
Integrating Expectations from Different Sources to Help End Users Acquire
Procedural Knowledge

Jim Blythe
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292, USA

blythe@isi.edu

To appear, International Joint Conference on Artificial Intelligence, 2001

Abstract

Role-limiting approaches using explicit theories of
problem-solving have been successful for acquiring
knowledge from domain experts1. However most
systems using this approach do not support acquir-
ing procedural knowledge, only instance and type
information. Approaches using interdependencies
among different pieces of knowledge have been
successful for acquiring procedural knowledge, but
these approaches usually do not provide all the sup-
port that domain experts require. We show how
the two approaches can be combined in such a way
that each benefits from information provided by the
other. We extend the role-limiting approach with a
knowledge acquisition tool that dynamically gen-
erates questions for the user based on the prob-
lem solving method. This allows a more flexible
interaction pattern. When users add knowledge,
this tool generates expectations for the procedural
knowledge that is to be added. When these pro-
cedures are refined, new expectations are created
from interdependency models that in turn refine the
information used by the system. The implemented
KA tool provides broader support than previously
implemented systems. Preliminary evaluations in
a travel planning domain show that users who are
not programmers can, with little training, specify
executable procedural knowledge to customize an
intelligent system.

1 Introduction
In order to be successful, deployed intelligent systems must
be able to cope with changes in their task specification. They
should allow users to make modifications to the system to
control how tasks are performed and to specify new tasks
within the general capabilities of the system. For example,
consider a travel planning assistant that can locate flights and
hotel reservations to help a user create an itinerary for some

1I gratefully acknowledge support fromDARPA grants F30602-
00-2-0513, as part of the Active Templates program, and F30602-
97-1-0195, as part of the High Performance Knowledge Bases pro-
gram

trip. Many such systems allow users to search for hotels by
cost, hotel chain and distance to some location. However,
users often have individual requirements, such as “prefer a
direct flight unless it is double the price of the cheapest con-
necting flight” or “if the flight arrives late in the evening, the
hotel should be near the airport, otherwise it should be near
the meeting.” These requirements often go beyond the initial
abilities of the travel assistant tool, leaving the user to check
them by hand and severely limiting the tool’s usefulness.

The ability to define requirements like these in a way that
can be integrated with the tool is therefore essential for it to
meet a wide range of users’ needs. The requirements, which
were suggested by an independent user, are typical in that
they do not require adding new sources of information to the
tool, which can already compute distances and knows flight
arrival times. Instead, they require processing the information
to produce new criteria: in the first case for instance, finding
the minimum value of the price for the set of all connecting
flights and multiplying this value by 2. These are instances of
proceduralknowledge, rather than purelyfactualknowledge
like the distances or costs. A tool that can incorporate new
procedural knowledge like this from users can have a range of
applicability that goes well beyond that originally envisaged
by the developer.

However, it is difficult for users who are not programmers
to add procedural knowledge to systems. In the next section
we discuss some of the challenges that users face in more
detail. Some KA approaches useexpectationsof the entered
knowledge to aid users[Kim & Gil, 1999]. Expectations are
beliefs about the knowledge that the user is currently entering
that can be used to constrain the possibilities for what can
be entered next. For example, expectations can govern the
return type of a function that the user is entering, or its general
purpose within the system. They can be used both to interpret
and check knowledge as it is entered, to provide feedback or
to help a user enter correct knowledge.

Another common direction of work in knowledge acqui-
sition (KA) aims to support users through explicit, domain-
independent theories of the tool’s problem-solving process,
often calledproblem-solving methods(PSMs)[Breuker & de
Velde, 1994; Erikssonet al., 1995]. These theories can en-
courage re-use across different applications and the struc-
tured development of intelligent systems as well as providing
a guide for knowledge acquisition from experts. They can be

used to structure the KA session for the user and provide con-
text for the knowledge that is acquired. However, most KA
approaches that use problem-solving methods focus on assist-
ing knowledge engineers rather than domain experts[Fensel
& Benjamins, 1998; Fensel & Motta, 1998].

