
Knowledge Analysis on Process Models

Jihie Kim and Yolanda Gil
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.
jihie@isi.edu, gil@isi.edu

In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-2001), Seattle, Washington, USA, August 2001.

Abstract

Helping end users build and check process mod-
els is a challenge for many science and engineer-
ing fields. Many AI researchers have investigated
useful ways of verifying and validating knowledge
bases for ontologies and rules, but it is not easy
to directly apply them to checking process mod-
els. Other techniques developed for checking and
refining planning knowledge tend to focus on auto-
mated plan generation rather than helping users au-
thor process information. In this paper, we propose
a complementary approach which helps users au-
thor and check process models. Our system, called
KANAL, relates pieces of information in process
models among themselves and to the existing KB,
analyzing how different pieces of input are put to-
gether to achieve some effect. It builds interdepen-
dency models from this analysis and uses them to
find errors and propose fixes. Our initial evaluation
shows that KANAL was able to find most of the er-
rors in the process models and suggest useful fixes
including the fixes that directly point to the sources
of the errors.

1 Introduction
Building process models is essential in many science and en-
gineering fields. Since some of these processes are quite com-
plex, it is useful to provide tools that enable users to spec-
ify process models. Figure 1 shows an example of a process
model in Cell Biology to describe how a Lambda virus in-
vades a cell. To be able to specify such a model, the user has
to specify each of the individual steps and connect them ap-
propriately. There are different types of connections among
the steps, including decomposition links between steps and
substeps, ordering constraints, disjunctive alternatives, etc.
Even in process models of small size, the number of steps and
connections between them is large enough that users would
benefit from the assistance of intelligent acquisition tools that
help them specify process models correctly. For example,
the user may forget to specify the links between the steps, or
may specify wrong links. We found such errors in a Biolog-
ical Weapon production model built by a subject matter ex-
pert. Even though it can be considered as a relatively simple
model (consisting of 54 steps) and many people had looked at

Figure 1: Example Process Model.

it, there were at least two errors: (a) there were two steps that
were both specified as the second substep of the same step;
(b) there were two sequential substeps whose ordering infor-
mation was missing. Although these may be simple errors, in
more complex models users may generate more serious prob-
lems and have difficulty noticing and fixing them.

Graphical tools to lay out a process model and draw con-
nections among steps abound, but the tools are limited to sim-
ple checks on the process models because there is no seman-
tics associated to the individual steps. In contrast, we assume
a knowledge-rich environment that enables users to specify
what the process and its steps mean, what they should accom-
plish and how, and what the features of the objects involved
in those steps are. In order to check a process model such
as the one in the figure thoroughly, the system would have
some background knowledge about what a cell is, that it can
be entered because it is a physical object with a barrier, etc.
It would also be helpful for the tool to know what a change
of location is, and that the Enter step implies a change of lo-
cation of its agent. Domain ontologies and upper or middle
level ontologies are commonly used to represent this kind of
background knowledge. With this context, the tool can be
much more helpful in checking that the process model makes
sense within the background knowledge that it has.

Past research in validation and verification of knowledge
bases addresses the detection of errors in rule bases[Preece
& Shinghal, 1994; O’Keefe & O’Leary, 1994] or in ontolo-
gies [McGuinnesset al., 2000] and has not addressed pro-
cess models specifically. Research on interactive tools to

acquire planning knowledge is also related[Chien, 1998;
Myers, 1996; Huffman & Laird, 1995], but their focus is on
acquiring knowledge about how to generate plans instead of
acquiring the specific plans themselves. Plan authoring tools
are closer in spirit to the process authoring tools that we are
aiming for, and as such KANAL could be used to check er-
rors in plans produced by plan editing tools. Formal analy-
ses of partial-order and hierarchical planning algorithms de-
fine some desirable properties of plans, such as justifiabil-
ity and correctness[Kambhampati, Knoblock, & Yang, 1995;
Yang, 1990; Tate, 1996]. Generative planners such asSIPE,
NOAH, and NONLIN [Wilkins, 1988; Sacerdoti, 1977; Tate,
1977] use critics that detect problems in the plans that they
generate while planning. Much of the work on planning does
not exploit background knowledge and ontologies, which we
believe is crucial technology to advance the state of the art in
process modeling.

