
To appear in AI Journal

Bounding the Cost of Learned Rules

Jihie Kim and Paul S. Rosenbloom

Information Sciences Institute and Computer Science Department
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292, U.S.A.
jihie@isi.edu, rosenbloom@isi.edu

(310) 822-1510 (x769)
Fax: (310) 822-0751

keywords: speedup learning, problem solving, utility problem, rule match

Abstract

In this article we approach one key aspect of the utility problem in explanation-

based learning (EBL) | the expensive-rule problem | as an avoidable defect in the

learning procedure. In particular, we examine the relationship between the cost of

solving a problem without learning versus the cost of using a learned rule to provide

the same solution, and refer to a learned rule as expensive if its use is more costly than

the original problem solving from which it was learned. The key idea we explore is

that expensiveness is inadvertently and unnecessarily introduced into learned rules by

the learning algorithms themselves. This becomes a particularly powerful idea when

combined with an analysis tool which identi�es these hidden sources of expensiveness,

and modi�cations of the learning algorithms which eliminate them. The result is learn-

ing algorithms for which the cost of learned rules is bounded by the cost of the problem

solving that they replace.

We investigate this idea through an analysis of EBLSoar, an implementation of

explanation-based learning within the Soar architecture. A transformational analysis

is used to identify where EBLSoar inadvertently introduces substantial additional costs

in the process of converting a problem solving episode into a learned rule | excessive

costs which all ultimately turn out to stem from losses of information during learning.

Based on these results, a modi�ed EBLSoar algorithm| Bounded EBLSoar (BEBLSoar)

| is developed from which all sources of expensiveness have been eliminated. The cost

of using a rule learned by BEBLSoar is provably bounded by the cost of the problem

solving it replaces.

1

1 Introduction

Explanation-based learning (EBL) (Mitchell et al., 1986; DeJong & Mooney, 1986) has been

widely used as a tool for improving problem solving performance (Minton, 1988; Dechter,

1990; Fattah & O'Rorke, 1993; Katukam & Kambhampati, 1994). For example, after solving

a complex problem, EBL can acquire new search-control rules1 by generalizing the experience

to solve related problemsmore easily. However, the overhead of using learned knowledge often

overwhelms its bene�ts, leading to a utility problem where problem solving cost after learning

can be greater than before learning (Minton, 1988).

Research on the utility problem can be divided up into two key issues. The �rst issue is the

expensive-rule problem | in which individual learned rules are so expensive to match that

the system su�ers a signi�cant slow down from learning. The second issue is the average-

growth e�ect (Doorenbos, 1993), which results from the cumulative expense of having learned

many rules. If the time required to eliminate from consideration all of the rules that are not

relevant to a particular situation scales poorly with the total number of rules in the system,

this could potentially lead to a signi�cant slow down from learning. Fortunately, recent

work on the average-growth e�ect has shown that, by exploiting sharing and eliminating

irrelevant match e�ort, it is possible to learn over one million rules with a sublinear cost

increase (Doorenbos, 1993; Doorenbos, 1994).2 This leaves the expensive-rule problem as

the remaining open question, and thus what is focused on here.

In this article we take a novel approach to the expensive-rule problem by investigating the

idea that expensiveness is inadvertently and unnecessarily introduced into learned rules by the

learning algorithms themselves. This becomes a particularly powerful idea when combined

with an analysis tool which identi�es these hidden sources of expensiveness, and modi�cations

of the learning algorithms which eliminate them. The result is learning algorithms for which

the cost of learned rules is bounded by the cost of the problem solving that they replace.

This focus on boundedness rather than on speed up is a bit unusual | although see (Tambe

et al., 1990) for other work in this vein | but it is crucial for autonomous, real-time systems

which learn unsupervised by human handlers. Without such boundedness, no amount of

average-case speed up can ensure that learning won't cause catastrophic slow downs in system

performance at crucial times. The only other alternative to having such boundedness has

1EBL can also be used to acquire other types of structures, such as macro-operators, but we focus on

search-control rules here.
2Implicit in this approach is the assumption that learned rules substitute for previously available options,

rather than augmenting them, so that the branching factor of the problem solving does not increase as rules

are learned (Greiner, 1991).

2

been to disable such learning in autonomous, real-time systems.

