
An Integrated Environment for Knowledge Acquisition

Jim Blythe
Information Sciences

Institute
University of

Southern California
Marina del Rey, CA

90292

blythe@isi.edu

Jihie Kim
Information Sciences

Institute
University of

Southern California
Marina del Rey, CA

90292

jihie@isi.edu

Surya
Ramachandran

Information Sciences
Institute

University of
Southern California
Marina del Rey, CA

90292

surya@isi.edu

Yolanda Gil
Information Sciences

Institute
University of

Southern California
Marina del Rey, CA

90292

gil@isi.edu

Best Paper, International Conference on Intelligent User Interfaces, 2001

ABSTRACT
This paper describes an integrated acquisition interface that includes
several techniques previously developed to support users in various
ways as they add new knowledge to an intelligent system. As a
result of this integration, the individual techniques can take bet-
ter advantage of the context in which they are invoked and provide
stronger guidance to users. We describe the current implementation
using examples from a travel planning domain, and demonstrate
how users can add complex knowledge to the system.

1. INTRODUCTION
An important area of user interface research is the development

of practical approaches that enable users to add new knowledge
to an intelligent system, which would bring computers closer to
meeting the challenge of end-user programming. These acquisi-
tion interfaces need to have many intelligent capabilities in order
to support the complex dialogues that they must conduct with the
user, integrate the new knowledge with existing knowledge, and
make appropriate generalizations.

In past research, we developed several acquisition interfaces [10,
2, 18], all using EXPECT as an underlying framework for knowl-
edge representation and reasoning [17]. Each interface addressed
different issues and helped the user in different ways as they add
knowledge to a system, yet none could individually claim to be
able to support a user appropriately. This paper presents an inte-
grated acquisition interface that combines these approaches, pro-
viding stronger guidance to users.

The paper begins with a brief overview of the individual pieces of
knowledge acquisition research that our interface integrates. Then
we show an example scenario in which a user interacts with the im-
plemented tool. Next, we analyze the different kinds of knowledge
that users need to specify and discuss the challenges they pose to
a knowledge acquisition tool. We then describe the components of
our implemented system in detail, highlighting the benefits of the
integrated acquisition environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’01, January 14-17, 2001, Sante Fe, New Mexico.
Copyright 2001 ACM 1-58113-325-1/01/0001 ..$5.00

2. PREVIOUSLY DEVELOPED TOOLS AND
TECHNIQUES

Our past research on knowledge acquisition can be described in
terms of typical concerns that users may have about adding new
knowledge to an intelligent system:

� Users do not know formal languages.
We have developedEnglish-based editorsthat allow
users to modify English paraphrases of the internal,
more formal representations [3]. Users can only se-
lect the portions of the paraphrase that correspond to
a valid expression in the internal language, and pick
from a menu of suggested possible replacements for
that portion. This approach enables the system to com-
municate with the user in English while circumventing
the challenges of full natural language processing.

� How do users know where to start?
Intelligent systems use knowledge to perform tasks for
the user. If the acquisition tool has a model of those
tasks, then it can reason about what kinds of knowl-
edge it needs to acquire from the user. We have de-
veloped acquisition tools thatreason about general
task modelsand other kinds of pre-existing knowl-
edge (such as domain-specific knowledge that is ini-
tially included in the system’s knowledge base) in or-
der to guide users to provide the knowledge that is rel-
evant to those tasks [2]. Our work has concentrated
on plan evaluation and assessment tasks, but could be
used with other task models.

� How do users know that they are adding the right things?
Users need to know that they are providing knowl-
edge that is useful to the system and whether they have
given the system enough knowledge to do something
on its own. Our approach is to useInterdependency
Modelsthat capture how the individual pieces of knowl-
edge provided work together to reason about the task
[10]. These Interdependency Models are derived auto-
matically by the system, and are used to detect incon-
sistencies and missing knowledge that turn into follow-
up questions to the user. Users are often not sure whether
they are on the right track even if they have been mak-
ing progress, and we have found that it is very useful
to show the user some aspects of this Interdependency
Model (for example, showing the substeps involved in
doing a task) and how it changes over time.

