
Learning Efficient Rules by Maintaining the Explanation Structure

Jihie Kim and Paul S. Rosenbloom
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.
jihie@isi.edu, rosenbloom@isi.edu

Abstract

Many learning systems suffer from the utility prob-
lem; that is, that time after learning is greater than
time before learning. Discovering how to assure that
learned knowledge will in fact speed up system per-
formance has been a focus of research in explanation-
based learning (EBL). One way to analyze the utility
problem is by examining the differences between the
match process (match search) of the learned rule and
the problem-solving process from which it is learned.
Prior work along these lines examined one such differ-
ence. It showed that if the search-control knowledge
used during problem solving is not maintained in the
match process for learned rules, then learning can en-
gender a slowdown; but that this slowdown could be
eliminated if the match is constrained by the origi-
nal search-control knowledge. This article examines a
second difference — when the structure of the problem
solving differs from the structure of the match process
for the learned rules, time after learning can be greater
than time before learning. This article also shows that
this slowdown can be eliminated by making the learn-
ing mechanism sensitive to the problem-solving struc-
ture; i.e., by reflecting such structure in the match of
the learned rule.

Introduction
Efficiency is a major concern for all problem solving sys-
tems. One way of achieving efficiency is the applica-
tion of learning techniques to speed up problem solv-
ing. Explanation-based learning (EBL)(Mitchell, Keller, &
Kedar-Cabelli 1986; DeJong & Mooney 1986) can improve
performance by acquiring new search-control rules1. Given
its four informational components — the goal concept, the
training example, the domain theory, and the operationality
criterion — EBL generates a new search control rule that is
intended to reduce the search required in subsequent prob-
lems. Unfortunately, EBL suffers from the utility problem,
so that the cost of using learned rules often overwhelms
their benefit.

Research on the utility problem can be divided up into

1EBL can also be used to acquire other types of structures, such
as macro-operators, but we focus on search-control rules here.

two key issues. The first issue is the expensive chunk 2

problem (Tambe 1991), in which individual learned rules are
so expensive to match that the system suffers a slow down
from learning (Minton 1988; Tambe 1991; Etzioni 1990;
Shell & Carbonell 1991; Subramanian & Feldman 1990).
The second issue is the average growth effect (Doorenbos,
Tambe, & Newell 1992), in which the interactions across
the rules slow down the system, even if none of the rules
individually are all that expensive. Recent work on the
average growth effect has shown that it is possible to learn
over one million rules while still allowing their efficient use
(Doorenbos, Tambe, & Newell 1992; Doorenbos 1993). In
this article we focus on the expensive chunk problem.

Previous work on the expensive chunk problem has inves-
tigated how to produce cheaper rules (Prieditis & Mostow
1987; Minton 1988; Shell & Carbonell 1991; Shavlik 1990;
Etzioni 1990) and how to filter out expensive rules (Minton
1988; Greiner & Jurisica 1992; Gratch & Dejong 1992;
Markovitch & Scott 1993). However, none of these ap-
proaches can generally guarantee that the cost of using
the learned rules will always be bounded by the cost of
the problem solving episode from which they are learned.
That is, the cost of a learned rule can be greater than
the cost of solving the problem with the original set of
rules. There has been developed a technique for restrict-
ing the expressiveness of the rules to bound the match
cost of the rules (Tambe 1991). However, the restriction
reduces the expressibility of the rules, requiring a large
number of rules to encode tasks. Also, the learned rules
may become very specific. One way of finding a solution
which can guarantee cost boundedness without such a re-
striction is to investigate the differences between the match
process (i.e., the search performed during match3) of the
learned rule and the problem-solving process from which it
is learned. By analyzing the differences, we can identify
a set of sources which can make the output rule expen-
sive. Prior work on this topic has examined one such differ-
ence: in chunking (and other EBL systems which use search
control in problem solving), eliminating search control in
learning can increase the cost of the learned rules (Kim &

2Chunk means any learned rule. This is a generalization of the
term used in the Soar system.

3What is referred to as k-search in (Tambe 1991).