A potential secondary bene�t of this focus on boundedness is that, by eliminating the pos-

sibility of acquiring rules that are slower than the problem solving they replace, it should

increase the average speed up provided by EBL. This additional speed up is not the focus of

this work, and we won't distract from the main message by going to any great experimental

lengths to validate it, but it is worth notice in passing.

Much previous work on the expensive-rule problem has investigated how to improve the

utility of EBL through re-structuring and/or �ltering learned rules based on experimentation

with those rules (Minton, 1988; Greiner & Jurisica, 1992; Gratch & Dejong, 1992; Markovitch

& Scott, 1993). Heuristic approaches to generating learned rules have also been proposed

that provide improved e�ciency over straightforward EBL | such as (Prieditis & Mostow,

1987; Minton, 1988; Shell & Carbonell, 1991; Shavlik, 1990; Etzioni, 1990). However, none

of these approaches can guarantee that the cost of using the learned rules will always be

bounded by the cost of the problem solving episode from which they are learned. That is,

the cost of a learned rule can be greater than the cost of solving the problem with the original

set of rules.

One other technique that can provide such boundedness does so by restricting the overall

expressiveness of the rules used in the system (Tambe et al., 1990). This in fact provides a

stronger form of boundedness, in which the match cost of each rule | not just those acquired

by learning | is bounded by a linear function of the size of the rule. However, in reducing

the expressibility of the system's rules, this technique can require many more rules to encode

the same tasks and can lead to overspecialization of the rules that are learned. The new

approach to boundedness introduced here can also lead to some increased specialization of

the rules learned | albeit by a lesser amount than is engendered by restricting expressiveness

| but it does not restrict expressiveness, and thus does not increase the number of rules

involved in, or the di�culty of, encoding tasks.

The �rst step in the new approach is to develop an analytical tool that can identify the sources

of expensiveness in the learning algorithm. Here we introduce a form of transformational

analysis. EBL is analyzed as a sequence of transformations that takes a problem solving

episode as input and produces a learned rule as output. The key step in enabling the analysis

is ensuring that the input (the problem solving episode), the output (the learned rule), and

the intermediate structures generated during the transformational sequence | which, in

general, are hybrids that partially resemble the problem solving episode and partly resemble

the learned rule | can be interpreted by a performance system that allows their execution

costs to be computed experimentally. Once this is done, their costs can be compared in order

to identify which transformations introduce additional costs.

3

The transformational analysis is presented here in terms of EBLSoar, an implementation

of EBL in Soar (Rosenbloom et al., 1991). Soar is an architecture that combines general

problem solving abilities with a learning mechanism called chunking (Laird et al., 1985).

Soar is particularly relevant for this investigation because it is a widely distributed and

used system for which there is a signi�cant body of existing learning results spanning many

domains and more than �fteen years (see, for example, (Rosenbloom et al., 1993) for thorough

coverage of the �rst half of this). In addition, the core of the work in Soar over the past �ve-

to-ten years has concerned autonomous, real-time systems | see, for example, (Tambe et al.,

1995) | for which boundedness is a critical requirement for usable learning. Chunking, as

implemented and extensively investigated in Soar, is already a variant of EBL (Rosenbloom

& Laird, 1986); however, for this work we have replaced it with a more standard version of

EBL in order to more easily generalize the resulting analysis to other EBL systems (Kim &

Rosenbloom, 1995).

The transformational analysis of EBLSoaruncovered three unexpected sources of expensive-

ness in the learning: (1) if the search-control knowledge used during problem solving is not

maintained in the match process for learned rules, then learning can engender a slowdown;

(2) when optimizations employed during problem solving, such as merging equivalent rule

instantiations so that they are processed only once, are ignored in the learned rules, the cost

can increase; and (3) if the structure of the problem solving is not re
ected in the structure

of the match process for the learned rules, time after learning can be greater than time before

learning.

Interestingly, all three of these newly identi�ed sources of expensiveness can be viewed as

resulting from excessive losses of information during learning. EBL in general works by

losing unnecessary information | for example, about intermediate structures and structures

outside of the explanation. If too much information is lost during the learning process,

the resulting rule will clearly be incorrect. What the sources of expensiveness uncovered

here reveal is that loss of information can be excessive, even when not so great as to cause

incorrectness. This milder form of excessive loss of information can introduce expensiveness

into learned rules.