Figure 1: The acquisition interface is invoked from the application, in this case a travel assistant. A travel plan is shown on the left.
On the right, the travel assistant has used its knowledge base of the user’s preferences to generate salient properties important to the
user (such as overall cost) and constraints (such as upper limits on the hotel rate.)

� How do users figure out what to do next?
A system that responds to the user with many sensi-
ble follow-up questions is helpful but not sufficient.
When users add a sizeable amount of knowledge, the
system is likely to respond with a number of follow-
up questions. Users also need help in formulating an-
swers. We havecategorized and organized differ-
ent kinds of questions, as well as the possible actions
that the user can take in order to address them [10, 8].
By understanding the nature of the questions, the sys-
tem can help the user understand and prioritize these
questions. By understanding the context in which each
question was generated, the system can make good
guesses about how the user may answer them.

� It takes several steps to add new knowledge, so users
will be easily lost.
Entering new knowledge, even of moderate complex-
ity, requires making several individual changes. Users
often do not realize and/or forget the side effects of
these individual changes that must be followed up (any-
one who has ever programmed can relate to this). We
have developed a framework to guide users through
typical sequences of changes orKnowledge Acquisi-
tion Scripts (KA Scripts) [18]. As the user interacts
with a KA Script and enters knowledge step by step,
additional KA Scripts may be activated that contain
follow-up questions about that new knowledge. The
system not only points out the next steps but indicates
its best guess about the knowledge the user needs to
enter based on the knowledge that is already in the sys-
tem. We have developed a library of general-purpose
KA Scripts [18], as well as with scripts customized to
the general task models mentioned above [2].

In the next section, we show through an example the capabili-
ties of the acquisition interface that integrates these techniques and
tools.

3. WALKTHOUGH EXAMPLE OF A USER’S
INTERACTION

This section illustrates through a simple example how a user
interacts with our integrated acquisition tool. In these examples,
the user wants to tell a travel assistant about her personal con-
straints in selecting hotels, airlines, or making car rental reserva-
tions. Through a series of snapshots, we show how the user speci-
fies that the cost of a hotel should not be more than $120 per day,
and should be less than the maximum rate specified in the contract
that the trip is charged to. Later in the paper we show how a user
adds more complex constraints.

The user invokes the acquisition tool from the application, in
this case the travel assistant interface shown in Figure 1. The left
side of the application window shows the travel plan, composed of
severalstepsthat specify flights, hotel reservations, and car rental
reservations1. The assistant presents to the user on the right-hand
side salient aspects of the plan that the user indicated in the past
as being important. Some of the items shown arepropertiesof the
travel plan that the system derives from the information shown in
the left hand side. The total cost of the plan is an example of such
a property, and the knowledge base specifies how it is calculated
based on the daily rate of the hotel reservation, the number of days
that the user will be away, the cost of the flight, etc. Based on
these properties, the user can defineconstraintsto express their
travel preferences. For example, the user prefers to use Holiday
Inn and the system is pointing out that this particular travel plan
complies with this constraint. In short, the knowledge base of this
assistant includes knowledge about how to derive these constraints
and properties from a travel plan like the one shown on the left hand
side.

First, the user wants to tell the system not to book her in hotels
that cost more than $120 per day. The user invokes the acquisition
interface to add this new constraint. In Figure 2 the user names
a new propertyhotel rate , and the system asks some questions
about the nature of this new constraint. Figure 3 shows the window
used to ask one of these questions, where the user is indicating that

1Notice that the tool described here is not concerned with generat-
ing itineraries and travel plans, but could be integrated with a travel
planning system that would use the same knowledge acquired by
our tool to guide its selection of choices in generating a travel plan.

this is a constraint about the hotel’s daily rate and not its weekly
rate or exercise facilities. The user does this by choosing from
the options presented in the bottom half of the window, which are
generated by the system based on what the knowledge base says
about hotels.

Figure 2: The system begins by guiding the user to define a new
constraint.

