L ear ning Efficient Rules by Maintaining the Explanation Structure

Jihie Kim and Paul S. Rosenbloom
Information Sciences Ingtitute and Computer Science Department
University of Southern California
4676 Admiralty Way
Marinadel Rey, CA 90292, U.S.A.
jihie@isi.edu, rosenbloom@isi.edu

Abstract

Many learning systems suffer from the utility prob-
lem; that is, that time after learning is greater than
time before learning. Discovering how to assure that
learned knowledge will in fact speed up system per-
formance has been a focus of research in explanation-
based learning (EBL). One way to analyze the utility
problem is by examining the differences between the
match process (match search) of the learned rule and
the problem-solving process from which it is learned.
Prior work along these lines examined one such differ-
ence. It showed that if the search-control knowledge
used during problem solving is not maintained in the
match process for learned rules, then learning can en-
gender a slowdown; but that this slowdown could be
eliminated if the match is constrained by the origi-
nal search-control knowledge. This article examinesa
second difference — when the structure of the problem
solving differs from the structure of the match process
for the learned rules, time after learning can be greater
than time before learning. This article also shows that
this slowdown can be eliminated by making the learn-
ing mechanism sensitive to the problem-solving struc-
ture; i.e., by reflecting such structure in the match of
the learned rule.

Introduction

Efficiency isa major concern for all problem solving sys-
tems. One way of achieving efficiency is the applica
tion of learning techniques to speed up problem solv-
ing. Explanation-based learning (EBL)(Mitchell, Keller, &
Kedar-Cabelli 1986; DeJong & Mooney 1986) can improve
performance by acquiring new search-control rules'. Given
its four informational components — the goal concept, the
training example, the domain theory, and the operationdity
criterion — EBL generates anew search control rulethat is
intended to reduce the search required in subsequent prob-
lems. Unfortunately, EBL suffers from the utility problem,
so that the cost of using learned rules often overwhelms
their benefit.

Research on the utility problem can be divided up into

LEBL can also be usedto acquire other typesof structures, such
as macro-operators, but we focus on search-control rules here.

two key issues. The first issue is the expensive chunk 2
problem(Tambe 1991), inwhichindividua learned rulesare
S0 expensive to match that the system suffers aslow down
from learning (Minton 1988; Tambe 1991; Etzioni 1990;
Shell & Carbonell 1991; Subramanian & Feldman 1990).
The second issue is the average growth effect (Doorenbos,
Tambe, & Newell 1992), in which the interactions across
the rules slow down the system, even if none of the rules
individually are al that expensive. Recent work on the
average growth effect has shown that it is possibleto learn
over onemillionruleswhiletill allowing their efficient use
(Doorenbos, Tambe, & Newell 1992; Doorenbos 1993). In
this article we focus on the expensive chunk problem.
Previouswork on theexpensive chunk problem hasinves-
tigated how to produce cheaper rules (Prieditis & Mostow
1987; Minton 1988; Shell & Carbonell 1991; Shavlik 1990;
Etzioni 1990) and how to filter out expensiverules (Minton
1988; Greiner & Jurisica 1992; Gratch & Deong 1992;
Markovitch & Scott 1993). However, none of these ap-
proaches can generaly guarantee that the cost of using
the learned rules will always be bounded by the cost of
the problem solving episode from which they are learned.
That is, the cost of a learned rule can be greater than
the cost of solving the problem with the original set of
rules. There has been developed a technique for restrict-
ing the expressiveness of the rules to bound the match
cost of the rules (Tambe 1991). However, the restriction
reduces the expressibility of the rules, requiring a large
number of rules to encode tasks. Also, the learned rules
may become very specific. One way of finding a solution
which can guarantee cost boundedness without such a re-
striction isto investigate the differences between the match
process (i.e., the search performed during match®) of the
learned rule and the problem-solving process from which it
islearned. By analyzing the differences, we can identify
a set of sources which can make the output rule expen-
sive. Prior work on thistopic has examined one such differ-
ence: inchunking (and other EBL systemswhich usesearch
control in problem solving), eliminating search control in
learning can increase the cost of the learned rules (Kim &

2Chunk meansany learned rule. Thisis ageneralization of the
term used in the Soar system.
SWheat is referred to as k-search in (Tambe 1991).