Other KA tools such as SALT[Marcus & McDermott,
1989] take a role-limiting approach, allowing domain ex-
perts to provide domain-specific knowledge that fills cer-
tain roles within a PSM. However, most of these have been
used to acquire instance-type information only. Musen
[Musen, 1992] argues that although role-limiting provides
strong guidance for KA, it lacks the flexibility needed for
constructing knowledge-based systems (KBS). The problem-
solving structure of an application cannot always be defined
in domain-independent terms, and a single problem-solving
strategy may be too general to address the particulars of an
application. Puerta et al. advocate using finer-grained PSMs
from which a KBS can be constructed[Puertaet al., 1992].

Gil and Melz[Gil & Melz, 1996] address this problem by
encoding the PSM in a language that allows any part of the
problem-solving knowledge to be inspected and changed by a
user. In their approach, a partially completed KBS can be an-
alyzed to find missing problem-solving knowledge that forms
the roles to be filled. This is done as part of theinterdepen-
dency analysisperformed by EXPECT[Swartout & Gil, 1995;
Kim & Gil, 1999], which looks at how both problem-solving
knowledge and factual knowledge is used in the intelligent
system. This work extended the role-limiting approach to ac-
quire problem-solving knowledge and to determine the roles
dynamically. However, Gil and Melz’s tools were not ade-
quate for end users. There are at least two reasons for this.
First, there is no support for a structured interaction with the
user as there is in tools like SALT. The knowledge roles, once
generated, form an unstructured list of items to be added,
and it can be difficult for the user to see where each miss-
ing piece of knowledge should fit into the new KBS. Second,
the user must work directly with their procedure syntax to add
problem-solving knowledge, which is not appropriate for end
users.

One solution is to exploit knowledge from a variety of
sources to guide the user through all the stages of adding
procedural knowledge. We view all the KA tools mentioned
above as providing different kinds of expectations on the
knowledge to be entered, either from background theories
in the form of the PSMs, or from interdependency analysis.
This framework allows the tool to exploit the background the-
ory from the PSM to help a user begin the process of adding
knowledge, and also to exploit interdependencies to help a
user refine an initial definition of a procedure into an exe-
cutable one. In our implemented system, which is built on
EXPECT, modules that use expectations from the two sources
share information in the form of input-output characteriza-
tions of expected procedural knowledge. This sharing is mu-
tually beneficial to both the background theory-based and
interdependency-based approaches.

In the next section I discuss some of the challenges that
users who are not programmers face in defining procedural
knowledge. Next I describe the use of expectations in more
detail and show how they are integrated in an implemented

tool, calledConstable. I then report on initial user experi-
ments with Constable that demonstrate the value of the ap-
proach.

2 Why do users find it difficult to enter
procedural knowledge?

There are several challenges that users face in defining pro-
cedural knowledge. Here I sketch how some of them can be
addressed, and highlight the role played by expectations.

Users do not know where to start.Adding a new capabil-
ity to an intelligent system may require adding several related
pieces of knowledge, in a form recognizable by the system.
Simply beginning this process can be difficult even for an ex-
perienced programmer who does not know the system well.
Expectations based on theproblem-solving methodcan help
identify the purpose and the initial structure of new procedu-
ral knowledge[Erikssonet al., 1995].

Users do not know formal languages.A structured En-
glish editor allows users to modify English paraphrases of a
procedure’s formal representation[Blythe & Ramachandran,
1999]. Users can select a fragment of the paraphrase and
choose from a list of suggested replacements for the frag-
ment, which are automatically generated based onexpecta-
tions from method analysis. This approach hides the in-
ternal procedure syntax while avoiding the challenge of full
natural language processing.

Users may not know whether the added knowledge is free
of syntax errors.The new knowledge may have errors in for-
mal syntax (e.g.an “if” statement with no condition) or it may
have type errors (e.g. trying to multiply the result of a sub-
procedure that returns a hotel). Since users create procedures
by choosing replacements from a list, the editor can effec-
tively eliminate some syntax errors. Others can be detected
to generate a warning. If a procedure fragment is selected
that contributes to a syntax error, some of the suggested re-
placements are formulated to fix the error, further helping the
user.