We have developed a tool that checks process models spec-
ified by a user, reports possible errors in the models, and gen-
erates specific suggestions to the user about how to fix those
errors. Our system is called KANAL (Knowledge ANAL-
ysis), and it helps users build or modify process models by
detecting invalid statements and pointing out what additional
knowledge needs to be acquired or what existing knowledge
needs to be modified. Our approach is inspired on previous
work on EXPECT usingInterdependency Models[Swartout
& Gil, 1995; Kim & Gil, 2000]. These models of the in-
terdependencies between different pieces of knowledge can
be derived by analyzing how knowledge is used during prob-
lem solving. By analyzing these interdependencies, a knowl-
edge acquisition tool can detect inconsistencies and missing
knowledge and alert the user of potential problems in the
knowledge base. Finally, based on the context provided by
the Interdependency Models the tool can guide the user in
fixing these problems by correcting inconsistencies and by
adding further knowledge. KANAL analyzes the interdepen-
dencies among the individual steps of a process model. For
example, a simulation of the execution of the steps allows
KANAL to analyze interdependencies between the conditions
and effects of different steps, such as that the required condi-
tions for each step are met when the step is supposed to take
place, and that the expected effects of the overall process are
in fact obtained.

The paper begins by describing the representation of pro-
cess models assumed in KANAL. Then we describe how In-
terdependency Models can be applied to check various fea-
tures of process models. Next, we present the current imple-
mentation of KANAL and the algorithms that it uses to detect
different kinds of errors. Finally, we present the results from
a preliminary evaluation that show that KANAL can detect
most of the errors that were randomly introduced in origi-
nally error-free process models, suggesting useful fixes that
often point directly to the source of the errors.

2 Representing Process Models

This section describes briefly our representation of process
models, which is consistent with current efforts on standard
languages and process ontologies, such as PDDL[Ghallabet

al., 1998] and NIST’s PSL[Tissot & Gruninger, 1999].
A process model is composed of a number of (sub)steps.

Each individual step has preconditions and effects, where the
preconditions specify the conditions needed to be satisfied to
activate the step and the effects describe changes that result
from the execution of the step. For example, an “Enter” step
has a precondition that the objects to enter should be near the
entrance of a container object. Its effect can include a location
change from outside of a space to inside of the space and also
a status change to being contained within the container. These
can be represented as a precondition list and add/delete lists
(as in STRIPS operators).

The steps within a process model are connected to other
steps through different kinds oflinks including:

� decomposition links: Users can specify super-
step/substep relations. For example, an Invade
step can have Arrive, Enter and Take Control as its
substeps, and each of these substeps can have their own
substeps.

� temporal links: Users can specify ordering constraints
among the steps. For example, in modeling virus inva-
sion, the Take Control step should follow the Enter step.

� disjunctive links: There might be more than one way of
performing a given task, and the alternatives can be rep-
resented by disjunctive links. For example, the DNA of
a Lambda virus can either start its replication right after
entering a cell or be integrated with the host chromo-
some before the replication.

� causal links: If the editor allows users to specify en-
ablement/disablement between steps, since KANAL can
compute the actual causal relationships among the steps
from the simulation results (by examining the outcome
of the steps and the preconditions checked by other
steps), the user-specified causal links can be used for
validating the model.

Each step can have severalroles. For example, in an En-
ter step an object can play the role of an agent and another
object can play the role of the container being entered. A
general description of an Enter step can be instantiated for
the Virus invasion process byassigningthe concept virus to
the agent role of Enter and the concept cell to the container
role. These role assignments cause further interdependencies
in the knowledge base, since the objects assigned to the roles
have their own constraints and definitions that must be con-
sistent with those of the process models and their steps.

3 Acquiring Process Models: The End-to-End
System

Currently, KANAL is being developed as a module within an
ambitious end-to-end system that will support subject mat-
ter experts entering domain knowledge as part of the DARPA
Rapid Knowledge Formation (RKF) program. In this project,
users will build process models is by using “concept composi-
tion” [Clark & Porter, 1997]. Users can build process models
by retrieving components (actions and objects) and then con-
necting them using various kinds of links. The user interface

Figure 2: The KANAL interface for building process models.

and the component library have not been fully implemented
and integrated with KANAL, although a preliminary version
of the three was done to illustrate the approach with a small
scale scenario of a process model for virus invasion.