Figure1: Anexample of Soar/EBL process.

of preferences, and creation of working memory e ements
(WMES) underliesthe problemsolving. Intheremainder of
thisarticle, when we talk about the cost of problem solving,
we will be referring to the match cost of therules that fired
plus the cost of making decisions.*

To creste rules, Soar maintains an instantiated trace of
the rules. The set of instantiations connected to the goal
achievement becomes the proof tree (or explanation) for
Soar/EBL. Theinstantiationsinthe explanation are replaced
by rules which have unique names for the variables across
therules. Thisnew structureis called theexplanation struc-
ture. A regression algorithm (our algorithmisinspired by
the EGGS generalization agorithm (Mooney & Bennett
1986)) is applied to thisexplanation structure. A set of sub-
gtitutions is computed by unifying each connected action-
condition pair, and the substitutions are then applied to the
variablesin the explanation structure. The operational con-
ditions become the conditions of the new rule. The action
of the rule is the generalization of the goa concept. An
example of Soar/EBL is shown schematicaly in Figure 1.
The two striped vertical bars mark the beginning and the
end of the problem solving. T1 — T4 are traces of the rule
firings. For example, T1 records a rule firing which exam-
ined WMEs A and B and generated a preference suggesting
WME G. The highlighted rule traces are those included in
the explanation; T2, T3, and T4 have participated in there-
sult creation. Thisexplanationisgeneralized by regression,
and anew ruleis created.

Thematch algorithmiscritical in computing both the cost
of problem solving and the cost of matching learned rules.
Soar employs Rete asthematch a gorithm. Whenanew rule
iscreated, it iscompiled into a Rete network. Reteisone of
the most efficient rule-match algorithms presently known.
Its efficiency stems primarily from two key optimizations:
sharing and state saving. Sharing of common conditions
in a production, or across a set of productions, reduces
the number of tests performed during match. State saving

4The cost of a problem solving episode also actually includes
the costs of firing rules (i.e., executing actions). However, we will
not explicitly focus on this factor here becauseit drops out in the
learning process.

Figure 3: Loss of independence by linearization.

A Source of Expensiveness. Linearization

Asmentioned briefly in the previoussection, after the ex-
planation structureisregressed, the set of operationa condi-
tionsare compiledinto a Rete network for future matches of
thelearned rule. Intheprocess, thehierarchy intheexplana-
tion structure (which reflects the structure of therulefirings
during problem solving) is linearized into a total ordering
and then conditions are reordered via a heuristic agorithm
to improve the match performance.

The critical consequence of this step (linearization and
condition ordering) isthat the match structure of thelearned
rule is no longer constrained by the search structure of the
problem solving. That is, how instantiations of different
conditions are combined can be different from how they
were combined during the problem solving. This structural
change introduces four different sources of expensiveness.
The first source arises directly from the linearization of the
hierarchical structure. By combining sub-hierarchies to-
gether, some of the previously independent conditions get
joined with other parts of the structure before they finish
their sub-hierarchy match. Figure 3 shows an example.
The problem-solving structure in Figure 3-(b) shows the
rule firing structure during the problem solving, given the
WMEs and rulesin Figure 3-(8). The number in front of
each node indicates the number of tokens (partial instanti-
ations) at that condition. The total number of tokensin the
match for the rule is the sum of these numbers (43 in this

Figure 5: Non-optimal ordering can increase the cost.

and the other creates the WM E matched by C4. Figure4-(c)
shows the explanation structure generated from the expla-
nation. R1 isseparated into R1" and R1”, by replacing the
two instantiationswith two rules. The learned rule (with an
optimal ordering) from the explanation structure is shown
in Figure 4-(d). The total humber of tokens is increased
from 15 to 19. This increase stems from the linearization
rather than having separate copies for each instantiationin
the explanation, because a smart compiler of the structure
in Figure 4-(c) may till share R1' and R1". The two have
the same structure and the same pattern of consistency tests
across the conditions, and they can be compiled into the
same structure. By linearization, this sharing becomes im-
possible.