Users may not know whether the added knowledge is cor-
rect. The procedure may be correct from a formal standpoint
but not achieve the desired result. Constable tests new knowl-
edge against examples as soon as it is entered to help find
these problems.

It takes several steps to add new knowledge, so users can
easily be lost. Users often do not realize and/or forget the
side effects of the changes that require following up. Expec-
tations from the PSM can be used to guide users through the
initial steps in adding new knowledge. This is done through
a script, as the next section shows. The approach is related
to knowledge acquisition scripts[Tallis & Gil, 1999], though
not as general.

This discussion of problems that users face indicates that
providing help based on a combination of several different
kinds of expectations may be key for non-programmers to
add procedural knowledge. In the next two sections we show
the help that can be given based on different kinds of ex-
pectations and describe how they are integrated in Constable.
We begin by describing expectations from PSM task theories
and then describe how the system makes use of expectations

derived from analyzing procedure interdependencies. In the
following section we describe how the expectations are inte-
grated by expressing expectations from background theories
in terms of input-output type expectations.

3 Expectations from background theories
Expectations derived from the background theory in a
problem-solving method are used to help clarify the purpose
of the new procedural knowledge to be added by identifying
its place in the PSM framework. Once this identification is
made, initial templates are created for the new knowledge,
which the user can refine until they perform the desired task.
In this way, expectations from background theories help a
user begin the process of defining new procedural knowledge
to perform some task. In our approach, the background the-
ory has two main components: (1) an ontology of concepts
related to the task, and (2) generic procedural knowledge for
performing each subtask.

This approach is general and can be applied to a wide
range of generic tasks. In this paper we use an implemented
problem-solving method for plan evaluation to illustrate the
approach. Plan evaluation problems belong to a domain-
independent problem class in which an agent, typically a hu-
man expert, judges alternative plans according to a number
of criteria. The aim is usually to see which of the alterna-
tive plans is most suited for some task. In terms of a stan-
dard problem solving method library such as CommonKADS
[Breuker & de Velde, 1994], it is a special case of assessment.

Each criterion for judging a plan is represented explicitly
in this framework. Through experience with several intelli-
gent systems for plan evaluation[Valenteet al., 1999], we
have identified several patterns in the ways that the crite-
ria are evaluated[Blythe & Gil, 1999]. These patterns are
regularities that can be re-used across planning domains and
provide guidance for knowledge acquisition. They are repre-
sented through an ontology of plan judgment criteria, called
critiques, that is partially shown in figure 1. For example,
upper-bound represents the class of critiques that can be
evaluated by checking that some property of the plan has a
value that is below a maximum value. Each class is identi-
fied with a pattern for evaluating a plan, implemented through
generic procedural knowledge attached to the class. The PSM
also includes concepts related to plans and the use of re-
sources.

global-critique local-critique bounds-check extensional-check

critique

upper-bound

completeness

critique resource-check

flight-cost-critique

inclusion exclusionlower-bound

Figure 1: Different types of criteria for judging plans are part
of the background theory of plan evaluation.

The second component of the task theory consists of

generic procedural knowledge attached to some of the sub-
tasks within the domain. In the plan evaluation domain, these
subtasks are the generic critique types. For example, the fol-
lowing method says that a step satisfies an upper bound cri-
tique if and only if the actual value of the associated property
is less than or equal to its maximum value. The tasks of es-
timating the actual and maximum values for the property are
two methods that can be defined by the user with our tool.

capability: (determine-whether (obj (?thing is (inst-of thing)))
(satisfies (?bc is (inst-of upper-bound))))

result-type: (inst-of boolean))
method:
(check-that (obj (estimate (obj actual-value) (of ?bc) (for ?thing)))

(is-less-than-or-equal-to (estimate (obj maximum-allowed-value)
(of ?bc) (for ?thing))))

3.1 Using background theories in Constable
The background theory can be used to create a working
plan evaluation system for a particular domain by defin-
ing domain-specific critique classes within the ontology and
adding the procedures needed complete each critique’s defi-
nition. In the travel planning domain, for example, plans are
itineraries for travel and the steps in plans represent reserva-
tions of flights, hotels and rental cars. One possible critique
checks that no flight costs more than $500. This is imple-
mented by defining the critiqueflight-cost as a subclass
of both local-critique andupper-bound . The proce-
dures for those classes are then used to evaluate the new cri-
tique, resulting in a check that the actual amount offlight-
cost for each step is less than or equal to the maximum
amount. The user completes the definition by defining meth-
ods to compute the actual amount (by retrieving the cost of
the flight) and the maximum allowed amount ($500).