The second step in achieving boundedness is to modify the EBL algorithm in order to elim-

inate the identi�ed sources of expensiveness. We have done this for EBLSoar, yielding an

algorithm called Bounded EBLSoar (BEBLSoar). The modi�cations, which all involve pre-

serving information that was previously lost, are: (1) incorporating search control in learning

so that the match process for the learned rule can focus on the path that was actually followed

during problem solving; (2) exploiting equivalence among partial instantiations in match by

creating one representative, which is then processed only once; and (3) maintaining the graph

4

structure of the problem solving in match to reinstate the e�ciency of the structure. With

these modi�cations, BEBLSoar has been proven to provide the desired boundedness.

The remainder of this article is organized as follows. Section 2 overviews key aspects of EBL

and Soar. Section 3 describes the match process and introduces the tool for measuring the

cost of intermediate products. Section 4 presents the transformational analysis of EBLSoar,

and in the process identi�es the transformations which introduce expensiveness. Section 5

presents algorithm modi�cations for each source of expensiveness, yielding BEBLSoar. It also

provides a proof of how BEBLSoar provides boundedness, plus a small empirical demonstra-

tion that the theoretical results hold up in the real system, by eliminating the slow downs

caused by expensive rules in several of the domains that were previously shown to yield

expensive rules. Section 6 covers related work. Section 7 concludes with a summary and a

discussion of future work.

2 EBL and Soar

EBL is a learning method for making explicit a succinct concept description from the com-

bination of a single example and underlying domain knowledge. Given its input (the goal

concept, the training example, the domain theory, and the operationality criterion), the sys-

tem constructs an explanation (also called a proof tree) of how the training example is an

instance of the goal concept. An explanation structure is built from an explanation by replac-

ing the rule instantiations with rules. Given the explanation structure, a variable uni�cation

process (called regression) is applied to it. Finally, a new de�nition | i.e., a su�cient con-

dition for the goal concept | is generated from the operational elements of the regressed

structure.

In Soar, each rule consists of a set of conditions and a set of actions. Conditions test a

global set of relational facts, called working memory, for the presence or absence of working

memory elements (WMEs). When the conditions of a rule all match elements in working

memory, an instantiation of that rule is generated which binds variables in the conditions to

constants in working memory. Rules �re when instantiations are generated, causing actions

to execute with variables bound as in the instantiation of the conditions.

Actions create preferences rather than WMEs directly. Preferences may, for example, propose

or reject candidate values for the given relations, or specify their relative worth (through best,

better, worse, and worst preferences). Rules in Soar propose changes to working memory

through these preferences, with the changes then actually being made based on a synthesis

5

W1: (next A B)
W2: (next A D)
W3: (right A B)
W4: (next B A)
W5: (next B C)
W6: (next B E)
W7: (right B C)
W8: (next C F)
W9: (next C B)
W10: (next D A)
W11: (next D E)
W12: (next D G)

W13: (next E B)
W14: (next E F)
W15: (next E H)
W16: (next E D)
W17: (next G D)
W18: (next G H)

W20: (at S A)

R1
(at ?S ?L1)
(next ?L1 ?L2)
-->
(cand-operator ?S ?L2)

R2
(at ?S ?L3)
(right ?L3 ?L4)
(cand-operator ?S ?L4)
-->
(best-operator ?S ?L4)

R3
(operator ?S ?L5)
-->
(at ?S ?L5)

; (operator proposal rule)
; if the location of the current state
; is ?L1, and ?L1 is adjacent
; to?L2, then create a candidate

; (search-control rule)
; if the current location is ?L3,
; and ?L4 is on the right, and
; there is a candidate operator to
; go to ?L4, then try the

; (operator application)
; if the selected operator goes to
; ?L5 then change the current

(a) Given WMEs (b) Given rules

W21: (goal-point S GP)

R4
(goal-point ?S ?GP)
(goal-at ?GP ?L6)

-->
(success ?S ?L6)

; (detection of success)
; if the current location is ?L6
; and it is the goal point, then

W22: (goal-at GP C)

(at ?S ?L6)

; operator to go to ?L2

; operator before others

; location to ?L5

; the task is accomplished

A B C

D E F

G H I

FIGURE 1: A simpli�ed Grid task in Soar.