Figure 3: The user selects thedaily rate among all the
choices that the system presented based on its current knowl-
edge about hotels.

The system continues with additional questions about constraints
based on the new property, shown in Figure 4. Since it knows that
daily rates are numeric, it asks whether the user wants to set an
upper or lower limit for this amount. In Figure 5, the user indicates
that the maximum amount is $120 by typing that number in the
appropriate place within the sentence that the system presents in
the screen.

Later on, the user wants to add a similar but more complex con-
straint: she would like the system not to book her in hotels that have
daily rates that go over a maximum rate specified in the contracts
that she will charge for the trip. She follows the same basic steps
shown in Figures 2 to 4, except that the upper limit is specified as
in Figure 6. In this case, the system is showing the user all the
things it knows about contracts (e.g., they have start and end dates,
a funding agency) but there is nothing about a maximum allowed
hotel rate. The pop-up window allows the user to define this. It
also shows that the system expects the value to be a number based
on what it knows so far about this constraint.

Figure 4: The system continues asking questions about the al-
lowed values for the hotel rates.

Figure 5: The user specifies a maximum hotel cost of $120.

The user has now finished defining this new constraint. However,
the system realizes that in order to check this constraint it needs to
know what is the maximum allowed hotel rate for all the contracts
that it knows about. Figure 7 shows how the user specifies the
maximum rate for the EXPECT contract.

The system is providing significant assistance to the user in sev-
eral ways throughout this scenario:

� the systemisolates the user from the internal formal repre-
sentationof the knowledge being entered. For example, the
internal representation generated from the interaction in Fig-
ure 3 is ((capability

(estimate (obj (?v is (spec-of actual-value)))
(of (?c is (spec-of hotel-cost))) (for (?s is (inst-
of step))))
(body (r-daily-rate (r-hotel ?s)))
(result-type (inst-of number))) .

� the systemhelps the user get startedby presenting initial
questions based on the kinds of knowledge that can be spec-
ified for the travel advisor, in this case new constraints and
properties.

Figure 7: The system asks about the maximum allowed hotel rate for existing contracts.

Figure 6: The user tells the system that contracts may specify a
maximum hotel rate.

� the systemasks the user follow-up questionsthat ensure that
the new knowledge is usable by the system. For example, the
system asks the user to extend the system’s knowledge about
contracts with regards to allowed hotel rates.

� the systemmakes intelligent guessesabout how the user might
answer each question. For example, based on what the user
has already said the system shows that the default value of a
maximum allowed hotel rate is a number.

� the systembrings to bear relevant background knowledge
that at already has about general kinds of constraints and
preferences and how to check them. For example, it knows
that some constraints are relevant to a whole trip while oth-
ers concern only some portions, and it knows that some con-
straints are numerical and that arithmetic operations can be
used to express those constraints.

Although the examples used in this paper are drawn from travel
planning, the issues are motivated by our work in complex real-
world planning domains, including logistics military planning, air
campaign plan evaluation, course of action critiquing, and more re-
cently biological weapon capability assessment. In these and other
domains, users find great value in intelligent assistants that ana-
lyze a plan under consideration (created often by hand) and point
out salient facts or violated constraints. This helps them evaluate
and assess tradeoffs between different options, much in the way in
which a travel plan is evaluated in our examples. The knowledge
in these systems needs to be adapted to specific requirements of the
situation at hand, user preferences, or novel practices. Knowledge
acquisition tools that enable users to define constraints and prefer-
ences are key to the successful deployment of these and many other
intelligent systems.

