. The structure can be used as the basis to interview
experts by going systematically through each evaluation criterion of the method and asking the
domain experts whether it applies to the domain. If a criterion applies, then the general-purpose
methods and ontologies are useful to extract the domain-specific knowledge that complements the
general-purpose principles captured by the method.

The evaluation psM can also be used to evaluate the completeness of the criteria used in a plan
evaluation tool that is under development, as is the case in our three domains. This allows users to
calibrate the results of plan evaluation tools, and increase their confidence on plans that have have
been checked for tools that are pretty thorough and complete.

Table 1 shows that none of the three cases include all the criteria that our PsM suggests. In the COA
domain, for example, a large number of criteria (20) are concerned with checking the completeness
of individual statements of the COA. This concentration of evaluation types suggests that more

14

evaluations of other types might be useful. For example, checking that the operations in the plan
are adequately sequenced, or checking that there are appropriate resources used by each individual
operation. In the ACP domain, an interesting thing that we realized is that the evaluation criteria
were gathered in two separate knowledge elicitation sessions. One was with high-level planning
experts that design the overall air campaign and one was with logistics experts that make sure that
they can provide the resources to support the operations. The criteria gathered from high-level
planning experts were uniformly spread among the categories in our framework while the criteria
gathered from logistics experts were heavily concentrated in criteria based on individual objective
statements. This is not surprising, since the logistician’s job is to guarantee the feasibility of the
air campaign plan for execution rather than to consider the plan’s overall structure or its ability to
achieve the desired goals. It is interesting to point out that there was no need in this domain for the
critiquer to check for clear statements, because it turns out that when we designed this application
we extended the plan editor so that it would prevent users to specify unclear statements in the first
place.

6.3 Supporting the Acquisition of Domain-Specific Knowledge

With coverage of new criteria around 75% in complex domains, the PsM should reduce the amount
of effort to develop a new plan evaluation or critiquing tool by reuse and adaptation of its ontologies
and methods. As we described in the previous section, a knowledge acquisition tool can use the
PSM to guide users to add the domain-specific knowledge needed. We are presently using the psm
to design a critiquing tool that can be extended in this way. An interesting evaluation to conduct
in this regard is to estimate how much effort is saved when the PsM is used to support users in
creating the plan evaluation tool.

6.4 Reuse

We are using this PSM to develop a plan evaluation tool in a new application domain to critique
Army Courses of Action (COAs). Our preliminary results show that each critique added can be
modelled by the PSM, and of the 52 chunks of domain-specific problem-solving knowledge used,
half (26) are new to the domain and half (26) are generic. Of the reused generic chunks, 11 come
from the PSM and 15 are utility knowledge, such as arithmetic.

7 Discussion

Comprehensive ontology: A distinguishing feature of EXPECT that is not present in other
frameworks is that we represent terms and objects that capture useful notions related to problem
solving but are not data being consumed or produced by the method. For example, a problem-
solving task such as "estimate the duration of a plan” would be represented in most other approaches
as a predicate, perhaps ”(estimate-duration ?plan)”. In EXPECT this would be modeled by defining
"estimate”, "duration”, and "plan” individually, and then the goal would be stated as ”(estimate
(obj (spec-of duration)) (of ?p is (instance-of plan)))”. The shorter predicate representation con-
founds the type of task (estimate), a qualification of it (it is a duration estimation) and how this
task description relates to the actual data being passed to the method (the plan). This knowledge is
explicitly captured in EXPECT. All of these individual terms end up represented in the knowledge

15

bases and ontologies, and are referenced in the problem-solving methods. As a result, the ontologies
that EXPECT uses associated with a PSM tend to capture explicitly more information about the
problem-solving activity. For more details, see (Swartout & Gil, 1995).

Explicit constraints: The ontological definitions of the terms used in methods are used by EX-
PECT during problem solving. For example, if an ordered-set-of-numbers is a term defined in the
Loom ontology as a set composed of numbers and its definition indicates which sorting function
to use, then EXPECT would only use a method to add an ordered-set-of-numbers for sets that
have the properties indicated in the definition. In effect, Loom is providing a language to state
constraints between different inputs and outputs to the individual methods.

PSM code compilation: EXPECT generates automatically the code for the overall, larger PSM
for plan evaluation when given on a generic top-level task, in this case ”(evaluate (instance-of plan))”
(see (Swartout & Gil, 1995)). This is done through a kind of partial evaluation that includes goal
reformulation and incorporates relevant ontological knowledge. This creates a variabilized problem-
solving tree that can be analyzed by EXPECT’s KA tools to determine what information is needed
for the PSM (Gil & Melz, 1996). In addition, executable code for the PSM (e.g., Lisp code) can
be generated by walking the problem-solving tree. The resulting piece of code can be executed
independently from the EXPECT framework, and we often use this capability to support efficient
problem execution.