Figure 2 shows the main window through which a user
defines theflight-cost critique in Constable. The tool
presents questions of two kinds: those aimed at classifying
the critique in the ontology,e.g. questions 2, 5 and 7, and
those allowing the user to refine default procedural knowl-
edge, which begin with the phrase “show me how to...”. The
questions are attached to the critique classes in the ontology
and the tool asks them as it tries to classify the new critique.
For instance, question 5, “Warn if flight-cost is too large?” is
used to classify the critique as an upper bound. Once a pos-
itive classification is made, the tool gives the user an option
to refine the procedural knowledge attached to the class. The
generic procedural knowledge for this class include a default
for “estimate the maximum allowed value of ..”, so question
6 allows the user to refine this default for the flight cost.

The use of background theories to classify new knowledge
and define default procedural knowledge helps to solve the
first problem that users face in creating procedural knowl-
edge: how to get started. The tool begins by asking questions
about the nature of the knowledge to be added, and the default
procedures are guaranteed to be applicable within the system.
The task theory is also used to break the new knowledge into
manageable pieces, an important step that is hard for users
who are not programmers. However, refining the methods
to compute actual values and maximum allowed values for
flight costs, for example, can still be a daunting task requir-
ing the tool to offer more assistance. Expectations based on

Figure 2: Constable’s main window for defining a critique in-
cludes questions that classify the new critique within the on-
tology and questions that refine the generic procedural knowl-
edge associated with the classification.

interdependency analysis are one source of this assistance.

4 Expectations from interdependencies
The expectations described in the last section come from
background theories of tasks in problem-solving methods.
Here we consider expectations that come from comparing
the new procedural knowledge with the procedure syntax and
with existing procedural or factual knowledge, which we re-
fer to asinterdependency expectations. Some examples of
syntax-based expectations are that variables that are used in
the procedure body are defined and that the rules of syntactic
constructs such as“if ... then ... else ...”are observed. Some
examples of expectations generated by comparing the new
knowledge with existing procedural and factual knowledge
are that relations and objects used are defined in the knowl-
edge base, that other procedural knowledge that is used is de-
fined, and that the relations and procedural knowledge used
will return information of an appropriate type for the way it
is being used (e.g. the procedure does not try to multiply a
hotel by a number). These expectations are derived from in-
terdependency models[Kim & Gil, 1999].

Figure 3 shows Constable’s editor for procedural knowl-
edge being used to define how to compute the maximum al-
lowed value of the cost of a flight reservation. The purpose
and body of the procedure are automatically paraphrased in
English [Blythe & Ramachandran, 1999]. When the user
selects part of the procedure to change, in this case“Pitts-
burgh”, the editor suggests replacements in the lower panel,

also automatically paraphrased. The suggestions are gener-
ated by analyzing the current knowledge base for possible
terms and grouping them. Examples of groups are proce-
dures or relations that could be applied to the current term
or that have the same type. This approach hides the formal
syntax while avoiding the challenge of full natural language
processing.

Figure 3: Constable’s editor being used to define how to com-
pute the maximum allowed value of the cost of a flight reser-
vation.

We distinguish two ways that a KA tool can use interdepen-
dency expectations to help a user define procedural knowl-
edge, called hard and soft expectations. For ahard expecta-
tion, the tool does not allow procedural information that vio-
lates the expectation to be expressed. For example, the only
way for a user to introduce an “if” construct into a procedure
is to select one from the suggested replacements, so the user
can never express a procedure that violates the basic syntax of
the construct. All syntax expectations are hard expectations
in this editor.

