
Figure 1: Unrestricted (a) and unique-attribute (b-c)
encodings in the blocks world.

Although a number of systems have been successfully
recoded into unique-attributes, and reaped signi�cant
time savings as a result, there are still some outstand-
ing problems with it. In particular, the encoding rad-
ically increases the number of rules used in specifying
some tasks, and may also require many more rules to
be learned to achieve the same level of coverage (that



is, generality) as was previously attainable by a small
number rules.

In this article, we propose an alternative diagnosis for
the cause of expensive chunks, along with a new ap-
proach for eliminating expensive chunks that is derived
from this new diagnosis. The core idea is to focus
on the relationship between the problem-space search
upon which the learning is based and the search per-
formed, during match, by the rule learned from this
problem-space search. In the search of the problem
space, some path | that is, some sequence of oper-
ators | is followed that eventually leads to a result.
The actual path followed usually depends on meta-
level control rules that determine which operators are
selected for which states. These control rules should
a�ect only the e�ciency with which the result is found,
and not its correctness. As a result, when a new rule is
acquired from a trace of this problem solving, the con-
trol rules are not included as part of the explanation
of the result. This omission, which turns out to also
be the approach taken in PRODIGY (Minton 1993)1,
increases the generality of the learned rules, while it
should not a�ect their correctness.2

The problem with this approach, however, is that the
learned rules are not now constrained by the path ac-
tually taken in the problem space, and thus can per-
form an exponential amount of search even when the
original problem-space search was highly directed (by
the control rules). For example, with suitable con-
trol knowledge in the Grid Task (Tambe, Newell, and
Rosenbloom 1990) it is possible to solve the problem
of �nding a path between two nodes in time that is
linear in the length of the path. However, the rule
learned from this search may be so general that, when
it matches, it searches over all paths of that length.
This rule is quite general, as it can solve any problem
that has a solution of that length; however, this gen-
erality is only obtained at an enormous cost (i.e., the
cost is exponential in the length of the path).

The solution suggested by this diagnosis is to incorpo-
rate traces of the control rules utilized in the problem-
space search into the explanation of the result. This
should enable the match process for learned rules to
focus on just the precursors for the path that was ac-
tually followed, and thus ensure that the match pro-
cess for a learned rule is bounded in complexity by the
problem-space search from which it was learned. Be-
cause the match process runs at a faster rate than the
problem solving process, this should solve the expen-

1In Prodigy, selection and rejection rules are included
in the explanation, but preference rules are not. Likewise,
Soar currently also includes require and prohibit prefer-
ences, but not desirability preferences.

2In Soar, this actually can at times a�ect correctness,
but the discussion of this will be postponed to the �nal
section.

sive chunks problem by ensuring that using the learned
rule takes no more time than was taken by the original
search.

This approach is closest in spirit to that taken in (Shell
and Carbonell, 1991). In that work, iterative paths
found during problem-space search resulted in the ad-
dition of iterative constructs to the macro-operators
acquired from the search. These iterative macro-
operators are then used in a way that guarantees that
they take the same path followed in the problem space.
Shell and Carbonell claim that their approach solves
the expensive chunks problem. However, it doesn't
completely because not all expensive chunks arise from
iteration. Our approach captures the same basic intu-
ition, but in a manner that it is both more general
and simpler. It is more general because it captures
the factors that determined the entire path, rather
than just the iterative portions, and thus handles all
of the causes of expensive chunks. It is simpler be-
cause it does not require an enhanced macro-language
or special purpose mechanisms for detecting iteration.
Instead, it simply expands by a small amount the con-
tent of the explanation used during learning.

In contrast to our earlier approaches to expensive
chunks, this new approach imposes no expressibility
limitations on the encoding of tasks. On the positive
side, this means that the problem of expensive chunks
can be solved without increasing the di�culty of task
encoding. On the negative side, this means that no
sub-exponential bound is being imposed on the match
process | if the original rules encoded into the system
require exponential matches, then so may the learned
rules. We have thus e�ectively split o� the goal of
removing expensive chunks from the related goal of
guaranteeing bounds on the match, and in the process
found a weaker approach that solves the former but
not the latter, but with no limit on task expressibility.

Despite this result, this new approach is not free of
problems. One signi�cant problem is that it doesn't
specify what to do when decisions in a search are based
on lack of knowledge. In such circumstances, the learn-
ing process has no explanation for why a choice was
made, and therefore can acquire rules that are just
as expensive as those learned by the unaltered learn-
ing mechanism. The other signi�cant problem is that,
as with unique-attributes, this approach can lead to
learned rules that are less general than would be ac-
quired by the unaltered learning mechanism. This
comes about here, not because of limitations on the
representation, but because additional conditions are
incorporated into learned rules based on control rules
that are now part of the explanation. These conditions
provide e�ciency, but at the cost of eliminating search
that otherwise would allow the rules to apply in more
circumstances.