Figure 1: An example of Soar/EBL process.

of preferences, and creation of working memory elements
(WMEs) underlies the problem solving. In the remainder of
this article, when we talk about the cost of problem solving,
we will be referring to the match cost of the rules that fired
plus the cost of making decisions.4

To create rules, Soar maintains an instantiated trace of
the rules. The set of instantiations connected to the goal
achievement becomes the proof tree (or explanation) for
Soar/EBL. The instantiations in the explanation are replaced
by rules which have unique names for the variables across
the rules. This new structure is called the explanation struc-
ture. A regression algorithm (our algorithm is inspired by
the EGGS generalization algorithm (Mooney & Bennett
1986)) is applied to this explanation structure. A set of sub-
stitutions is computed by unifying each connected action-
condition pair, and the substitutions are then applied to the
variables in the explanation structure. The operational con-
ditions become the conditions of the new rule. The action
of the rule is the generalization of the goal concept. An
example of Soar/EBL is shown schematically in Figure 1.
The two striped vertical bars mark the beginning and the
end of the problem solving. T1 – T4 are traces of the rule
firings. For example, T1 records a rule firing which exam-
ined WMEs A and B and generated a preference suggesting
WME G. The highlighted rule traces are those included in
the explanation; T2, T3, and T4 have participated in the re-
sult creation. This explanation is generalized by regression,
and a new rule is created.

The match algorithm is critical in computing both the cost
of problem solving and the cost of matching learned rules.
Soar employs Rete as the match algorithm. When a new rule
is created, it is compiled into a Rete network. Rete is one of
the most efficient rule-match algorithms presently known.
Its efficiency stems primarily from two key optimizations:
sharing and state saving. Sharing of common conditions
in a production, or across a set of productions, reduces
the number of tests performed during match. State saving

4The cost of a problem solving episode also actually includes
the costs of firing rules (i.e., executing actions). However, we will
not explicitly focus on this factor here because it drops out in the
learning process.



Figure 3: Loss of independence by linearization.

A Source of Expensiveness: Linearization
As mentioned briefly in the previous section, after the ex-

planation structure is regressed, the set of operational condi-
tions are compiled into a Rete network for future matches of
the learned rule. In the process, the hierarchy in the explana-
tion structure (which reflects the structure of the rule firings
during problem solving) is linearized into a total ordering
and then conditions are reordered via a heuristic algorithm
to improve the match performance.

The critical consequence of this step (linearization and
condition ordering) is that the match structure of the learned
rule is no longer constrained by the search structure of the
problem solving. That is, how instantiations of different
conditions are combined can be different from how they
were combined during the problem solving. This structural
change introduces four different sources of expensiveness.
The first source arises directly from the linearization of the
hierarchical structure. By combining sub-hierarchies to-
gether, some of the previously independent conditions get
joined with other parts of the structure before they finish
their sub-hierarchy match. Figure 3 shows an example.
The problem-solving structure in Figure 3-(b) shows the
rule firing structure during the problem solving, given the
WMEs and rules in Figure 3-(a). The number in front of
each node indicates the number of tokens (partial instanti-
ations) at that condition. The total number of tokens in the
match for the rule is the sum of these numbers (43 in this



Figure 5: Non-optimal ordering can increase the cost.

and the other creates the WME matched by C4. Figure 4-(c)
shows the explanation structure generated from the expla-
nation. R1 is separated into R1’ and R1”, by replacing the
two instantiations with two rules. The learned rule (with an
optimal ordering) from the explanation structure is shown
in Figure 4-(d). The total number of tokens is increased
from 15 to 19. This increase stems from the linearization
rather than having separate copies for each instantiation in
the explanation, because a smart compiler of the structure
in Figure 4-(c) may still share R1’ and R1”. The two have
the same structure and the same pattern of consistency tests
across the conditions, and they can be compiled into the
same structure. By linearization, this sharing becomes im-
possible.