Thethird source of cost increase comesfrom non-optimal
ordering of the conditions. Finding an optimal ordering for
a set of conditions can teke as the factorid in the number
of conditions(considering all possible orderings), and Rete
employsaheuristic ordering algorithm. Because theheuris-
tic condition-ordering algorithm cannot guarantee optimal
orderings, whenever this agorithm creates a non-optimal
ordering, additional cost may be incurred. For example,
given the WMEs and rulesin Figure 5-(a), the total number
of tokensin the problem solving is 15 (Figure 5-(b)). While
the cost can be reduced to 10 by an optimal ordering (as
shown in Figure5-(c)), anon-optimal ordering can increase
it to 16 (as shown in Figure 5-(d)).

The fourth source of cost increase is inefficient search-
control combination. The previous work on incorporating
search control in the explanation has shown that search
control can constrain the match process of learned rules by

Figure 8: Grid task.

Experimental Results

In order to supplement theanaysis providedin the previ-
ous section with experimental evidence, we have extended
thecurrent Reteimplementationto i nterpret nonlinear struc-
ture. Also, we have introduced decision sub-nodes into
Rete. We have applied the resulting experimenta system
to the Grid task (Tambe 1991) (Figure 8), which is one
of the known expensive-chunk tasks. The results shown
hereare al from Soar6 (version 6.0.4), a C-based rel ease of
Soar (Doorenbos 1992) on a Sun SPARCstation-20. Each
probleminthe Grid task isto find a path between two points
inatwo dimensiona grid. For example, finding a path from
point F to point O is a Grid task. Because F is connected
to four adjacent points, four operators can be suggested by
rule operator-goto-loc, as shown in Figure 8-(b). For ex-
perimenta efficiency, the results presented here assume a

Figure 10: Magic Square task.

| Magic Task || average CPU time |
Without learning 451
Linear rulelearing —

Non-linear rulelearning 0.50

Table2: Average CPU timefor asequence of Magic Square
tasks.

tionsacross thedifferent sub-partsreflect the multipleusage
of those conditions in the original problem solving. This
multiple usage keeps the cost bounded by constraining the
sub-parts as they were in the problem solving.

We dso applied the system to the Magic Square
task(Tambe 1991) (Figure 10), another known expensive-
chunk task. The task involves placing tiles 1 through 9 in
empty sguares one at a time. If the sums of horizonta,
vertical, and diagonal lines are different in the current tile
placement, the task fails. Otherwise, the task succeeds. We
divided the Magic Square task into nine sub-problems, each
of which is the task of placing the next tile in the correct
cell, given the earlier placements of tiles. Table 2 shows
the average CPU time per sub-problem (in seconds) for the
sequence of nine sub-problems in the Magic Square task.
With linear-rule learning, the system could not even finish
learning for the first sub-problem. The number of tokens
for the learned rule became over eight million and the sys-
tem could not alocate enough memory. The CPU time
with nonlinear-rulelearning isbounded by the time without
learning. The time without learning is greater than the time
with nonlinear-rulelearning by afactor of nine.

Summary and Discussion

The cost increase of using learned knowledge can be ana-
lyzed by examining the difference between the match pro-
cess(match search) of learned rulesand the problem-solving
process from which they are learned. In this context, (Kim
& Rosenbloom 1993) examined an approach that is based
on incorporating search-control knowledgeinto the learned
rule. That analysis showed that omitting search control in
learning (i.e, in the explanation) can increase the cost of
learned rules. The consequence of thisomission isthat the
learned rules are not constrained by the path actually taken
in the problem space, and thus can perform an exponen-
tial amount of search even when the origina problem-space
search was highly directed (by the control rules). (Kim

& Rosenbloom 1993) extended the explanation to include
search-control rules, thus creating more constrained rules.

Here we have found that even with the search-control
rules incorporated in the explanation, if the system ig-
nores the hierarchical structure in the explanation struc-
ture while matching the of learned rules, cost can till in-
crease. © There are at least four causes of cost increase
that arise from linearizing conditions without considering
the problem-solving structure:

1. Loss of independence: By combining sub-hierarchiesto-
gether through linearization, some previously indepen-
dent conditionsget joined with other parts of the structure
beforethey finishtheir sub-hierarchy match. Thischange
can increase the number of tokens.

2. Loss of sharing: By losing sharing that existed in the
problem-solving structure, the number of tokens can in-
crease.

3. Non-optimal reordering: The heuristic condition-
ordering agorithm cannot guarantee optimal orderings,
which can lead to increased search.