4. WHAT KINDS OF KNOWLEDGE NEED
TO BE ACQUIRED?

Figure 8 summarizes the different kinds of knowledge that a user
may want to specify in this type of application. In terms of the
knowledge acquisition techniques that we believe are needed, we
distinguish three main categories of knowledge:

Adding data
� Situation-specific data

Example: the location of the meeting that the user is attending
� Persistent data

Example: the user’s home address
Adding object classes

� Additional features of existing object classes
Example: contracts have an upper limit on the hotel rates al-
lowed

� Additional object classes
Example: security clearances, which are needed by the trav-
eller for some meetings

Adding choice constraints and preferences
� A constant criterion

Example: the hotel cost should be less than $120
� A variable criterion

Example: the hotel cost should be less than the maximum
hotel rate allowed by the contract that is being charged for
the trip

� A tradeoff affecting only one decision
Example: rent cars only from Hertz

� A complex tradeoff affecting only one decision
Example: rent a car only when using taxis to move around
would be more expensive

� A tradeoff affecting several decisions
Example: choose hotels within walking distance, otherwise
rent a car

� Tradeoffs involving several criteria
Example: use United, pick non-stop flights, but if United has
no direct flights then still prefer United to a non-stop with
another airline

Figure 8: Different kinds of knowledge need to be acquired in
this kind of application. Constraints and preferences are the
hardest kind, especially when they involve complex tradeoffs
affecting several choices.

� Data denotes specific object instances or constants (e.g., UA
flight 22 departs from LAX at 12:00PM and arrives Madrid
at 9:20AM.). This is perhaps the easiest for users to spec-
ify. They can be effectively acquired through form-filling
interfaces. In the extreme, some of this data acquisition can
become extremely complex, since in some of the applica-
tions we have seen object instances that are composed of sev-
eral hundred assertions. Model-based interfaces that declar-
atively represent object classes and the associated interfaces

have been used to acquire object instances of medium com-
plexity [15]. The design of effective tools to acquire complex
object instances remains largely an open research issue, in
our view one that has more to do with the HCI aspects of the
interface rather than providing more intelligent assistance.

� Object classesrefer to general descriptions of object cate-
gories and the relations that exist among them (e.g., a flight
has an origin and a destination). This is sometimes called
an ontology. A variety of ontology editors have been devel-
oped over the years [1, 19, 6, 16, 9], many of them include
facilities to enter data as well. Other tools have focused on
related issues such the elicitation of attributes and differenti-
ating features [7, 4], and the detection of inconsistencies in
ontological descriptions [13]. Although many of these tools
use graphical interfaces to show class hierarchies and rela-
tions, it appears that hypertext interfaces may be more prac-
tical for sizeable knowledge bases.

� Constraints and preferencesspecify how the user would
like the system to make choices in cases when there are al-
ternative options. This is perhaps the most difficult kind of
knowledge to acquire, and has been the main focus of our
work. Consider the example of renting a car only when us-
ing taxis is more expensive. This requires finding the dis-
tances between airport, hotel, and meeting locations to esti-
mate the cost of taxis, figuring out how many days the car
is rented to estimate the cost of the rental car, and compar-
ing the two total amounts. This is problem solving (proce-
dural) knowledge, which in this case is reasoning with the
information provided (e.g., the meeting location) in order to
derive more complex abstractions (e.g., the total cost of tak-
ing taxis). Problem solving knowledge is quite difficult to
acquire, and is the end-user programming challenge as de-
scribed in [5]. Because it uses information from the object
classes and the data, it needs to be specified in a way that
is consistent with those. Because it is generating interme-
diate abstractions and using them to generate more complex
ones, it involves a number of steps and substeps that have
to fit together precisely. We aimed to address these issues
in our past work, especially the research on Interdependency
Models [10, 8]. Alternative approaches learn from specific
examples provided by users as they perform a task, and in-
clude programming by demonstration, learning apprentices,
case-based reasoning, and feature-based induction.

Some acquisition interfaces have been developed to acquire some
of the kinds of preferences and constraints that do not involve prob-
lem solving knowledge or very simple forms of it [14, 12]. These
approaches do not address the acquisition of the knowledge in-
volved in analyzing more complex constraints and tradeoffs that
are ubiquitous in many decision making applications. In addition,
although we have used the specification of preferences and con-
straints in planning tasks to motivate the need for supporting the ac-
quisition of different kinds of knowledge we are interested in acqui-
sition interfaces that use techniques that can be generally applied in
many tasks and domains. In tool design there is often a tradeoff be-
tween generality and ease of use, in which a more general tool can
be harder to use for particular applications than more specific tools
designed for those applications. An integrated system such as ours
can combine the benefits of powerful general tools with those of
application-specific ones. This is because the more general com-
ponents in the system can provide power to the more application-
specific components, while the specific components provide better

contextual information to the general components. As we show in
the next section, this is the case with the Acquisition Wizard, which
makes use of application-specific task models, and the other com-
ponents, which are general.