Figure 3: Problem solving in the Grid Task.

normally employs the selection problem space, which
contains evaluate operators that can be applied to the
competing task operators. Once generated, these eval-
uations will be turned into preferences that allow one
of the task operators to be selected. However, the sys-
tem has no direct knowledge about which of the four
operators it ought to evaluate �rst, so without further
assistance it would impasse again, and possibly con-
tinue this recursive subgoaling inde�nitely. To avoid
this, one of Soar's general background rules generates
indi�erent preferences for the set of evaluate opera-
tors. This lets it pick one at random, and begin to
make progress.

If, as is often the case, the information about how to
evaluate an operator is not directly available, an eval-
uation subgoal (to implement the evaluate operator)
is created. The task in this third-level subgoal is to
determine the utility of the operator. To do this, it
performs a bit of lookahead search, trying out the task
operator (possibly in simulation) on the original task
state. If the resulting state can be evaluated, then the
subgoal terminates, otherwise the process continues,
recurring on the question of what task operator to ap-
ply to this new state. Figure 3 shows this search pro-
cess in the Grid Task which continues until the point
P is reached.

In this overall lookahead search, indi�erent preferences
indirectly determine which path the system moves
down, by directly determining which of the operators
are evaluated at each point. However, the rules learned
from this search can gather no explanation from the
indi�erent preferences as to why one path was taken
rather than another. Figure 4 shows such a learned
rule. This rule says that if you are at location <l1>



Figure 4: An expensive chunk learned from indi�erent
choices.

and want to get to location <l5>, and there is an op-
erator that takes you from <l1> to <l2>, and there is
a connected path from <l2> to <l5> (via two inter-
mediate points, <l3> and <l4>), then the operator
is the best choice. This rule is expensive because it
may need to search an exponential number of paths of
length four to �nd one that has this property. Even
if the original problem-space search happened to lo-
cate the correct path by accident on its �rst try, or
if outside guidance was provided to lead it down the
correct path, the resulting rule would still incorporate
this exponential search.

There are (at least) two possible ways of solving this
problem. The �rst is to alter the learning and match
processes so that they more appropriately re
ect the
semantics of indi�erent preferences. Use of an indif-
ferent preference means that a random selection of a
single path should be made. However, the match al-
gorithm always follows all paths. So, re
ecting the
semantics of indi�erence should involve altering the
learning and match processes so that use of indi�er-
ent preferences during problem-space search yields the
random choice of a single alternative during the corre-
sponding part of the match of the learned rule. If, in
fact, the indi�erent preference meant that the system
really didn't care which of the paths was taken, then
any random selection made by the matcher should be
as good as any other. If, however, the indi�erent pref-
erence actually signi�ed lack of knowledge about the
correct path, and not all paths actually do lead to suc-
cess, then the match will follow one path randomly,
and thus will succeed only stochastically.

This �rst direction looks pretty interesting. It solves
the problem without introducing an expressibility lim-
itation, while at the same time introducing a stochas-
ticity into the use of learned rules, and a resulting
gradualness in performance improvement that may be
quite useful in modeling human cognition. However,
it requires a signi�cant enough alteration in the basic
architecture of Soar, that we have decided to �rst in-
vestigate a simpler alternative, and leave this one for
future work.

The second way of solving the problem, and the one
underlying the results reported here, is to disallow the

use of indi�erent preferences. Their ability to select
randomly among alternatives is then replaced by ex-
plicit default orderings on the alternatives. If there are
any substantive reasons why one alternative should be
selected ahead of another, they can be incorporated
into this ordering. To the extent that there are no sub-
stantive reasons, an arbitrary ordering can be imposed.
The key, though, is that these orderings are generated
explicitly by rules that distinguish among the alterna-
tives, and therefore leave behind a trace that can be
used in explaining why one alternative is picked over
the others. This may not provide a \good" explana-
tion, in the sense of capturing a suitable level of gener-
ality to support transfer to related situations; however,
it will at least be su�cient to distinguish the one se-
lected alternative from the others during the match,
and thus to make the resulting learned rules cheap.