Figure 2 is an interface that we built to show how the com-
ponent approach can be used to build process models by link-
ing various objects in the knowledge base. The user has se-
lected the Invade component to start building the Virus Inva-
sion model. The “agent” role can be assigned to the Virus
concept, the Enter component can be linked as a subevent,
and so on.

Although KANAL is built to check process models con-
structed by concept composition, it can also be used for
checking process models in other environments. For exam-
ple, providing procedural knowledge required by intelligent
tutoring systems has been an ongoing challenge, and they
sometimes use simulators to build and refine their models
[Scholeret al., 2000]. We are also investigating the use of
KANAL to help teachers formalize process models that will
be used as lessons by a tutoring system.

4 Using Interdependency Models
In past work, InterdependencyModels have been successfully
used in building and checking problem-solving knowledge
in EXPECT [Kim & Gil, 1999; Kim & Gil, 2000]. They
have been used in analyzing how individual components of a
knowledge base are related and interact when they are used
during problem solving. An example of interdependency be-
tween two pieces of procedural knowledge is that one may be
used by the other to achieve a subgoal. Other kinds of Inter-
dependency Models include interdependencies between fac-
tual knowledge and procedural knowledge. Interdependency
Models can point out missing pieces in solving a problem and
be used to predict what pieces are related and how. In this pa-
per, we show a novel use of Interdependency Models to check
process models.

To guide users in developing process models, KANAL
builds interdependencies among objects in the knowledge
base, and uses them to perform two kinds of checks: static
checks and dynamic checks. Static checks are performed by
posing questions about various features of the process model,
and dynamic checks are performed by simulating the execu-
tion of the process model. Our initial work to date has focused
on dynamic checks.

In order to perform static checks, we plan to maintain a
list of sample query templates, such as retrieving the values
of different links, types of roles assigned to steps, etc. A
list of instantiated queries can be generated for a particular
model using these templates. Users could select key queries
from this list and also specify the answers expected from the
queries. A trace of the answer to a query can be considered
as a model of the interdependencies in that it reflects how dif-
ferent pieces of knowledge are put together to generate the
answer.

Dynamic checks can be done on the simulated execution of
the process model. The simulation results show how differ-
ent steps are related to each other, including temporal order-
ing and causal relationships. The results also show how cer-
tain effects are produced by a set of sequences of steps. The
resulting Interdependency Model enables checking if all the
steps are properly linked, all the preconditions of each step
are satisfied during the simulation, all the expected effects
can be achieved, there are no unexpected effects, there are no
impossible paths, etc. Also the interdependencies can point
to potential ways of solving errors and gaps in the model,
such as changing ordering constraints to reinstate disabled
effects, finding steps that can generate unachieved effects,
adding missing links, etc.

Our current work focuses on dynamic checks, using the
simulation as a tool to generate Interdependency Models. The
next section describes how we check the process models us-
ing simulation results.

5 Checking Process Models with KANAL
Our current implementation is built using the KM knowledge
representation and reasoning system[Clark & Porter, 2000],
and invokes its simulator to generate alternative simulations
of a process model. KM’s simulation of process models can
be seen as a symbolic execution of a linearization of the pro-
cess model using Skolem instances. KM provides a function
that can execute a step in a given situation and create a new
situation based on the add/delete lists of the step. KANAL
uses this function to execute the steps in the given model and
check various kinds of problems. Whenever a precondition
test fails or any of the events areundoable(a step is undoable
when not all of its previous steps were executed), KANAL
interrupts the simulation and reports theunreachedsteps (a
step is unreached when the simulation stops before the step
is simulated). It also reports other problems found until it
finishes the simulation. From the simulation results, includ-
ing the problems detected during the simulation, KANAL can
compute potential fixes based on Interdependency Models.

The subsections below describe each type of check that
KANAL performs in detail.

5.1 Checking Unachieved Preconditions
A precondition is not achieved either because there is no pre-
vious step that produces the needed effect or because some
previous steps undo the precondition. For example, an Inte-
grate step of a virus DNA into a host chromosome may undo a
precondition (that the viral DNA is exposed) of a step to Syn-
thesize protein from DNA. To be able to synthesize the viral
protein needed for the replication, an additional Dis-Integrate
step that can reinstate the exposure is required.