of the preferences by a �xed decision procedure.3

The most critical decisions, and thus the most important preferences, concern the selection

of operators. Operators represent actions in Soar, just as they do in most other problem

solvers and planners. However, rather than there being a �xed operator language that is

interpreted by the problem solving architecture, the execution of an operator is de�ned by

additional rules which generate preferences for the consequences of the operator given that

the operator has been selected (by the decision procedure) and that the conditions of the

rules successfully match the existing state of working memory.4

For EBLSoar, Soar's rules | both rules that participate in the selection of operators and those

that apply them, plus any other rules that may also be utilized during problem solving, such

as those that detect accomplishment of a goal | form the basis for the domain theory, the

initial WMEs form the training example, and the operationality criterion is that WMEs

are part of the training example (Rosenbloom & Laird, 1986). The explanation is built by

extracting the rule �rings that participated in the proof.

To make this more concrete, Figure 1 shows an example from the Grid task | a simple

task known to produce expensive rules | which we'll use for illustration throughout much

of this article. (For ease of interpretation, we use Lisp-style representations instead of the

3For a full discussion of Soar's preferences, their semantics, and how the decision procedure resolves

combinations of them into decisions, see (Laird et al., 1993).
4The test as to whether the operator has been selected is actually just another test of part of working

memory.

6

Soar syntax.) In particular, we'll look at the task of evaluating whether point C is reachable

from point A.

There are twenty two WMEs that provide a training example to the system. The WMEs

record the connections among points. In this simpli�ed task, the full connections among

the points are given only in part. The rules provide the domain theory. In the rules in the

Figure, preferences are represented as italicized pre�xes; for example, cand-operator in the

RHS of R1 represents a preference for the generation of candidate operators. The symbols

pre�xed with question marks (such as ?S, ?L1, ...) are variables. For example, variable ?S

stands for state.

There are four rules in this task. Rule R1 creates a candidate operator for each point adjacent

to the current point. Rule R2 creates best preferences, which lead the decision procedure to

select the operators that go in the correct direction. Rule R3 applies the selected operator

to the state, changing the current location to the new location indicated by the operator.5

Finally, rule R4 detects the achievement of the goal by checking if the current location is the

same as the goal point.6 In this example, the goal concept is success; that is, the goal point

is reachable from the the current position.

The cycle of rule �ring | which creates preferences that yield WMEs via the decision pro-

cedure | and the cycle of operator selection and application which this engenders, underlies

problem solving episodes in Soar, as illustrated for the Grid task in Figure 2.7 The initial

sequence of �rings of rules R1, R2, and R3 selects and applies an operator which moves the

current position from A to B. The subsequent sequence of �rings of these three rules selects

and applies an operator which moves the current position to C. Then, �nally, rule R4 detects

the achievement of the goal.

In Figure 2, each circle represents a rule trace. Traces representing the generation of candi-

dates (e.g., traces of rules R1, R3, and R4) are shown in black, while traces representing the

relative or absolute worth of candidates (e.g., traces of rule R2) are shown in gray. In the

remainder of this article, rules that generate candidates will be referred to as task-de�nition

rules, while those that represent the worth of candidates will be referred to as search-control

rules.

The topmost circle in Figure 2 shows that R1 has �red twice and has created two preferences,

5In this simple example, we omit the condition for checking the current location for brevity.
6Although neither rule R3 nor rule R4 are shown in Figure 1 as explicitly creating preferences, in reality

they do generate preferences for candidates rather than directly adding new elements to working memory.
7Problem solving in Soar also generally involves impasses and subgoals (Laird et al., 1987), but an under-

standing of Soar at this level is not critical for the results in this article.

7

 (cand-operator S B)

(best-operator S B)

 (cand-operator S C)
 (cand-operator S E)
 (cand-operator S A)

R3

Decision

 (at S B)

(next B A)
(next B C)

R1

 (cand-operator S D)
R2

(at S A)

(right A B)

(next B E)

 (at S A)

R1

(next A D)
(next A B)

(operator S B)

(best-operator S C)

R2

(at S B)

(right B C)

Decision

(operator S C)

R3

(at S C)

R4

(success S C)

 (goal-point S GP)
 (goal-at GP C)

Move from A to B

Move from B to C

Signal success

FIGURE 2: A problem solving episode from the Grid task.