The aquisition environment that we have developed supports the
acquisition of all the different types of knowledge described in this
section. As we present its components in the next section, we will
highlight the benefits of having an integrated system in terms of
how the acquisition of different kinds of knowledge can be sup-
ported.

5. INTEGRATING KNOWLEDGE ACQUI-
SITION TECHNIQUES

Figure 9 shows an overview of the different interface compo-
nents that are integrated within our system and how they interact
with each other. Many of the component tools become more pow-
erful and easier to use in the integrated system because of the in-
formation that is shared between them.

select method

can suggest
domain and range

Also highlights
needed information
derived from
interdependencies

can suggest
type

new instance
is chosen

new relation
is chosen

Wizard recomputes the tree
and agenda as each method
is completed

Application

Acquisition
Wizard

Interdependency
Analyzer

Acquisition
analyzer

Method editor

Relation editor Instance editor

KB Browser

organize

search

Figure 9: Overview of the integrated interface components and
their interactions.

Acquisition Wizard
When the acquisition tool is invoked from the application, theAc-
quisition Wizard manages the initial interaction with the user shown
in Figures 2 and 4. The wizard uses a general task model of plan
evaluation that represents general classes of constraints and prop-
erties, and uses KA Scripts to organize the questions that it needs
to ask the user in order to classify the new constraint appropri-
ately. This task model includes an ontology that organizes different
classes of plan evaluation criteria, shown in Figure 10. The task
model also includes problem solving knowledge about how each
class of criteria is evaluated.

Although the ontology shown in Figure 10 is not complete, and

Critique

Critique

 global
(assessed once)

 local
(assessed on each of
a set of objects)

bounded extensional

upper
bound

lower
bound

 positive
(value must
be one of these)

 negative
(value must not
be one of these)

Figure 10: Part of the ontology of types of plan evaluation used
by the Acquisition Wizard to classify and provide help for a
new critique.

there will be cases where it does not help the user, it provides valu-
able guidance in many cases. A more inclusive ontology that in-
cludes planning resources can be found in [2], as well as more de-
tails about the techniques used. The ontology shown here divides
the set of evaluations for which the wizard can provide help in two
different ways. First, the evaluation can be eitherglobal, meaning
that the property is computed once for the whole plan (e.g., the to-
tal cost) or it can belocal, meaning that the property is computed
for each one of a set of objects found in the plan (e.g., the length
of each flight). An example of problem-solving knowledge associ-
ated with the ontology is that a local evaluation is made by iterating
over the objects for which the property should be measured and re-
combining the individual results. Another piece of problem solving
knowledge says that global evaluations are made by checking the
presence or absence of that property in the overall plan. The second
way that evaluations are classified in the ontology concerns how to
check if the plan or object satisfies the evaluation. If an evaluation
is bounded, then the value is checked against a threshold, either a
maximum value, a minimum value or both. In our example, the ho-
tel rate is a bounded evaluation. If an evaluation isextensional, then
the value is checked against a set of values generated for the test.
In the positive case the value must be in the set and in the negative
case it must not be in the set. Either or both checks can be made
for an evaluation. For example, expressing a constraint to rent only
from Hertz is a positive extensional preference, while a constraint
to avoid flying United is a negative extensional preference.