The general algorithm to check preconditions is as follows:

1. Detect problem

(a) Run simulation with Skolem instances
(b) Collect failed step(s)
(c) Collect unachieved preconditions of failed step
(d) Show them to user

2. Help user fix problem

(a) Suggest that there are missing steps:
- Find components in the knowledge base that have
the effects needed as preconditions by the failed
step and suggest inserting one of these components
somewhere within the current process model before
the failed step

(b) Suggest that there are missing ordering constraints:
- Find steps that were executed before the failed
step that may have effects that undid the unachieved
preconditions
- Find steps that follow the failed step and have ef-
fects that assert the unachieved precondition and
suggest inserting an ordering constraint between
those steps and the failed step

(c) Suggest modifying the stepwhose preconditions
were not achieved

For the above type of failure, KANAL suggests (a) adding
a Dis-Integrate step, (b) changing or adding ordering con-
straints for the Integrate step, and (c) deleting or modifying
the Synthesize step. Suggestion (a) would be the one that user
is looking for in order to fix the problem in this example.

5.2 Checking Expected Effects
KANAL informs the user of the effects of each step during
simulation. This allows users to check that the process oc-
curs as they anticipated. In addition, users can specify to
KANAL what they expect to be the case after the overall
process happens. Theseexpected effectsare what the user
indicates should result from the simulation and/or the post-
conditions of the composed process model. For example, the
user may expect that after a virus invasion of a cell, the viral
nucleic acid should be located inside the cell. These expected
effects can be checked by looking at the results from the sim-
ulation. The simulation results are represented as an accumu-
lation of added and deleted facts. Since there may be multiple
disjunctive branches in the model, the results from different
paths are accumulated separately. KANAL checks the results
from each path to see if all of them satisfy the expectation. If
there are unachieved effects, KANAL can propose either to

add new steps that would achieve them or to modify existing
steps.

Currently KANAL checks for expected effects, but does
not check explicitly for unexpected effects. We are planning
to highlight any unexpected effects to let the users examine
whether they should in fact occur.

The algorithm is as follows:
1. Ask user to specify expected effects

2. Detect problem

(a) Run simulation with Skolem instances
(b) Collect unachieved effects from each path and

record the steps in the failed paths
(c) Show them to user

3. Help user fix problem

(a) Suggest that there are missing steps:
- Find components in the knowledge base that have
the effects needed and suggest inserting one of
these components somewhere within the current
process model

(b) Suggest modifying steps:
- Find steps that may have effects that can poten-
tially change the role values of the unachieved ef-
fects and suggest modifying those steps to achieve
the effects needed

(c) Suggest that there are missing ordering constraints:
- Find steps that may have effects that undid the ex-
pected effects and find actions that assert the ex-
pected effects and suggest inserting an ordering
constraint in order to maintain the expected effect
where needed

Following the example above, suppose that the user speci-
fies that after the invasion occurs the viral nucleic acid should
be located inside the cell. Suppose also that the user forgot
to add the Enter step in the model of virus invasion. KANAL
suggests (a) adding new steps, such as Move or Enter, that
would change the location of the virus, (b) modifying Arrive
since it is an existing step that causes the virus to change loca-
tion, or (c) changing/adding ordering constraints among these
steps. The user would choose option (a) to add an Enter step,
and the problem would be fixed.

5.3 Checking Unordered Steps
Sometimes the user may either forget to specify links between
the steps, or may specify wrong links as in the Biological
Weapon production example mentioned in the introduction.
These problems may be detected by mapping the steps to the
components in the knowledge base that have certain ordering
constraints already specified for their substeps, or by running
simulation and doing the checks as describe above for un-
achieved preconditions and effects. During the simulation,
KANAL walks through the steps and substeps using the user
specified decomposition links and ordering constraints. The
simulation is interrupted if some steps cannot be reached be-
cause of lack of ordering constraints or the steps are undoable.
KANAL highlights these problems and proposes changing
or adding ordering constraints among the steps. (We do not
show the detailed algorithm here because of lack of space.)

5.4 Checking Inappropriate Execution of Steps
KANAL can also find modeling errors by watching the ex-
ecution of steps. For example, if some of the assertions to
be deleted by a step are not true in the situation where the
step is executed, these assertions are reported. Also, if a step
produces no effect, i.e., it does not delete or add any asser-
tions, then KANAL reports such problem as well. This type
of problem can occur when the step’s roles or attributes are
assigned to the wrong objects during the composition. Also,
if its previous steps have incorrect assignments already and
produced unexpected effects, then the following steps cannot
be executed appropriately.