For asoft expectation, the tool will allow a user to define
procedures that violate the expectation, but will provide warn-
ings, and possibly remedies, for the violation. For example
the method in Figure 3 currently violates a type expectation.
To compute the maximum allowed cost for a flight, the user
specifies “if Pittsburgh then 1000, otherwise 500”, but in the
formal syntax, the keyword “if” must be followed by code
that returns a boolean value. The editor shows an error mes-
sage in the lower panel and, when “Pittsburgh” is selected
to be replaced, suggests expressions that include “Pittsburgh”
but will produce a boolean value, including “check that the
destination city is equal to Pittsburgh” and “check that the
origin city is equal to Pittsburgh”. These expressions are
produced by an anytime search algorithm. The suggestions

also include expressions that will not fix the violation, such
as “compute the distance between Pittsburgh and a location”.

Choosing to make an expectation hard or soft can impact
how easily a user can express a procedure through successive
replacements and how easily a user can be confused by an
intermediate form of the procedure. Empirically, users find
it useful to build intermediate expressions that violate inter-
dependency expectations, such as in the above example or by
using undefined procedures. This allows users to concentrate
on other issues before fixing the violations. These are soft ex-
pectations in Constable. However it is not so useful for users
to violate syntactic expectations; these are hard in Constable.
Different KA tools may choose different expectations to be
hard or soft, and the optimal choice may also depend on the
skill level of the user.

Almost all compilers find and report errors based on input-
output expectations. Constable goes beyond this in suggest-
ing modifications to the existing code that would address the
error. The suggestions are found by a breadth-first search
through the space of possible sentences, taking the user-
selected fragment as a starting point. A node in the search
space is a term in the formal syntax, and it is expanded by
applying all known applicable relations or procedures. The
search terminates when terms are reached that resolve the ex-
pectation violation, or match a user-typed search string. Since
the search space can be infinite, the suggestion module times
out after a short time.

Users who are not programmers can be daunted by the need
for executable procedural knowledge to have precise syntax
with subgoals returning correctly typed information. The use
of the expectations described above, in both hard and soft
form, can provide significant help.

5 Integrating expectations from different
sources

The previous two sections described how both expectations
from background theories and method-based expectations
provide valuable help for users to define procedural knowl-
edge. In combination, the two kinds of expectations can
provide more assistance than the sum of their parts. This
is because useful information about the emerging procedural
knowledge can be exchanged between the two sources.

There are several examples of this information flow when
Constable is used to create the flight cost critique, summa-
rized in the window in Figure 2. As we described earlier,
the questions in Figure 2 are generated through expectations
in the background task theory. Some of the questions are to
classify the new critique in the ontology and some are to re-
fine the attached procedural knowledge.

For each of the procedures to be defined in questions 3, 4
and 6, type expectations are sent from the task theory to the
method analysis module, which uses them to help guide the
user. Constable uses the task theory to assign types to each
input variable and a desired output type, and calls the proce-
dure editor. For example, the method “estimate the maximum
allowed value of ...” has a desired type(inst-of number), so
the method editor will warn the user and suggest remedies if
the method defined does not produce a number.

Some of the type expectations for the default methods are
refined in the method analyzer by considering their interde-
pendencies. For example, the user defines a method “esti-
mate the actual value of flight cost for a flight reservation” in
Figure 2. The input variable for this method has type(inst-of
flight-reservation), but this cannot be inferred from the task
theory alone: it comes from the result type of the method
“find the things for which to evaluate a flight cost on a trip”.
This is defined by the user to return a set of flight reservations.
When this definition is complete,EXPECT’s interdependency
model is re-generated. It shows that the subsequent methods
should take a flight reservation as input, and this information
is passed back to the task theory from the method analyzer.

Information from the method analyzer is also used by the
task theory in classifying the critique. For instance, once the
user completes the definition of a procedure to “estimate the
actual value of flight cost..”, the method analyzer notes that
it produces a number. This information is used in the task
theory to classify the critique as abounds-checkaccording to
the ontology of Figure 1. Question 5, “Warn if flight cost
is too large?”, attempts to classify the critique as alower-
bound. If the method to compute the actual value produced a
different type, for example an airline, this question will not be
asked. Instead, the task theory will classify the critique as an
extensional critique and ask whether there are any preferred
values, to test whether the critique is apositive-extensional-
critique.