The third source of cost increase comes from non-optimal
ordering of the conditions. Finding an optimal ordering for
a set of conditions can take as the factorial in the number
of conditions (considering all possible orderings), and Rete
employs a heuristic ordering algorithm. Because the heuris-
tic condition-ordering algorithm cannot guarantee optimal
orderings, whenever this algorithm creates a non-optimal
ordering, additional cost may be incurred. For example,
given the WMEs and rules in Figure 5-(a), the total number
of tokens in the problem solving is 15 (Figure 5-(b)). While
the cost can be reduced to 10 by an optimal ordering (as
shown in Figure 5-(c)), a non-optimal ordering can increase
it to 16 (as shown in Figure 5-(d)).

The fourth source of cost increase is inefficient search-
control combination. The previous work on incorporating
search control in the explanation has shown that search
control can constrain the match process of learned rules by



Figure 8: Grid task.

Experimental Results
In order to supplement the analysis provided in the previ-

ous section with experimental evidence, we have extended
the current Rete implementation to interpret nonlinear struc-
ture. Also, we have introduced decision sub-nodes into
Rete. We have applied the resulting experimental system
to the Grid task (Tambe 1991) (Figure 8), which is one
of the known expensive-chunk tasks. The results shown
here are all from Soar6 (version 6.0.4), a C-based release of
Soar (Doorenbos 1992) on a Sun SPARCstation-20. Each
problem in the Grid task is to find a path between two points
in a two dimensional grid. For example, finding a path from
point F to point O is a Grid task. Because F is connected
to four adjacent points, four operators can be suggested by
rule operator-goto-loc, as shown in Figure 8-(b). For ex-
perimental efficiency, the results presented here assume a



Figure 10: Magic Square task.

Magic Task average CPU time

Without learning 4.51

Linear rule learing —

Non-linear rule learning 0.50

Table 2: Average CPU time for a sequence of Magic Square
tasks.

tions across the different sub-parts reflect the multiple usage
of those conditions in the original problem solving. This
multiple usage keeps the cost bounded by constraining the
sub-parts as they were in the problem solving.

We also applied the system to the Magic Square
task(Tambe 1991) (Figure 10), another known expensive-
chunk task. The task involves placing tiles 1 through 9 in
empty squares one at a time. If the sums of horizontal,
vertical, and diagonal lines are different in the current tile
placement, the task fails. Otherwise, the task succeeds. We
divided the Magic Square task into nine sub-problems, each
of which is the task of placing the next tile in the correct
cell, given the earlier placements of tiles. Table 2 shows
the average CPU time per sub-problem (in seconds) for the
sequence of nine sub-problems in the Magic Square task.
With linear-rule learning, the system could not even finish
learning for the first sub-problem. The number of tokens
for the learned rule became over eight million and the sys-
tem could not allocate enough memory. The CPU time
with nonlinear-rule learning is bounded by the time without
learning. The time without learning is greater than the time
with nonlinear-rule learning by a factor of nine.

Summary and Discussion
The cost increase of using learned knowledge can be ana-
lyzed by examining the difference between the match pro-
cess (match search) of learned rules and the problem-solving
process from which they are learned. In this context, (Kim
& Rosenbloom 1993) examined an approach that is based
on incorporating search-control knowledge into the learned
rule. That analysis showed that omitting search control in
learning (i.e., in the explanation) can increase the cost of
learned rules. The consequence of this omission is that the
learned rules are not constrained by the path actually taken
in the problem space, and thus can perform an exponen-
tial amount of search even when the original problem-space
search was highly directed (by the control rules). (Kim



& Rosenbloom 1993) extended the explanation to include
search-control rules, thus creating more constrained rules.

Here we have found that even with the search-control
rules incorporated in the explanation, if the system ig-
nores the hierarchical structure in the explanation struc-
ture while matching the of learned rules, cost can still in-
crease. 6 There are at least four causes of cost increase
that arise from linearizing conditions without considering
the problem-solving structure:

1. Loss of independence: By combining sub-hierarchies to-
gether through linearization, some previously indepen-
dent conditions get joined with other parts of the structure
before they finish their sub-hierarchy match. This change
can increase the number of tokens.

2. Loss of sharing: By losing sharing that existed in the
problem-solving structure, the number of tokens can in-
crease.

3. Non-optimal reordering: The heuristic condition-
ordering algorithm cannot guarantee optimal orderings,
which can lead to increased search.