4. Inefficient search control combination: A simple linear
network cannot efficiently process the search control that
participates in the explanation structure.

By extending Rete to interpret nonlinear structure (with
an extra type of Rete node for search-control processing),
the system can avoid the sources of expensiveness.

The same kind of analysis could potentially be performed
for other EBL systems. By comparing the search performed
during problem solving and the match search performed by
the learned rule, we can identify the sources of expensive-
ness. Avoiding thoseidentified sources should lead to rela
tive boundedness in the match. (Time after learning would
be bounded by time before learning.)

Match agorithms are critical in computing both the cost
of problem solving and the cost of matching learned rules.
Rete and Treat(Miranker 1987) are the best known rule
match a gorithms. We performed an analysisbased on Rete.
We conjecture that EBL with Treat might suffer similar
problemsbecauseaTreat network doesnot havehierarchical
structure; however, we have not yet donethe analysis.

There has been prior work done on nonlinear match to
improvesharing (Sca es 1986; Tambe, Kalp, & Rosenbloom
1991; Lee & Schor 1992; Hanson & Hasan 1993). Although
thiswork wasnot based on learning anew rulefrom problem
solving, thework shares the same idea: improve the match
performance by nonlinearity. One essential issue in this
work is finding a general criterion for determining which
form of nonlinearity isbest. We expect that whenever these
approaches are used in an EBL system, the explanation
structure could give a clue for how to construct a nonlinear
match structure.

5Theresults presentedin (Kim & Rosenbloom 1993) are based
on chunkingin Soar, not Soar/EBL . Because chunking'srule gen-
eralization is based on the explanation (instead of the explanation
structure), it can create overspecializedrules. The overspecializa-
tion of the rules can avoid part of this problem.

One negative effect of using nonlinear rules might be
diminished rule readabilty. Ascan be seen in Figure 9-(b),
the hierarchical structureis not easy to understand, even if
the figure doesn’t show shared sub-parts. Even with the
use of indentation to identify the hierarchy, the sharing of
sub-conditionsis still difficult to understand.

In addition to the issues raised earlier, there are severa
other issues for future work. The first one is extending
the experimental resultsto a wider range of tasks, both tra-
ditiona expensive-chunks tasks and non-expensive-chunk
tasks. Also, experiments on a practical domain rather than
a toy domain would alow a more redlistic anaysis of the
approach. Second, in addition to the two sources of ex-
pensiveness which have so far been found by comparing
search in the problem solving and search in the match, we
are working toward identifying other potential sources of
expensiveness, should they exist. By finding the complete
set of sources of expensiveness and avoiding those sources,
the cost of using thelearned rules shoul d always be bounded
by the cost of the problem solving episode from which they
were learned. Finally, the approach needs to be combined
with a solution to the average growth effect. The earlier
work on the average growth effect in chunking has shown
that it is possible to learn large number of rules without
hurting overall system performance. However, because the
rules created by Soar/EBL can be different from the rules
created by chunking, the problem still needsto be addressed
in terms of Soar/EBL.

Acknowledgments

This research was supported under subcontract to the Uni-
versity of Southern Cdifornia Information Sciences Insti-
tute from the University of Michigan, as part of contract
N00014-92-K-2015 from the Advanced Systems Technol-
ogy Office (ASTO) of the Advanced Research Projects
Agency (ARPA) and theNaval Research Laboratory (NRL);
and under contract N66001-95-C-6013 from the Advanced
Systems Technology Office (ASTO) of the Advanced Re-
search Projects Agency (ARPA) and the Naval Command
and Ocean Surveillance Center, RDT&E division (NRaD).
We would like to thank Jon Gratch and Milind Tambe for
helpful comments on thiswork.

References

Delong, G. F, and Mooney, R. 1986. Explanation-
based learning: An aternative view. Machine Learning
1(2):145-176.

Doorenbos, B.; Tambe, M.; and Newell, A. 1992. Learning
10,000 chunks: What'sit like out there? In Proceedings
of the Tenth National Conference on Artificial Intelligence,
830-836.

Doorenbos, B. 1992. Soar6 rel ease notes.

Doorenbos, B. 1993. Matching 100,000 learned rules.
In Proceedings of the Eleventh National Conference on
Artificial Intelligence.

Etzioni, O. 1990. Why Prodigy/EBL works. In Pro-
ceedings of the Eighth National Conference on Artificial
Intelligence, 916-922.