(cand-operator S B) and (cand-operator S D). The two preferences propose candidate opera-

tors that go to B and D, respectively. A connection from one rule to another rule through a

decision | marked by the word \Decision" | means that preferences created by the former

rule are interpreted by a decision to create a WME which is then matched to a condition

of the latter rule. For example, preferences (cand-operator S B), (cand-operator S D) and

(best-operator S B) participate in a decision which creates a WME (operator S B), which is

then matched to a condition of R3.

This problem solving episode forms the input to the learning system; that is, it provides

the explanation for EBLSoar.8 However, instead of employing all of the rule traces which

participated in the problem solving episode, EBLSoar only extracts traces from task-de�nition

rules. The search-control rules, such as R2, are omitted in EBLSoar and other EBL systems

(such as Prodigy (Minton, 1993)). The purpose of this omission is to increase the generality

of the learned rules | including fewer rule traces in the explanation leads to fewer conditions

in the resulting learned rule and thus to more generality of applicability. As a result, a smaller

number of more general rules is learned rather than a larger number of more speci�c ones.

8In Soar, some problem solving activities do not involve rule �rings. Because these activities are not

represented as rule traces in Soar, they can leave holes in the explanation. Soar implicitly provides a set of

axioms that model these activities, much as in Prodigy (Minton, 1988).

8

Rete network for one rule with conditions:
C1 : (at ?S ?L1)
C2 : (next ?L1 ?L2)
C3 : (goal-point ?L2 true)

when Working Memory contains
W1 : (at S1 A)
W2 : (next A B)
W3 : (next A C)
W4 : (goal-point B true)
W5 : (next B C)

(at) (next) (goal-point, true)constant tests

(at S1 A) (next A B)

W6 : (goal-point D true)

WMEs

join on ?L1

join on ?L2

complete match

(next A C)
(next B C)

(goal-point B true)
(goal-point D true)

{(at S1 A) (next A B)}
{(at S1 A) (next A C)}

{(at S1 A) (next A B) (goal-point B true)}

FIGURE 3: Rete network and associated tokens for a rule.

Omitting search-control rules from the explanation is considered safe because they only a�ect

the e�ciency of the problem solving | by (hopefully) directing the search down productive

paths | not its correctness (which is instead determined by reaching a goal state). However,

as will be seen shortly, it has a totally unexpected and very signi�cant consequence on the

match cost of learned rules.

The remaining steps in generating an executable rule involve unifying the output explanation

structure via the EGGS algorithm (Mooney & Bennett, 1986), combining the rules in the

uni�ed explanation structure into a single EBLSoar rule, and compiling the rule into the rule

matcher. Firing of the learned rule can then generate the same result in place of what would

have taken multiple rule �rings by the original problem solving.

3 Measuring the Cost of Learned Rules

The cost of �ring a rule is dominated by the cost of matching the rule, which is itself critically

dependent on the match algorithm employed. As illustrated in (Doorenbos & Veloso, 1993),

the match algorithms employed in speed-up learning can thus greatly a�ect the utility of the

learned knowledge. Good matchers can help avoid a part of the utility problem, and bad

matchers can signi�cantly contribute to the problem. Traditional empirical utility analyses

have ignored this issue, and instead implicitly assumed that any excessive costs introduced

by suboptimal matchers will be taken care of by �ltering out those rules that become too

costly as a result. The approach we have taken instead is to start with a state-of-the-art

matcher | an optimized version of Rete (Forgy, 1982), one of the most e�cient rule-match

algorithms known | and carefully analyze where excessive costs arise within the matcher.

9

This requires a thorough examination of the match algorithm, which may seem unusual in

an article focused on learning, but is absolutely necessary under the circumstances.

Rete is based on compiling the conditions of rules into a data
ow network called a Rete

network. Figure 3 illustrates a Rete network for a simple rule with three conditions. Each

WME is represented by a tuple that contains three items: relation name, object, and value.

The network has two parts, the constant test part and the join part. The constant test part

performs constant tests on WMEs (matching ground literals), such as tests for at and true.