Knowledge representation continuum: When the PSM is extended with domain-specific knowl-
edge, domain-specific ontologies and problem-solving knowledge are added, using the same kind
of approach followed for domain-independent knowledge. In EXPECT, both factual and problem-
solving knowledge can be domain dependent or domain independent. There is a continuum between
the representation of domain-dependent and domain-independent factual knowledge in EXPECT.
They are represented in the same language, yet they can be defined and maintained separately.
Domain-specific definitions can be subclasses of domain-independent definitions, inheriting general
constraints and properties. For more details, see (Gil & Melz, 1996).

Knowledge roles: The method shown above that describes the use of consumable capacitated
resources brings up an interesting issue with respect to the roles that domain-specific knowledge
plays in a PSM. Typically, knowledge roles in a PSM are mapped to domain objects, such as a
constraint or a fix. Here, the domain-specific knowledge to be added is a sub-method. In EXPECT,
knowledge roles can be filled with domain-specific problem-solving knowledge, which we believe is a
unique feature of our approach.

8 Related Work

There is a component for assessment and evaluation as part of the CommonKADS library (Breuker
& de Velde, 1994). The assessment and evaluation strategies are not implemented, but instead are
intended to provide a methodology to design systems to assess and evaluate any kind of object.
Our psM is tailored to the evaluation of plans, and it has been implemented. Our psM draws from
the CommonKADS work in terms of the output ontology, making important distinctions between
creating abstractions, evaluating with respect to a normal value, and critiquing with respect to a
norm or threshold. Related work on problem-solving methods for plan generation (Valente et al.,
1998; de Barros et al., 1997)analyzes Al planning algorithms (or planning methods) and identifies
the typical knowledge roles that characterize the domain knowledge used by these planning methods.
This study makes an interesting distinction between static and dynamic roles. Static roles are filled

16

by knowledge that is constant for the given domain, for example the planning task templates are
considered static plan composition knowledge. Plans are dynamic knowledge roles that consist of
plan steps, ordering constraints, auxiliary constraints (which group temporal constraints and causal
links), and variable binding constraints. It is easy to see the connection with the various roles of
the class plan in PLANET. Goals are also considered dynamic roles, and can be either conditions
or actions to be accomplished. Thus, they map directly to PLANET’s goal specifications. The main
knowledge roles in this study map directly to classes in PLANET. PLANET adds many more relations
between the roles and contains many more classes and axioms. PLANET was also designed from
the perspective of planning environments where plans are manually created (instead of representing
only plans of Al planning systems), and as a result can also represent the errors and flaws that
these plans often contain. It would be useful to add the static vs dynamic distinctions from this
study to PLANET.

There has been relatively little work on machine-aided evaluation of plans compared with the
amount of work on generation. Pérez and Carbonell designed a plan generation system to produce
plans of high quality (Pérez & Carbonell, 1994). They divided quality measures into three groups:
plan execution cost, plan robustness or its ability to respond well to changing or uncertain condi-
tions, and other factors. Of these, execution cost was modelled in the greatest detail. This was
described as the sum of the execution costs of individual operators, and thus could be modelled in
our PSM as a linear consumable capacitated resource.

In PLANET we have drawn from previous work on languages to represent plans and planning knowl-
edge (Ghallab et al., 1998; Wilkins & Myers, 1995; Kambhampati et al., 1995; Tate, 1996; Yang,
1990). These languages are often constrained by the reasoning capabilities that are provided by Al
planning systems. PLANET is an ontology, and as such does not make specific commitments about
the language in which various items are expressed. The planning knowledge represented in these
languages can be mapped into PLANET. PLANET also accomodates plans that are not created by
AT planning systems, and provides a representation for the context of the planning problems that
are given to these systems.

9 Conclusions

We are developing a reusable, general-purpose psM for plan evaluation and critiquing. The Plan
Evaluation psM captures domain-independent knowledge of general principles to evaluate plans from
two perspectives: plan structure and resource use. In a study of plan evaluation criteria used in
three real-world domains, we estimate that the evaluation criteria included in the PsM cover roughly
75 % of the criteria, and around 95 % of those criteria related to plan structure and resources. The
benefits of using a reusable psM are in knowledge acquisition and knowledge reuse. The PsM can
guide interviews with domain experts by systematically following its evaluation criteria. It can also
be useful to assess the completeness of a plan evaluation tool and raise the confidence of a user
in the plan being evaluated. Since domain-dependent knowledge for plan evaluation changes, plan
evaluation tools need to be customizable and adaptable by users. Tools are needed that can acquire
this type of knowledge, a central reason for the use of plan evaluation tasks in the last few years for
knowledge acquisition work within the EXPECT framework (Swartout & Gil, 1996). EXPECT’s KA
tools use the PsM to guide the user through the process of creating a new critique or modifying an
existing one because of the explicit representation of critique classes.

We would like to extend our psM to include additional perspectives to evaluate a plan. We plan to

17

analyze the adversarial planning and spatial reasoning critiques that we found in the COA domain
and extend our PSM to cover these areas. Other important criteria to evaluate plans include balance,
parsimony, robustness, adequacy for execution, and plan understandability. In our experience, they
are either hard to pin down and formalize or their evaluation is very specific to the domain. In
either case we have found it hard to extract principles that we could incorporate in a general-purpose
and reusable psM. We continue to study and explore plan evaluation issues so we can make our
evaluation PsM and associated knowledge acquisition capabilities more comprehensive and useful.