KANAL proposes modifying the steps by changing their
role assignments or modifying previous steps.

5.5 Checking Invalid Expressions
During the simulation, KANAL checks the truth/falsity of
many assertions, especially for the precondition tests and the
expected effect tests. Whenever there are objects tested but
undefined, KANAL reports the problem of accessing unde-
fined objects (or invalid expressions).

5.6 Checking Loops
Loops are not necessarily a problem in process models. For
example, the replication of DNA can be repeated multiple
times. However, they can be unintended repetitions espe-
cially when the user defines many ordering constraints across
steps. KANAL provides a warning for such cases to let the
user check if the loops are in fact intended.

5.7 Checking Disjunctive Branches
When there are disjunctive branches in a model, the user
may not notice that some of the combinations of alternatives
should in fact not be possible. KANAL exposes different
branches in the models by showing different alternative com-
binations of substeps. As in the case of loops, disjunctive
branches are not necessarily a problem and KANAL simply
informs the user about them.

5.8 Checking Causal Links
After the simulation, KANAL computes the interdependen-
cies between the steps based on how some steps generated ef-
fects that satisfied the preconditions of some other steps. For
example, synthesizing viral protein needed for replication en-
ables the replication step. These causal links may not have
been explicitly indicated by the user. KANAL informs users
when it notices causal links in order to help them validate the
model. It also informs users when they specified a temporal
constraint and there does not seem to be a causal link between
the steps to justify the ordering.

6 Interaction among problems and fixes
This section shows some examples of the kinds of errors de-
tected and the fixes proposed by KANAL from a simplified
Lambda virus invasion model shown in Figure 3. (In the
model, first a lambda virus moves next to a cell (Arrive), and
then it enters into the cell (Enter). The lambda DNA forms a
circle (Circularize), and then either becomes integrated with

Enter

Arrive

Circularize

Integrate

Divide

Disintegrate

Synthesize Replicate

OR

virus

cell
destination

destination

agent

patient

DNA
parts

chromosome

…

…

…

Lambda Virus Invasion (Invade)

patientagent

Role assignment

next step
sub step

Figure 3: A simplified Lambda virus invasion model.

the host chromosome (Integrate) or starts synthesizing viral
protein needed for the formation of new viruses (Synthesize).
When it gets integrated, it lies dormant in the chromosome
during cell divisions (Divide). An environmental change can
induce the genome to leave the host chromosome (DisInte-
grate) and to start synthesizing viral protein and subsequent
DNA replication (Replicate)[Albertset al., 1998].)

� inappropriate execution of a step
When the agent (virus) of the Arrive step is not speci-
fied, KANAL detects inappropriate execution of the step
since its delete-list contains assertions that are invalid
(the location of a Thing instead of the location of the
virus). In such cases, KANAL proposes to either to
modify the assignments of the Arrive step or to add some
steps before Arrive so that they can assert the location
of the Thing. The first fix directly points to the deleted
link, and we call it adirect fix. The latter one will even-
tually lead the user to the problem because it mentions
the location but does not point to it directly. We call it
an indirect fix.

� unachieved preconditions
In the above case (missing agent of the Arrive step), the
precondition of the Enter step that follows (location of
the virus should be near the cell) may also fail because
of the failure of the Arrive step. KANAL detects this
unachieved precondition and proposes multiple ways of
fixing the problem: (1) modify the Arrive step so that it
can change the location of the virus, (2) add a new Move
or Arrive step to achieve the precondition, or (3) modify
the Enter step to have different preconditions. Note that
in this case, the same fix (i.e., modifying the Arrive step)
is suggested for solving two different errors (inappropri-
ate execution of Arrive and unachieved precondition of
Enter).
Also, the same set of fixes may resolve two different
errors. For example, if the assignment of the patient
(virus) of Enter is missing, its precondition (the patient
should be near the destination) fails. KANAL produces
an error message and proposes similar fixes as in the
above case.

� failed expected effects

One of the expected effects was that the the virus should
be inside the cell after an execution of the scenario.
When the assignment of destination (the cell) of the En-
ter step is missing, the effect (the virus enters into the
cell) cannot be achieved.