The outputs of these tests are stored in memories associated with the tests. Each memory

contains the set of WMEs that pass all of the constant tests of a condition. The join part of

the network contains join nodes and their memories. Join nodes perform consistency tests on

variables shared between conditions, such as ?L1, which is shared between C1 and C2. Their

memories store partial instantiations of rules, that is, instantiations of initial subsequences

of conditions.9 These partial instantiations are called tokens.

Rete's particular e�ciency stems primarily from two key optimizations: sharing and state

saving. Sharing of common conditions in a rule, or across a set of rules, reduces the number

of tests performed during match. When conditions are shared, there is only a single path

through the Rete network that represents all of them. State saving preserves the tokens

generated by previous (partial) matches for use in the future. It occurs through the memories

associated with constant and join nodes.

In this article we use the number of tokens generated during match as an analytical tool for

measuring cost. This is the standard metric in the rule match community because counting

tokens yields a measure that is independent of machines, optimizations, and implementation

details; and because time per token is usually approximately constant (Tambe et al., 1988).

In Section 5.4, we will also present some results based on time to show that this does not

dramatically alter the outcome.

Given the Rete match algorithm, techniques for measuring the number of tokens involved in

matching a single rule are well established. However, we need to go beyond this, to be able

to measure the number of tokens involved in a whole problem solving episode. We also need

to be able to measure the tokens involved in executing each of the intermediate products |

that is, the hybrid structures that are in between pure problem solving episodes and pure

rules | in the transformational learning sequence. Moreover, we want to go beyond just

measuring and comparing these numbers to proving boundedness relationships among them.

To do this we will �rst introduce the notion of a quasi-rule, and then de�ne a set of analysis

9There also are negative nodes, into which negated conditions are compiled. A negative node passes a

partial instantiation when there are no consistent WMEs (as with negation as failure).

10

tools, beginning with the concept of a trace-graph. A quasi-rule is a rule-like structure |

in particular, one that can be executed to generate preferences (in Soar, at least) based on

the situation in working memory | but one that is not simply constructed of the lists of

conditions and actions that make up standard rules. For our purposes here, the quasi-rules

of interest are problem solving episodes and the intermediate products generated during the

transformational analysis. Neither structure �ts a strict syntactic de�nition of a standard

rule, but either can be executed to achieve an e�ect comparable to what a rule | such as

the rule ultimately learned by EBL | would achieve.

A trace-graph represents the sequence of rule �rings and decisions in a quasi-rule | a stan-

dard rule trace can be viewed as a degenerate trace-graph for a quasi-rule involving only a

single rule �ring. More precisely, a trace-graph of a problem solving episode speci�es the

WMEs participating in the rule matches, the partial instantiations generated in the matches

(e.g., tokens in Rete), the rule instantiations, the output from the rule �rings, and the sub-

sequent uses of the output for the following rule �rings.

De�nition 1 (trace-graph) The trace-graph of a quasi-rule is a directed acyclic graph

consisting of a set of labeled nodes and directed edges.

The nodes of the trace-graph for a problem solving episode are constructed as follows:

1. For each rule �ring in the quasi-rule, a rule node is placed in the trace-graph represent-

ing the set of instantiations that �red for the rule. The rule node is labeled with the

name of the rule.

2. For each condition of each rule �ring in the quasi-rule, a condition node is placed in

the trace-graph representing the set of WMEs that matched the condition to produce

the instantiations that �red for the rule. The condition node is labeled with the set of

matched WMEs.

3. For each join of each rule �ring in the quasi-rule, a join node is placed in the trace-graph

representing the set of tokens generated at the join that produced the instantiations that

�red for the rule. The join node is labeled with the set of tokens generated.

4. For each rule �ring in the quasi-rule, a result node is placed in the trace-graph repre-

senting the preferences produced by the instantiations that �red for the rule. The result

node is labeled with the set of preferences.

5. For each decision in the quasi-rule, a decision node is placed in the trace-graph repre-

senting the decision.