Information is passed between the PSM task theory and the
method analyzer in both directions as the user defines a cri-
tique. The method analyzer makes use of type expectations
from the task theory to help the user. It also passes refined
type information to the task theory, based on the new pro-
cedural information and on interdependency analysis. The
task analyzer uses this information as it classifies the new
task. This interplay between the expectations from different
sources significantly improves the guidance that can be given
the user as the new knowledge is defined.

6 Preliminary experiments
We performed a preliminary evaluation of the approach by
evaluating the performance of six subjects, who were not pro-
grammers, at adding and modifying critiques in the travel
planning domain. In training, users followed written instruc-
tions to modify three critiques and add one new critique using
Constable. In testing, users were asked to add and modify as
many critiques as possible from a list of six. Subjects took an
average of one hour to complete the training phase and thirty
minutes working on the test critiques.

The simplest training task was to change a constant repre-
senting the maximum value of the distance between the hotel
used and a meeting location. In the most complex task, the
maximum distance for the hotel was defined as twice the dis-
tance of the closest available hotel. The procedure is:

(multiply (obj (find (obj (spec-of minimum))
(of (compute (obj (spec-of distance))

(between (find (obj (set-of (spec-of hotel)))
(in (r-city (r-hotel ?t)))))

(and (r-meeting (r-trip ?t)))))))
(by 2))

All subjects entered this definition correctly using the tool.
Even though they were following instructions, it is unlikely
that this success rate would have been achieved without using
Constable. The test tasks had the same range of complexity
as the training tasks.

Adding or modifying a critique may require a number of
steps to be completed. To measure the partial performance in
the test tasks we counted each correctly defined method as a
step, and also counted classifying the new critique correctly
in the ontology as a step. Table 1 shows the average number
of steps completed in each the first four test tasks. Every
subject was able to make modifications to constant maximum
values. Four of the six subjects were able to define a hotel cost
critique according to the definition “If the city of the hotel is
Pittsburgh, then the maximum hotel cost is $70, otherwise it
is $120”. Defining this kind of critique is beyond the scope of
tools that do not allow users to define procedural knowledge.

Task steps completed / Total steps
Modify constant maximum value 1/1
Max value is conditional on city 0.66 / 1
Complex new upper bound 1.4 / 3
Complex new upper bound II 1 / 3

Table 1: Average number of steps completed by subjects for
each of four test tasks.

In addition to the pre-defined critiques, subjects attempted
to add their own critiques to the plan evaluation tool. These
critiques were written down before subjects worked through
the training or test cases, so that they would not affect their
choices. No subject succeeded in completely adding these
critiques. Of the 26 critiques that subjects described, 17 could
in principle be added through Constable. The others could
be identified in the critique ontology but used relations and
concepts, such as “bed-and-breakfast”, that the tool did not
include.

One shortcoming of the current tool is that subjects were
not able to easily see all the concepts and relations available in
the domain. The editor shows only those that are related to the
current procedure definition. While this is helpful when users
are making local changes to a procedure, they also need a way
to see all available information. Also, the short time-scale
of the experiment limited the time that subjects could spend
thinking about the critiques. We hope to build a tool that the
subjects would use on a daily basis that includes Constable,
and investigate its impact.

After completing the experiment, several subjects whose
job includes travel planning volunteered more critiques that
would be useful in their work. It is interesting to compare
these with the critiques that were expressed before the ex-
periment: they all entail more complex procedural reason-
ing than the earlier critiques, but can be expressed in the cri-
tique ontology. Examples include “if the flight arrives late in
the evening, the hotel should be near the airport, otherwise it
should be near the meeting”, and “prefer a hotel that is close
to each of two meeting locations”.

7 Discussion
Adding procedural knowledge to intelligent systems is a chal-
lenging task, but one that is necessary for the system to be
useful to a wide range of users. We presented a novel ap-
proach in which expectations from background theories and
from interdependency analysis are integrated to guide the user
through the KA process. As well as providing assistance
across a larger subset of the KA task than previous systems,
the approach is able to combine information from the two
sources to provide help that is not otherwise possible. In gen-
eral, procedural knowledge should be added in concert with
factual knowledge such as new concepts, relations and in-
stances. Constable includes tools for adding factual knowl-
edge which were not described here for space reasons. Infor-
mation on more of the tools, but with less detail on the use of
expectations, can be found in[Blytheet al., 2001].