� missing ordering constraints
When ordering between steps are missing (e.g., the link
between the Arrive step and the Enter step is not spec-
ified), KANAL interrupts the simulation and reports an
error. It proposes to add or modify temporal links be-
tween the steps so that the simulator can execute the un-
reached steps. When there is any ambiguity in the order-
ing, it generates a warning, asking for explicit ordering
constraints among the steps.

In addition to the above, KANAL reports other results from
the simulation:

� causal links
There were three causal links reported from the scenario:
(1) Arrive enabled Enter by achieving the location the
virus being near the cell, (2) Integrate enabled Disinte-
grate by achieving the DNA being integrated with the
chromosome, and (3) Synthesize enabled Replicate by
providing the viral protein needed for the replication.

� disjunctive links
The disjunctive branches stemming from Circularize
were shown to the user as two alternative paths.

� simulated paths
There were two simulated paths because of the disjunc-
tive branches: (Arrive! Enter! Circularize! Inte-
grate! Divide! DisIntegrate! Synthesize! Repli-
cate) and (Arrive! Enter! Circularize! Synthesize
! Replicate).

Notice that KANAL can detect the same error in multi-
ple ways since one abnormality can lead to another. For ex-
ample, missing an ordering constraint can make some steps
unreached during the simulation, which can also lead to
failed expected effects because of the unexecuted (unreached)
steps. Since whenever there are unreached steps there tends
to be failed expected effects, users may want to focus on
fixing problems about the unreached steps first. The same
case holds for failed preconditions and unreached steps be-
cause failed preconditions interrupt simulation, leading to un-
reached steps. To help avoid confusion, KANAL can selec-
tively present fixes so that the user can concentrate on the
actual source of the problem. For the case of failed precon-
ditions and unreached steps, KANAL presents the fixes for
the failed preconditions first, but lets users check other fixes
if they want.

7 Preliminary Evaluation
KANAL is being integrated with concept composition, ex-
planation tools and their interfaces in the end-to-end system
mentioned above, and we are planning to perform an ex-
tensive user evaluation of this integrated system. The pre-
liminary evaluation presented here focuses on how useful
KANAL is in itself as a module to detect and fix errors.

Results Virus Invasion Lambda Virus Check Drain total
w/o 1 link Invasion Monitor

of test cases 19 28 9 56

of errors 19 28 9 56

of errors detected 18 28 9 55

of errors with 16 26 8 50
direct fixes

total # of fixes 82 139 23 230

- # of direct fixes 17 31 8 56

Avg. # of fixes 4.56 4.96 2.56 4.18
proposed (avg)

Results Virus Invasion Lambda Virus Check Drain total
w/o 2 links Invasion Monitor

of test cases 10 10 10 30

of errors 20 20 20 60

of errors detected 13 14 15 42

of errors with 13 13 13 39
direct fixes

of fixes proposed 76 28 23 127

- # of direct fixes 17 12 13 42

Avg. # of fixes 5.85 2 1.53 3.02
proposed (avg)

Results Virus Invasion Lambda Virus Check Drain total
w/o 3 links Invasion Monitor

of test cases 10 10 10 30

of errors 30 30 30 90

of errors detected 13 16 18 47

of errors with 12 16 15 43
direct fixes

of fixes proposed 62 58 54 174

- # of direct fixes 14 16 15 45

Avg. # of fixes 4.77 3.63 3 3.70
proposed (avg)

Table 1: KANAL checks for Process Models.

To evaluate KANAL’s help in detecting and fixing er-
rors, we used three process models: a virus invasion pro-
cess, a Lambda virus invasion, and a Check-Condensate-
Drain-Motor procedure from a High Pressure Air Compres-
sor (HPAC) domain which has been also used for acquiring
process models (lessons) for intelligent tutoring systems[Sc-
holer et al., 2000]. The first and last ones were written by
other researchers.

We evaluated how KANAL could help users with one im-
portant kind of error: if they forget to specify one, two, or
three links or role assignments. For example, to specify the
Virus Invasion model the user would need to make a total of
19 links and assignments if no errors are made. The test cases
were generated by taking the original correct process models
and randomly deleting a subset of the links or assignments
that users would need to make.