The wizard takes into account the answers already provided by
the user to decide what additional questions it should ask. After the
user finishes answering the first few questions, shown in Figure 2,
the wizard classifies the kind of property being entered. In this case
has a numeric value, so the wizard checks for a bounded evaluation
by asking the user if the value can be too high and/or too low, as
shown in Figure 4. Otherwise the wizard checks if the evaluation is
extensional by asking the user if there are values that a plan should
or should not have to satisfy the constraint. The wizard uses the
problem solving knowledge specified in the task model to present
the user with a template of the knowledge that needs to be speci-

fied, such as how to specify a maximum value (Figures 6 and 5).
Although the wizard follows the structure of the ontology to gener-
ate its questions, the interaction with the user is done in a way that
hides the complexity of the underlying task model.

Method Editor for Problem Solving Knowledge
TheMethod Editor is invoked to help the user add problem solv-
ing knowledge. It can be invoked by the Acquisition Wizard (as is
done in our example for the windows in Figures 3, 5, and 6) which
uses the general problem solving knowledge in the task model to
create an initial template of the method. The method editor can be
invoked in other contexts (from the Interdependency Analyzer and
from the Acquisition Analyzer as we will describe below), and in
all cases the editor uses that context to generate an initial template
of the method. It can also be invoked by the user directly to update
a method created previously. The method editor is always invoked
with some initial template or specification of the problem solving
knowledge to be added by the user.

At the top of the window, the method editor displays an auto-
matically generated English description of that initial specification
of the problem solving knowledge. The editor keeps track of what
subexpressions in the formal language result in each substring of
the English paraphrase (for example,(r-hotel ?s) results inthe
hotel of the step). The paraphrase is mouse sensitive, but the
user can only select meaningful portions of it. When the user has
selected the part of the paraphrase that she wants to change, the
method editor analyzes the formal subexpression that generated it
and displays a tree view of the possible alternatives, in English, in
the lower window. The alternatives are automatically generated by
an algorithm that ensures that choosing any one would maintain the
syntactic consistency of the method, as shown in [3].

In designing our integrated system, we were able to ensure that
the method editor never starts with a blank slate, but instead always
has some initial specification (even if generic or template-like) of
the problem solving knowledge to be added. This is an important
benefit, since the integrated system is able to provide a structured
English editor for problem solving knowledge that would not be
possible in other environments.

Relation (and Concept) Editor
When the alternatives presented by the method editor do not in-
clude what the user would like to specify, the user can select ”other”
and aRelation Editor is invoked. In our example, this was done
in Figure 6 when the user found that contracts did not have max-
imum allowed hotel rates. Our integrated tool allows the user to
switch seamlessly between adding problem-solving knowledge and
extending the descriptions of objects in the knowledge base, which
is often necessary.

An additional benefit of the integrated tool is that it can use the
context (in this case the method being edited) to propose a default
domain and range for the new relation (contract and number), fur-
ther simplifying the user’s task. Our integrated interface does not
yet include a concept editor, although it would be integrated in a
similar way.

Acquisition Analyzer
Throughout the interaction with the user, anAcquisition Analyzer
keeps track of all the pending questions. Many of these questions
result from analyzing the Interdependency Model derived by the
system, as described in [10, 8]. The Acquisition Analyzer keeps
track of the reason for each question to the user. For example, the
Interdependency Model states what information about objects is
needed to check the new constraint. In our example, it will notice

that the maximum allowed hotel rates of contracts is used in the
constraint’s definition, whereas the end dates or funding agencies
of contracts are not. Based on this, the Acquisition Analyzer will
create a question for the user about each existing contract.

Figure 11: The Acquisition Analyzer keeps track of all the
pending questions and provides suggestions based on the types
of questions.

The user can view these questions through an agenda-based in-
terface, as shown in Figure 11. It shows an item “I need to know
the maximum allowed hotel rate for ’expect contract’ because...”.
The Acquisition Analyzer can reorganize the items in several ways:
based on the type of question, based on the object, based on the
kind of information requested, etc. For each item, a list of sug-
gestions is attached. In this example, one suggestion is to add the
information about the hotel rate for the EXPECT contract. When
the user selects one of the options, the appropriate editor is auto-
matically invoked for either problem-solving or object knowledge.
In Figure 11, when the user selects the option “provide information
about ’expect contract”’, the system invokes the Instance Editor so
that the user can add the information needed (its maximum allowed
hotel rate). The integrated interface enables the user to relate edit-
ing activities to the system’s questions seamlessly, and to select the
appropriate editor based on the kind of question/agenda item being
addressed.