Gratch, J., and Dglong, G. 1992. COMPOSER: A proba
bilisticsolutiontothe utility problemin speed-uplearning.
In Proceedings of the Tenth National Conference on Ariti-
ficial Intelligence, 235-240.

Greiner, R., and Jurisica, |. 1992. A statistica approach
to solving the EBL utility problem. In Proceedings of
the Tenth National Conference on Artificial Intelligence,
241-248.

Hanson, E. N., and Hasan, M. S. 1993. Gator: An op-
timized discrimination network for active database rule
condition testing. Technical Report TR-93-036, CIS De-
partment, University of Florida

Kim, J., and Rosenbloom, P. S. 1993. Constraining learn-
ing with search control. In Proceedings of the Tenth I nter-
national Conference on Machine Learning, 174-181.

Kim, J., and Rosenbloom, P. 1995. Transformation analy-
ses of learning in Soar. Technica Report |SI/RR-95-4221,
Information Sciences Instituteand Computer Science De-
partment University of Southern California.

Laird, J. E.; Newdl, A.; and Rosenbloom, P. S. 1987.
Soar: An architecture for genera intelligence. Artificial
Intelligence 33:1-64.

Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1985.
Chunking in Soar: The anatomy of a genera learning
mechanism. MachineLearning 1.

Lee H. S, and Schor, M. |. 1992. Match agorithms for
generalized Rete networks. Artificial Intelligence 54:249—
274.

Markovitch, S., and Scott, P. D. 1993. Information filter-
ing : Selection mechanism in learning systems. Machine
Learning 10(2):113-151.

Minton, S. 1988. Quantitativeresultsconcerning the utility
of explanation-based learning. In Proceedings of the Sev-
enth National Conference on Artificial Intelligence, 564—
569.

Minton, S. 1993. Personal communication.

Miranker, D. P 1987. Treat: A better match agorithm
for Al production systems. In Proceedings of the Sixth
National Conference on Artificial Intelligence, 42—47.
Mitchell, T. M.; Kédller, R. M.; and Kedar-Cabdlli, S. T.
1986. Explanation-based generalization—aunifying view.
Machine Learning 1(1):47-80.

Mooney, R. J.,, and Bennett, S. W. 1986. A domain inde-
pendent explanai on-based generalization. In Proceedings
of the Fifth National Conference on Artificial Intelligence,
551-555.

Prieditis, A. E., and Mostow, J. 1987. PROLEARN:
Towards a Prolog interpreter that learns. In Proceedings
of the Sixth National Conference on Artificial Intelligence,
494-498.

Rosenbloom, P. S.; Laird, J. E.; Newell, A.; and McCarl,
R. 1991. A preliminary analysis of the Soar architecture

as a basis for genera intelligence. Artificial Intelligence
47(1-3):289-325.

Scales, D. J. 1986. Efficient matching algorithmsfor the
Soar/Ops5 production system. Technical Report KSL-86-
47, Knowledge Systems Laboratory, Department of Com-
puter Science, Stanford University.

Shavlik, J. W. 1990. Aquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39-70.

Shell, P, and Carbonell, J. 1991. Empirica and andytical
performance of iterative operators. In The 13th Annual
Conference of The Cognitive Science Society, 898-902.
Lawrence Erlbaum Associates.

Subramanian, D., and Feldman, R. 1990. The utility
of EBL in recursive domain theories. In Proceedings of
the Eighth National Conference on Artificial Intelligence,
942-949.

Tambe, M.; Kap, D.; Gupta, A.; Forgy, C. L.; Milnes,
B. G.; and Newell, A. 1988. Soar/PSM-E: Investigating
match parallelism in a learning production system. In
Proceedingsof the ACM/SIGPLAN Symposiumon Parallel
Programming: Experience with applications, languages,
and systems, 146-160.

Tambe, M.; Kap, D.; and Rosenbloom, P S. 1991.
Uni-Rete: Specializing the Rete match agorithm for the
unique-attribute representation. Technical Report CMU-
CS-91-180, School of Computer Science, CarnegieMellon
University.

Tambe, M. 1991. Eliminating combinatoricsfrom produc-
tion match. Ph.D. Dissertation, Carnegie-Mellon Univer-
sity.