4. Inefficient search control combination: A simple linear
network cannot efficiently process the search control that
participates in the explanation structure.

By extending Rete to interpret nonlinear structure (with
an extra type of Rete node for search-control processing),
the system can avoid the sources of expensiveness.

The same kind of analysis could potentially be performed
for other EBL systems. By comparing the search performed
during problem solving and the match search performed by
the learned rule, we can identify the sources of expensive-
ness. Avoiding those identified sources should lead to rela-
tive boundedness in the match. (Time after learning would
be bounded by time before learning.)

Match algorithms are critical in computing both the cost
of problem solving and the cost of matching learned rules.
Rete and Treat(Miranker 1987) are the best known rule
match algorithms. We performed an analysis based on Rete.
We conjecture that EBL with Treat might suffer similar
problems because a Treat network does not have hierarchical
structure; however, we have not yet done the analysis.

There has been prior work done on nonlinear match to
improve sharing (Scales 1986; Tambe, Kalp, & Rosenbloom
1991; Lee & Schor 1992; Hanson & Hasan 1993). Although
this work was not based on learning a new rule from problem
solving, the work shares the same idea: improve the match
performance by nonlinearity. One essential issue in this
work is finding a general criterion for determining which
form of nonlinearity is best. We expect that whenever these
approaches are used in an EBL system, the explanation
structure could give a clue for how to construct a nonlinear
match structure.

6The results presented in (Kim & Rosenbloom 1993) are based
on chunking in Soar, not Soar/EBL. Because chunking’s rule gen-
eralization is based on the explanation (instead of the explanation
structure), it can create overspecialized rules. The overspecializa-
tion of the rules can avoid part of this problem.

One negative effect of using nonlinear rules might be
diminished rule readabilty. As can be seen in Figure 9-(b),
the hierarchical structure is not easy to understand, even if
the figure doesn’t show shared sub-parts. Even with the
use of indentation to identify the hierarchy, the sharing of
sub-conditions is still difficult to understand.

In addition to the issues raised earlier, there are several
other issues for future work. The first one is extending
the experimental results to a wider range of tasks, both tra-
ditional expensive-chunks tasks and non-expensive-chunk
tasks. Also, experiments on a practical domain rather than
a toy domain would allow a more realistic analysis of the
approach. Second, in addition to the two sources of ex-
pensiveness which have so far been found by comparing
search in the problem solving and search in the match, we
are working toward identifying other potential sources of
expensiveness, should they exist. By finding the complete
set of sources of expensiveness and avoiding those sources,
the cost of using the learned rules should always be bounded
by the cost of the problem solving episode from which they
were learned. Finally, the approach needs to be combined
with a solution to the average growth effect. The earlier
work on the average growth effect in chunking has shown
that it is possible to learn large number of rules without
hurting overall system performance. However, because the
rules created by Soar/EBL can be different from the rules
created by chunking, the problem still needs to be addressed
in terms of Soar/EBL.

Acknowledgments

This research was supported under subcontract to the Uni-
versity of Southern California Information Sciences Insti-
tute from the University of Michigan, as part of contract
N00014-92-K-2015 from the Advanced Systems Technol-
ogy Office (ASTO) of the Advanced Research Projects
Agency (ARPA) and the Naval Research Laboratory (NRL);
and under contract N66001-95-C-6013 from the Advanced
Systems Technology Office (ASTO) of the Advanced Re-
search Projects Agency (ARPA) and the Naval Command
and Ocean Surveillance Center, RDT&E division (NRaD).
We would like to thank Jon Gratch and Milind Tambe for
helpful comments on this work.

References
DeJong, G. F., and Mooney, R. 1986. Explanation-
based learning: An alternative view. Machine Learning
1(2):145–176.

Doorenbos, B.; Tambe, M.; and Newell, A. 1992. Learning
10,000 chunks: What’s it like out there? In Proceedings
of the Tenth National Conference on Artificial Intelligence,
830–836.

Doorenbos, B. 1992. Soar6 release notes.

Doorenbos, B. 1993. Matching 100,000 learned rules.
In Proceedings of the Eleventh National Conference on
Artificial Intelligence.