For the Grid Task, an arbitrary ordering of the op-
erators can be assigned according to the direction of
movement. For example, �rst up, then down, then
left, and �nally right. It is important to note that this
ordering is just used in place of the indi�erent prefer-
ences on the evaluate operators in the selection space.
Thus it determines the order in which the operators are
evaluated, but does not dictate an ordering on the task
operators. This latter ordering is still to be learned, as
a new set of control rules, from the lookahead search.

The elimination of indi�erent preferences amounts to
a limitation on the system's expressibility, though of a
form quite di�erent from those previously investigated.
It also clearly may impact the generality of the result-
ing rules, at least to the extent that arbitrary orderings
are imposed. As such, it needs to be evaluated, just as
was the unique-attributes restriction, in terms of the
trade-o�s it provides among expressibility, speed, and
generality.

3 Experimental Results

In this section we look at how well the incorporation of
search control into learned rules, in combination with
the elimination of indi�erent preferences, compares
with both an unaltered version of Soar and a unique-
attributes version. The results are all from Soar6 (ver-
sion 6.0.3), the latest C-based release of Soar (Dooren-
bos 1992), which is approximately 10-40 times faster
than Soar5 (the previous Lisp-based release). The ex-
perimental version is just like the standard system,
except that the explanations upon which new rules
are based incorporate traces of the control rules that
determined the choices made in problem solving. In
particular, the system computes the minimum set of
preferences su�cient to determine each choice that was
made, so that if the set of preferences overdetermines
the choices, the redundant preferences (and their rule
traces) are pruned from the explanation to make the
created rule as general as possible.



Figure 6: Number of accumulated chunks in the Grid
Task.

The second and third rows in Table 1 show the corre-
sponding CPU times for the search-control and unique-
attributes versions of the Grid Task.4 Both show more
than a factor of �ve reduction in execution time after
learning. In each problem, they show essentially the
same pattern: the time after learning is a small con-
stant value that is uniformly less than the time before
learning. This implies that both have solved the ex-
pensive chunks problem for this task.

The extra time before learning in the search-control
and unique-attribute versions stems from the increase
in tokens brought about the additional rule conditions
that discriminate among moving directions, as shown
in the conditions of the chunks in Figure 5. These two
chunks correspond to the expensive chunk in Figure 4.
The di�erence in run times after learning between the
search-control version and the unique-attribute version
in Table 1 is also due to the extra conditions in the
search-control-version chunks. However, this yields
only a minor e�ect, as analyzed in (Tambe 1991).

Figure 6 shows the cumulative number of chunks ac-
quired while solving the eight Grid-Task problems.
The unmodi�ed version of Soar learned general enough
chunks from the �rst problem to cover all of the other
length-six problems. The other two approaches needed
to learn additional chunks for each new problem. In
these problems, both learned the same number of rules
with the same generality. Although there are addi-
tional contraints induced by the extra conditions in
Figure 5-(a), both chunks in Figure 5 have the same
generality in that they describe the same grid path
followed by the lookahead search to reach the desired
point, and nothing more than that.

4The unique-attribute representation replaces the
multi-attribute ^connected with four distinct attributes
^up, ^down, ^left and ^right.



Figure 8: Number of chunks in di�erent Eight-puzzle
representation.

The Eight Puzzle can also be expressed via a di�er-
ent set of rules, without the multi-attribute ^binding.
Although there is considerable reduction in the num-
ber of rules, Figure 8 shows that the unique-attribute
version still needs more rules because of the former
e�ect.



4 Summary and Discussion

Unique-attributes solve the expensive chunks prob-
lem by restricting the expressiveness of rules down to
where the match can be guaranteed to run in polyno-
mial (in particular, linear) time. This provides strong
assurances about system performance, but also neg-
atively impacts task creation and learned-rule gener-
ality. Here we have proposed and investigated a new
approach | based on including search-control in the
explanations upon which new rules are based | that
solves the expensive chunks problem, but not by en-
forcing a �xed computational bound on the match pro-
cess. Instead, the complexity of the match of a learned
rule is bounded by the complexity of the search from
which it was learned. This gives up an overall guar-
antee on system performance, but given an initially
encoded system, learning will not make it worse. In
exchange for this weakening of the guarantee, this new
approach shows potential for ameliorating both of the
negative side e�ects introduced by unique-attributes.

One additional positive side-e�ect of the search-control
approach is that it removes one possible source of over-
generalization in Soar (Laird, Rosenbloom, and Newell
1986). Though search control is not supposed to a�ect
the correctness of results generated in problem spaces,
it sometimes unavoidably does. In situations in which
results are returned from a problem space before the
goal test succeeds, or where the goal test is itself over-
general, search control may play an in
uential role in
determining the correctness of the result. Under such
circumstances, the current approach | not including
this search control in the explanation process | can
yield overgeneral learned rules. However, by including
this search control into the explanation of the result,
the proposed approach removes this potential source
of overgenerality.