Instance Editor
TheInstance Editor is invoked when the user needs to enter infor-
mation about particular objects, such as a new location or meeting.
In our example, the Instance Editor is used to specify the maximum
allowed hotel rate of existing contracts, as shown in Figure 7, and
could be invoked from the Acquisition Analyzer’s agenda.

The Instance Editor shows on the left hand side what information
is needed about the particular object to check the constraints and
properties defined by the user so far. On the right hand side it gives
the user the option to specify additional things, but it notes that
these are not currently needed. The editor makes this distinction
by analyzing the Interdependency Model which is maintained by
the Interdependency Analyzer as the system acquires new problem
solving knowledge. This feature, enabled by our integrated system,
is not provided by other instance editors.

Interdependency Analyzer
So far, the components of our acquisition interface that have been
described are fairly easy to use, but the information they acquire is
relatively simple. More advanced users may explore an additional
component of the interface that enables them to enter more complex
constraints.

To support the acquisition of more complex constraints, users
need to add substantial amounts of problem solving knowledge as
we discussed earlier. TheInterdependecy Analyzer guides the

user in entering problem solving knowledge for more complex con-
straints than those shown in our scenario. Consider, for example,
that the user would like to enter the constraint discussed earlier of
only renting a car if it is cheaper than using taxis. In this case, the
Acquisition Wizard would guide the user through the same steps
shown in our example. At some point, the system will invoke the
Method Editor and ask the user to specify how to estimate the taxi
cost for a trip. This involves the following steps and substeps:

� to estimate the taxi cost for a trip, add:
� estimate taxi cost for a trip from the airport

to the hotel
� compute the taxi cost between the

airport and the hotel
� and multiply the result by 2

� estimate taxi cost for a trip from the hotel
to the meeting
� compute the taxi cost between the

hotel and the location of the meet-
ing

� and multiply the result by the du-
ration of the meeting in days (the
number of times to visit the meet-
ing place)

To specify all these substeps, the user needs to add several pieces
of problem solving knowledge. In order to guide the user in spec-
ifying these steps, the system needs to understand what pieces are
missing at a given time, what pieces are related and how, and whether
there are inconsistencies among them. Our acquisition interface
does this by analyzing the Interdependency Model, specifically the
portions of it that show how problem solving pieces are related as
steps and substeps within a problem solving tree.

Figure 12: The Interdependency Analyzer helps the user to
add problem solving knowledge by showing how the individual
steps and substeps relate to each other.

The Interdependency Analyzer presents to the user the problem
solving steps as shown in Figure 12. At this point, the user has
provided a few problem solving pieces, but the system highlights
the substeps that it does not yet know how to solve. In this case,

it indicates that it does not yet know how to estimate the taxi cost
to and from the meeting. When the user clicks on that portion of
the problem solving tree, the Interdependency Analyzer brings up
the Method Editor, and creates an initial template for the method
based on its place within the problem solving tree. In this case, the
method needed is for estimating taxi cost trip from the hotel to the
meeting, and it should return a number since the system knows that
this result will be added to something else (in this case to the taxi
cost from the airport to the hotel).

Many other kinds of help are provided through this component
of the interface, described in more detail in [10]. The top levels
of this problem solving tree are set up by the Acquisition Wizard
based on the kind of constraint being defined. These top levels had
to be set manually (and possibly out of context) in our previous
implementations.

6. CONCLUSIONS
We have described an acquisition interface that integrates previ-

ously developed techniques to guide users in different aspects of
knowledge acquisition. Compared with the individual techniques,
it is able to make better use of the context of the user’s actions, so
the resulting interface provides stronger guidance to users. Some of
the future functionality that we are planning to add includes more
comprehensive ontology editors, example-based validation tech-
niques, and semi-automatic tools to extract knowledge from on-line
sources. Our previous experimental work has shown that end users
who are not programmers can successfully use some of the individ-
ual components of this system [2, 11]. We intend to perform further
experiments to investigate how well the integrated system supports
end users.