Table 1 shows the results from our preliminary evalua-
tion. The first rows in each table show the number of cases
tested and the second rows show the total number of errors
in the test cases. The third row shows how many of those
errors were detected by KANAL. KANAL was able to de-
tect most of the errors when there is only one error (55 of
56). KANAL misses one case in the Lambda virus invasion

model because its Invade component has Container as its pa-
tient which should in fact be a Cell (a more special concept
than Container), but there was no explicit violation in any of
the checks KANAL performs. To be able to detect such prob-
lems we may need to examine slots tested in the model and
check if they in fact belong to the concept. For example, Cells
contain cytoplasm but not any Containers do in general.

KANAL missed some errors when more than one link were
deleted (42 among 60 without 2 links, and 47 among 90 with-
out 3 links). This is to be expected, since some errors inter-
rupt the simulation, and other errors cannot be detected unless
further steps are simulated, as described in the previous sec-
tion.

The number of errors which had direct fixes are shown in
the fourth rows in the tables. There were a few cases where
KANAL detected errors but was not able to provide direct
fixes. For example a step’s role can refer to a deleted slot of
another step, such as when the agent of the Enter step refers
to the agent of the Invade step. If the Enter step failed because
of the missing agent of the Invade step, then the failed step is
different from the step with missing links, making it harder to
find the sources of the problems. We are planning to examine
how we can follow such links among the steps to trace back to
the original sources. Some other cases of lack of direct fixes
happened when there are multiple errors at the same time be-
cause some errors are hidden as described above. KANAL’s
selective presentation of fixes helps, and we expect that fixing
one problem at a time may be easier for end users.

The numbers of fixes shown in the fifth rows of the ta-
bles are based on the selected fixes described above. Direct
fixes should be more useful than indirect fixes in general. The
number of direct fixes are shown in the sixth rows in the ta-
bles. For most of the errors detected, KANAL was able to
provide at least one direct fix.

In summary, our preliminary evaluations show:

� KANAL virtually always (115 of 116 test cases) de-
tected an error and made suggestions to the user. The
one case that KANAL missed was a process model that
was perfectly consistent although it was overgeneral,
which is a problem that could only be noticed by a user.

� Detecting an error impaired detecting others since pos-
terior steps will not be executed in the simulation. Al-
though KANAL detected 98%, 70%, and 52% of the er-
rors in the case where one, two, and three links and as-
signments were missing, it always detected at least one
error in each of the process models that had more than
one error. Once an error was fixed, the next error was
always found by KANAL (direct fixes).

� For 91.6% of the errors detected, KANAL’s fixes pointed
directly to the source of the errors.

8 Conclusions

As we mentioned, we are planning to perform an extended
evaluation with end users (biologists) when KANAL is inte-
grated with the end-to-end system described earlier. In doing
so, we will also be able to test the usefulness of KANAL with

different types of errors than the ones we show here, includ-
ing selecting wrong components in the knowledge base.

There have been a lot of verification and validation tech-
niques developed in software engineering[Wallace et al.,
1996; Basili, 1987]. Although many of them are not directly
applicable, there are many common issues in building process
information, including efficiency, maintenance, cost, reuse,
etc. We are planning to examine useful techniques developed
for such issues.

KANAL is built for concept composition where compo-
nents in the knowledge base are assumed not to have any
errors. However, in other environments, such as in acquir-
ing procedural knowledge for intelligent tutoring systems, we
cannot expect that the models of actions will always be cor-
rect. Often, incomplete operators are used to model proce-
dures and they are refined based on instructor input or through
autonomous learning by experimentation. We believe that
KANAL will be also useful in such environments.

Acknowledgments
We would like to thank Bruce Porter and Peter Clark for their
help in integrating KANAL with the KM simulator and for
providing the virus invasion scenario, and Andrew Scholer
for his help with the HPAC process model and with the sim-
ulator of the tutoring system mentioned. We would also like
to thank Vinay Chaudhri, Mabry Tyson, and Jerome Thomere
for their comments and feedback on this work. Kevin Knight
provided very helpful comments on earlier drafts. This re-
search was funded by the DARPA Rapid Knowledge Forma-
tion (RKF) program with subcontract number 34-000-145 to
SRI International under contract number N66001-00-C-8018.

References
[Albertset al., 1998] Alberts, B., Bray, D., Johnson, A.,

Lewis, J., Raff, M., Roberts, K. & Walter, P.Essential
Cell Biology: An Introduction to the Molecular Biology of
the Cell. Garland Publishing Inc, 1998.