We are currently working on a number of applications of
Constable. One is a travel planning tool that retrieves flight,
hotel and other information from the web and uses constraints
on partial travel plans to help users assemble an itinerary. In-
tegrating Constable will help users specify individual prefer-
ences to assemble itineraries. We also intend to apply Con-
stable to acquire procedural knowledge for reasoning about
the biochemistry of DNA.

References
[Blytheet al., 2001] Blythe, J., Kim, J., Ramachandran, S.,

and Gil, Y. 2001. An integrated environment for knowl-
edge acquisition. Best Paper,Proc. International Confer-
ence on Intelligent User Interfaces.

[Blythe & Gil, 1999] Blythe, J., and Gil, Y. 1999. A
problem-solving method for plan evaluation and cri-
tiquing. In Proc. Twelfth Knowledge Acquisition for
Knowledge-Based Systems Workshop.

[Blythe & Ramachandran, 1999] Blythe, J., and Ramachan-
dran, S. 1999. Knowledge acquisition using an english-
based method editor. InProc. Twelfth Knowledge Acquisi-
tion for Knowledge-Based Systems Workshop.

[Breuker & de Velde, 1994] Breuker, J., and de Velde, W. V.
1994. CommonKADS Library for Expertise Modelling:
Reusable Problem Solving Components.

[Erikssonet al., 1995] Eriksson, H.; Shahar, Y.; Tu, S. W.;
Puerta, A. R.; and Musen, M. A. 1995. Task modeling with
reusable problem-solving methods.Artificial Intelligence
79:293–326.

[Fensel & Benjamins, 1998] Fensel, D., and Benjamins,
V. R. 1998. Key issues for automated problem-solving
methods reuse. InProc. the European Conference on Ar-
tificial Intelligence.

[Fensel & Motta, 1998] Fensel, D., and Motta, E. 1998.
Structure development of problem solving methods. In
Proc. Eleventh Knowledge Acquisition for Knowledge-
Based Systems Workshop.

[Gil & Melz, 1996] Gil, Y., and Melz, E. 1996. Explicit
representations of problem-solving strategies to support

knowledge acquisition. InProc. Thirteenth National Con-
ference on Artificial Intelligence.

[Kim & Gil, 1999] Kim, J., and Gil, Y. 1999. Deriving ex-
pectations to guide knowledge-base creation. InProc. Six-
teenth National Conference on Artificial Intelligence, 235–
241. AAAI Press.

[Marcus & McDermott, 1989] Marcus, S., and McDermott,
J. 1989. Salt: A knowledge acquisition language for
propose-and-revise systems.Artificial Intelligence39:1–
37.

[Musen, 1992] Musen, M. A. 1992. Overcoming the limi-
tations of role-limiting methods.Knowledge Acquisition
4(2):165–170.

[Puertaet al., 1992] Puerta, A. R.; Egar, J. W.; Tu, S.; and
Musen, M. A. 1992. A multiple-method knowledge ac-
quisition shell for the automatic generation of knowledge
acquisition tools.Knowledge Acquisition4(2):171–196.

[Swartout & Gil, 1995] Swartout, W. and Gil, Y. 1995. EX-
PECT: Explicit Representations for Flexible Acquisition.
In Proc. Ninth Knowledge Acquisition for Knowledge-
Based Systems Workshop.

[Tallis & Gil, 1999] Tallis, M., and Gil, Y. 1999. Designing
scripts to guide users in modifying knowledge-based sys-
tems. InProc. Sixteenth National Conference on Artificial
Intelligence. AAAI Press.

[Valenteet al., 1999] Valente, A.; Blythe, J.; Gil, Y.; and
Swartout, W. 1999. On the role of humans in enterprise
control systems: the experience of inspect. InProc. of the
JFACC Symposium on Advances in Enterprise Control.