Etzioni, O. 1990. Why Prodigy/EBL works. In Pro-
ceedings of the Eighth National Conference on Artificial
Intelligence, 916–922.
Gratch, J., and Dejong, G. 1992. COMPOSER: A proba-
bilistic solution to the utilityproblem in speed-up learning.
In Proceedings of the Tenth National Conference on Ariti-
ficial Intelligence, 235–240.
Greiner, R., and Jurisica, I. 1992. A statistical approach
to solving the EBL utility problem. In Proceedings of
the Tenth National Conference on Artificial Intelligence,
241–248.
Hanson, E. N., and Hasan, M. S. 1993. Gator: An op-
timized discrimination network for active database rule
condition testing. Technical Report TR-93-036, CIS De-
partment, University of Florida.
Kim, J., and Rosenbloom, P. S. 1993. Constraining learn-
ing with search control. In Proceedings of the Tenth Inter-
national Conference on Machine Learning, 174–181.
Kim, J., and Rosenbloom, P. 1995. Transformation analy-
ses of learning in Soar. Technical Report ISI/RR-95-4221,
Information Sciences Institute and Computer Science De-
partment University of Southern California.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence. Artificial
Intelligence 33:1–64.
Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1985.
Chunking in Soar: The anatomy of a general learning
mechanism. Machine Learning 1.
Lee, H. S., and Schor, M. I. 1992. Match algorithms for
generalized Rete networks. Artificial Intelligence 54:249–
274.
Markovitch, S., and Scott, P. D. 1993. Information filter-
ing : Selection mechanism in learning systems. Machine
Learning 10(2):113–151.
Minton, S. 1988. Quantitative results concerning the utility
of explanation-based learning. In Proceedings of the Sev-
enth National Conference on Artificial Intelligence, 564–
569.
Minton, S. 1993. Personal communication.
Miranker, D. P. 1987. Treat: A better match algorithm
for AI production systems. In Proceedings of the Sixth
National Conference on Artificial Intelligence, 42–47.
Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T.
1986. Explanation-based generalization – a unifying view.
Machine Learning 1(1):47–80.
Mooney, R. J., and Bennett, S. W. 1986. A domain inde-
pendent explanaion-based generalization. In Proceedings
of the Fifth National Conference on Artificial Intelligence,
551–555.
Prieditis, A. E., and Mostow, J. 1987. PROLEARN:
Towards a Prolog interpreter that learns. In Proceedings
of the Sixth National Conference on Artificial Intelligence,
494–498.
Rosenbloom, P. S.; Laird, J. E.; Newell, A.; and McCarl,
R. 1991. A preliminary analysis of the Soar architecture

as a basis for general intelligence. Artificial Intelligence
47(1-3):289–325.
Scales, D. J. 1986. Efficient matching algorithms for the
Soar/Ops5 production system. Technical Report KSL-86-
47, Knowledge Systems Laboratory, Department of Com-
puter Science, Stanford University.
Shavlik, J. W. 1990. Aquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39–70.
Shell, P., and Carbonell, J. 1991. Empirical and analytical
performance of iterative operators. In The 13th Annual
Conference of The Cognitive Science Society, 898–902.
Lawrence Erlbaum Associates.
Subramanian, D., and Feldman, R. 1990. The utility
of EBL in recursive domain theories. In Proceedings of
the Eighth National Conference on Artificial Intelligence,
942–949.
Tambe, M.; Kalp, D.; Gupta, A.; Forgy, C. L.; Milnes,
B. G.; and Newell, A. 1988. Soar/PSM-E: Investigating
match parallelism in a learning production system. In
Proceedings of the ACM/SIGPLAN Symposium on Parallel
Programming: Experience with applications, languages,
and systems, 146–160.
Tambe, M.; Kalp, D.; and Rosenbloom, P. S. 1991.
Uni-Rete: Specializing the Rete match algorithm for the
unique-attribute representation. Technical Report CMU-
CS-91-180, School of Computer Science, Carnegie Mellon
University.
Tambe, M. 1991. Eliminatingcombinatorics from produc-
tion match. Ph.D. Dissertation, Carnegie-Mellon Univer-
sity.