[Basili, 1987] Basili, V. & Selby R. Comparing the effective-
ness of software testing strategies. InIEEE Transactions
on Software Engineering, 13(12), 1987.

[Chien, 1998] Chien, S. Static and completion analysis
for knowledge acquisition, validation and maintenance of
planning knowledge bases. InInternational Journal of
Human-Computer Studies, 48, pp. 499–519, 1998.

[Clark & Porter, 1997] Clark, P. & Porter, B. Building con-
cept representations from reusable components. InPro-
ceedings of AAAI-97, pp. 369-376, 1997.

[Clark & Porter, 2000] Clark, P. & Porter, B. The knowledge
machine. Inhttp://www.cs.utexas.edu/users/mfkb/km.html,
2000.

[Ghallabet al., 1998] Ghallab, M., Howe, A., Knoblock,
C., McDermott, D., Ram, A., Veloso, M., Weld, D. &
Wilkins, D. PDDL - the planning domain definition
language. Technical report, Yale University. Available at
http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz.

[Huffman & Laird, 1995] Huffman, S. & Laird, J. Flexibly
instructable agents. InJournal of Artificial Intelligence
Research, 3:271–324, 1995.

[Kambhampati, Knoblock, & Yang, 1995] Kambhampati,
S.; Knoblock, C.; and Yang, Q. 1995. Planing as refine-
ment search: A unified framework for evaluating design
tradeoffs in partial-order planning.Artificial Intelligence
76:167–238.

[Kim & Gil, 1999] Kim, J. & Gil, Y. Deriving expecta-
tions to guide knowledge base creation. InProceedings
of AAAI-99, pp. 235–241, 1999.

[Kim & Gil, 2000] Kim, J. & Gil, Y. Acquiring problem-
solving knowledge from end users: Putting interdepen-
dency models to the test. InProceedings of AAAI-2000,
pp. 223–229, 2000.

[McGuinnesset al., 2000] McGuinness, D., Fikes, R., Rice,
J. & Wilder, S. An Environment for Merging and Testing
Large Ontologies. InProceedings of KR-2000, 2000

[Myers, 1996] Myers, K. Strategic advice for hierarchical
planners. InProceedings of KR-96, 1996.

[O’Keefe & O’Leary, 1994] O’Keefe, R. & O’Leary, D. Ex-
pert system verification and validation. InExpert Systems
with Applications: An International Journal, 6(1): 57-66.

[Preece & Shinghal, 1994] Preece, A. & Shinghal, R. Foun-
dation and application of knowledge base verification. In
International Journal of Intelligent Systems, 9(8): 683-
702, 1994

[Sacerdoti, 1977] Sacerdoti, E. 1977.A Structure for Plans
and Behavior. New York: Elsevier.

[Scholeret al., 2000] Scholer, A., Rickel, J., Angros, R. &
Johnson, L. Learning domain knowledge for teaching pro-
cedural tasks. InAAAI-2000 Fall symposium on Learning
How to Do Things, 2000

[Swartout & Gil, 1995] Swartout, W. & Gil, Y. EXPECT:
Explicit representations for flexible acquisition. InPro-
ceedings of KAW-95, 1995.

[Tate, 1977] Tate, A. 1977. Generating project networks. In
International Joint Conference on Artificial Intelligence.

[Tate, 1996] Tate, A. 1996. Representing plans as a set of
constraints – the<i-n-ova> model. In Drabble, B., ed.,
Proc. Third International Conference on Artificial Intelli-
gence Planning Systems. University of Edinburgh: AAAI
Press. Available as Pointer.

[Tissot & Gruninger, 1999] Tissot, F., & Gruninger, M.
NIST process specification language. Technical report,
NIST.

[Wallaceet al., 1996] Wallace, D., Ippolito, L. & Cuthill B.
Reference information for the software verification and
validation Process. InNIST Special Publication 500-234,
1996.

[Wilkins, 1988] Wilkins, D. E. 1988. Practical Planning:
Extending the Classical AI Planning Paradigm. Morgan
Kaufmann.

[Yang, 1990] Yang, Q. 1990. Formalizing planning knowl-
edge for hierarchical planning.Computational Intelli-
gence6(1):12–24.