A possible negative side-e�ect of the search-control ap-
proach is that it increases the di�culty of directing the
reconstruction process that underlies Soar's approach
to knowledge-level learning (Rosenbloom, Laird, and
Newell 1987; Rosenbloom and Aasman 1990). There
we took advantage of search control's absence from
explanations in learning a rule whose actions mirrored
some perceived object structure, but whose conditions
did not test the perceived object. With this option no
longer available, a new approach must be employed.
One possibility that was actually already under inves-
tigation independently of this work, is a form of situ-
ated reconstruction, in which reconstruction is guided
by features of the immediate situation other than those
to be reconstructed (Vera, Lewis and Lerch 1993).

In addition to investigating options for knowledge-level
learning, several other issues need near-term attention.
At the top of the list is extending the experimental re-
sults to a wider range of tasks | both those that tradi-
tionally yield expensive chunks and those that don't |

and to quantitative analyses of speed ups and (losses
of) generality. Also useful would be a theoretical anal-
ysis of the method, and of its potential to avoid (or
lead to) slow downs with learning. There is also a sub-
tle issue that needs to be addressed that only occurs
when there are more options available at performance
than at learning time; in particular, if the conditions
learned to discriminate among the options available at
learning time are not su�cient to discriminate among
these new options, additional match search may be in-
troduced. Finally, altering the architecture so as to
permit the appropriate use of indi�erent preferences
would enable the removal of the one expressibility lim-
itation that it was found necessary to impose.

Acknowledgments

This research was supported under subcontract to
the University of Southern California Information Sci-
ences Institute from the University of Michigan as part
of contract N00014-92-K-2015 from the Defense Ad-
vanced Research Projects Agency (DARPA) and the
Naval Research Laboratory (NRL).

Thanks to Milind Tambe and Soar group in USC-ISI
for valuable comments on earlier draft of this paper,
and to Bob Doorenbos for useful hints on Soar6 source
code.

References

Doorenbos, B., Tambe, M., & Newell, A. (1992).
Learning 10,000 chunks: What's it like out there? Pro-
ceedings of the Tenth National Conference on Arti�cial
Intelligence. (pp. 830-836).

Doorenbos, B. (1992). Soar6 release notes.

Doorenbos, B. (1993). Matching 100,000 learned rules.
Proceedings of the Eleventh National Conference on
Arti�cial Intelligence. (to appear).

Laird, J., Rosenbloom, P., & Newell, A. (1986). Over-
generalization during knowledge compilation in Soar.
Proceedings of the Workshop on Knowledge Compila-
tion. (pp. 46-57).

Minton, S. (1988). Quantitative results concerning the
utility of explanation-based learning. Proceedings of
the Seventh National Conference on Arti�cial Intelli-
gence. (pp. 564-569).

Minton, S. (1993). Personal Communication.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1987).
Knowlege level learning in Soar. Proceedings of the
Sixth National Conference on Arti�cial Intelligence.
(pp. 499-504).

Rosenbloom, P. S. & Aasman, J. (1990). Knowledge
level and inductive uses of chunking (EBL). Proceed-
ings of the Eighth National Conference on Arti�cial
Intelligence. (pp. 821-827).



Rosenbloom, P. S., Laird, J. E., Newell, A., & McCarl,
R. (1991). A preliminary analysis of the Soar archi-
tecture as a basis for general intelligence. Arti�cial
Intelligence 47. (pp. 289-325).

Shell, P. & Carbonell, J. (1991). Empirical and an-
alytic performance of iterative operators. The 13th
Annual Conference of The Cognitive Science Society.
(pp. 898-902).

Tambe, M. (1991). Eliminating combinatorics from
production match. PhD thesis, Computer Science De-
partment, Carnegie Mellon University

Tambe, M., Newell, A., & Rosenbloom, P. (1990). The
problem of expensive chunks and its solution by re-
stricting expressiveness. Machine Learning, Vol. 5.
(pp. 299-348)

Tambe, M., & Rosenbloom, P. (1990). A frame-
work for investigating production system formulations
with polynomially bounded match. Proceedings of the
Eighth National Conference on Arti�cial Intelligence.
(pp. 693-700).

Vera, A., Lewis R. L., & Lerch F. J. (1993). Situated
decision-making and recognition-based learning: Ap-
plying symbolic theories to interactive tasks. Proceed-
ings of the Fifteenth Annual Conference of the Cogni-
tive Science Society. (to appear).