Acknowledgments

We thank all the members of the Expect project, including Andre Valente, Jihie Kim, Marcelo
Tallis, Bill Swartout and Surya Ramachandran for many useful discussions about this work. We
gratefully acknowledge the support of DARPA with contract DABT63-95-C-0059 as part of the
DARPA/Rome Laboratory Planning Initiative, and with grant F30602-97-1-0195 as part of the
DARPA High Performance Knowledge Bases Program.

Blythe, J. & Gil, Y. (1999). Planet: A shareable and reusable ontology for representing plans. Technical
report, Expect internal report.

Breuker, J. & de Velde, W. V., (Eds.) (1994). CommonKADS Library for Erpertise Modelling. TOS Press.

de Barros, L. N., Hendler, J., & Benjamins, V. (1997). AT planning versus manufacturing-operation planning:
A case study. In Proc. 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan. Morgan
Kaufmann.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., & Wilkins,
D. (1998). Pddl — the planning domain definition language. Technical report. Available at
http://www.cs.yale.edu/pub/mcdermott /software/pddl.tar.gz.

Gil, Y. & Melz, E. (1996). Explicit representations of problem-solving strategies to support knowledge
acquisition. In Proc. Thirteenth National Conference on Artificial Intelligence. AAAT Press.

Gil, Y. & Swartout, W. R. (1994). Expect: A reflective architecture for knowledge acquisition. In Proceedings
of the 1994 Workshop of the ARPA-Rome Laboratory Knowledge-Based Planning and Scheduling Initiative,
Tucson, AZ.

Jones, E. (1998). Hpkb course of action challenge problem specification. Technical report, Alphatech, Inc.,
Burlington, MA.

Kambhampati, S., Knoblock, C., & Yang, Q. (1995). Planing as refinement search: A unified framework for
evaluating design tradeoffs in partial-order planning. Artificial Intelligence, 76:167-238.

MacGregor, R. M. (1991). The Evolving Technology of Classification-Based Knowledge Representation Sys-
tems. San Mateo, CA, Morgan Kaufmann.

McDermott, J. (1988). Preliminary Steps Towards a Tazonomy of Problem-Solving Methods. Kluwer Aca-
demic Publishers.

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., & Swartout, W. (1991). Enabling
technology for knowledge sharing. AI Magazine, pages 36-56.

Pérez, M. A. & Carbonell, J. (1994). Control knowledge to improve plan quality. In Hammond, K., (Ed.),
Proc. Second International Conference on Artificial Intelligence Planning Systems, pages 323-328, University
of Chicago, Illinois. AAAI Press.

Sacerdoti, E. (1977). A Structure for Plans and Behavior. New York, Elsevier.
Smith, S. F. & Becker, M. (1997). An ontology for constructing scheduling systems. In AAAI Spring

18

Symposium on Ontological Engineering, Stanford University.

Smith, S. F. & Lassila, O. (1994). Toward the development of mixed-initiative scheduling systems. In
Proceedings ARPA-Rome Laboratory Planning Initiative Workshop, Tucson, AZ.

Smith, S. F., Lassila, O., & Becker, M. (1996). Configurable, mixed-initiative systems for planning and
scheduling. In Tate, A., (Ed.), Advanced Planning Technology, Edinburgh, UK.

Swartout, W. R. & Gil, Y. (1995). Expect: Explicit representations for flexible acquisition. In Proc. Ninth
Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Alberta.

Swartout, W. R. & Gil, Y. (1996). Expect: A user-centered environment for the development and adaptation
of knowledge-based planning aids. In Tate, A., (Ed.), Advanced Planning Technology, Edinburgh, UK.

Swartout, W. R., Paris, C. L., & Moore, J. D. (1991). Design for explainable expert systems. IEEE Erpert,
6(3):58-64.

Tate, A. (1977). Generating project networks. In International Joint Conference on Artificial Intelligence.

Tate, A. (1996). Representing plans as a set of constraints — the ji-n-ova; model. In Drabble, B., (Ed.),
Proc. Third International Conference on Artificial Intelligence Planning Systems, University of Edinburgh.
AAAT Press. Available as Pointer.

Valente, A., Benjamins, R., & de Barros, L. N. (1998). A library of system-derived problem-solving methods
for planning. International Journal of Human-Computer Studies, 48:417-447.

Weld, D. (1994). A gentle introduction to least-commitment planning. Al Magazine.

Wielinga, B. J., Schreiber, A. T., & Breuker, A. (1992). Kads: A modelling approach to knowledge acquisi-
tion. Knowledge Acquisition, 4(1):5-54.

Wilkins, D. E. (1988). Practical Planning: Ertending the Classical AI Planning Paradigm. Morgan Kauf-

mann.

Wilkins, D. E. & Myers, K. L. (1995). A common knowledge representation for plan generation and reactive
execution. Journal of Logic and Computation, 5(6):731-761.

Yang, Q. (1990). Formalizing planning knowledge for hierarchical planning. Computational Intelligence,
6(1):12-24.

19