7. ACKNOWLEDGMENTS
We gratefully acknowledge the support of DARPA with grant

F30602-97-1-0195 as part of the DARPA High Performance Knowl-
edge Bases program, and with grant F30602-00-2-0513 as part of
the DARPA Active Templates program.

8. REFERENCES
[1] G. Abbrett and M. Burstein. The kreme knowledge editing

environment.International Journal of Man-Machine Studies,
27(2):103–126, August 1987.

[2] J. Blythe. Extending the role-limiting approach: Supporting
end users to acquire problem-solving knowledge. InECAI
2000 Workshop on Applications of Ontologies and
Problem-Solving Methods, 2000.

[3] J. Blythe and S. Ramachandran. Knowledge acquisition
using and english-based method editor. InProc. Twelfth
Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Alberta, 1999.

[4] J. H. Boose and J. M. Bradshaw. Expertise transfer and
complex problems: Using aquinas as a knowledge
acquisitiong workbench for knowledge-based systems.
International Journal of Man-Machine Studies, 26, 1987.

[5] A. Cypher. Bringing programming to end users. InWatch
What I Do: Programming by Demonstration. MIT Press,
1993.

[6] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: A
tool for collaborative ontology construction. InProc. Tenth
Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Alberta, 1996.

[7] B. R. Gaines and M. L. G. Shaw. Eliciting knowledge and
transferring it effectively to a knowledge-based system.IEEE
Transactions on Knowledge and Data Engineering, 5(1),
1993.

[8] Y. Gil and E. Melz. Explicit representations of
problem-solving strategies to support knowledge acquisition.
In Proc. Thirteenth National Conference on Artificial
Intelligence. AAAI Press, 1996.

[9] P. D. Karp, V. K. Chaudhri, and S. M. Paley. A collaborative
environment for authoring large knowledge bases.Journal of
Intelligent Information Systems, 13:155–194, 1999.

[10] J. Kim and Y. Gil. Deriving expectations to guide
knowledge-base creation. InProc. Sixteenth National
Conference on Artificial Intelligence, pages 235–241. AAAI
Press, 1999.

[11] J. Kim and Y. Gil. Acquiring problem-solving knowledge
from end users: Putting interdependency models to the test.
In Proc. Seventeenth National Conference on Artificial
Intelligence. AAAI Press, 2000.

[12] G. Linden, S. Hanks, , and N. Lesh. Interactive assessment of
user preference models: The automated travel assistant.
Sixth International Conference on User Modelling, 1997.

[13] D. L. McGuinness, R. Fikes, J. Rice, , and S. Wilder. The
chimaera ontology environment. InProc. Seventeenth
National Conference on Artificial Intelligence. AAAI Press,
2000.

[14] K. Myers. Strategic advice for hierarchical planners. In
Proceedings of the International Conference on Knowledge
Representation, 1996.

[15] A. R. Puerta, J. W. Egar, S. Tu, and M. A. Musen. A
multiple-method knowledge acquisition shell for the
automatic generation of knowledge acquisition tools.
Knowledge Acquisition, 4(2):171–196, 1992.

[16] B. Swartout, R. Patil, K. Knight, and T. Russ. Towards
distributed use of large-scale ontologies. InProc. Tenth
Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Alberta, 1996.

[17] W. R. Swartout and Y. Gil. Expect: Explicit representations
for flexible acquisition. InProc. Ninth Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff,
Alberta, 1995.

[18] M. Tallis and Y. Gil. Designing scripts to guide users in
modifying knowledge-based systems. InProc. Sixteenth
National Conference on Artificial Intelligence. AAAI Press,
1999.

[19] L. G. Terveen and D. A. Wroblewski. a collaborative
interface for browsing and editing large knowledge bases. In
Proc. Eighth National Conference on Artificial Intelligence.
AAAI Press, 1990.