11

(best-operator S B)

 (cand-operator S C) (cand-operator S E) (cand-operator S A)

R3

 (at S B) (next B A) (next B C)

R1

R2

(at S A)

(right A B)

(next B E)

(operator S B)

(operator S C)

R3

(at S C)

R4

(success S C)

 (goal-point S GP)
 (goal-at GP C)

D

S

(best-operator S C)

R2

(at S B)

(right B C)S

D

{(at S A)}

{(at S A) (next A B)}
{(at S A) (next A D)}

 (cand-operator S B) (cand-operator S D)

 (at S A)

R1

(next A D)(next A B)

{(at S A) (right A B)}

{(at S A) (right A B)
(cand-operator S B)}

{(operator S B)}

{(at S B}}
{(at S B) (next B A)}
{(at S B) (next B E)}
{(at S B) (next B C)}

{(at S B) (right B C)}

{(at S B) (right B C)
(cand-operator S C)}

{(operator S C)}

{(goal-point S GP)}

{(goal-point S GP) (goal-at GP C)}

{(goal-point S GP) (goal-at GP C) (at S C)}

FIGURE 4: Trace-graph of problem solving in the Grid task.

The edges of the trace-graph for a quasi-rule are constructed as follows:

1. Each condition node points to the join nodes it feeds.

2. Each join node points to the join nodes and rule nodes it feeds.

3. Each rule node points to the result node it feeds.

4. Each result node points to the decision nodes it feeds.

Figure 4 shows a trace-graph for the example Grid problem solving episode, where rule nodes

are represented as circles, condition nodes are represented by leaves (nodes not pointed to by

any other node), join nodes are represented as dots, tokens at a join node are shown within

curly brackets next to the join node, and decisions are represented by squares. For brevity,

arrow heads are omitted for all edges except for those from rule nodes and decision nodes to

result nodes (all other edges are implicitly directed downwards). An italicized letter S for a

join node in the Figure indicates sharing of match e�ort with other rules having the same

12

(a) Sequence of transformations

Map

Problem Solving

One rule

Explanation

Regressed

Explanation with
Search Control

Remove

Regress

Build one rule

Filter out unnecessary
rule firings

EBL soar rule

Modify rule form

structure

Structure

structure

 for matcher

structure

search control

PS-rule

E-rule

(b) Generating trace-graphs by

R-rule

Trace of

of U-rule

*

*

*

 : sources of
cost increase

*

Trace-Graph of
 Problem Solving

Trace-Graph of

Trace-Graph of

Trace-Graph of

Unified-Trace-Graph

 EBLsoar rule

interpreting learned structures

FIGURE 5: Transformational analysis of EBLSoar.

pattern of conditions | for example, the �rst join node of R1 and R2 is shared. Sharing

reduces the number of tokens generated because processing the shared structures just once

yields matches for all of the structures shared.

This trace-graph shows the details of the match process. The tokens are generated by con-

sistency tests between the instantiations of the previous conditions and the WMEs matching

the current condition. The Rete algorithm creates two instantiations of R1 based on these

tokens, and each instantiation creates a new candidate operator by executing the action.

The total number of tokens created for �ring R1 is 3. The total cost of the quasi-rule (the

problem solving episode in this case) can be computed by summing the number of tokens

across the full sequence of rule �rings, yielding 16 in this case.

4 A Transformational Analysis of EBLSoar

In this section we perform a transformational analysis of EBLSoar by: (1) decomposing

it into a sequence of transformations, (2) creating trace-graphs of the quasi-rules in the

sequence, (3) comparing the trace-graphs and (4) identifying which transformations introduce

expensiveness. We'll �rst describe each of these steps at a high level, and then go through

them in more detail, on a transformation by transformation basis.

13

Figure 5-(a) shows EBLSoar decomposed into a sequence of transformations. The input

to the sequence is the problem solving episode. The transformations in the sequence are

successively: remove rules that were unnecessary for the EBL proof (Section 4.1); remove

search-control rules (Section 4.2); regress the variables (Section 4.3); combine the set of

rules that made it through the previous transformations into a single hierarchical \rule"

(Section 4.4); and
atten the rule structure into an EBLSoar rule and compile it into a Rete

network (Section 4.5).

Figure 5-(b) maps this transformational sequence onto one in which each stage is represented

by a trace-graph (or simply a rule trace). By computing the cost of each quasi-rule, and

of the �nal rule, we can analyze the cost changes brought about by the transformations.

However, to do so, we much ensure that each of these structures has the same e�ective cost

measure, so that the costs are comparable. As discussed in Section 2, we will use the number

of tokens generated during match as an analytic tool for measuring and comparing the costs.

The asterisks (*) in Figure 5 mark the transformations which these comparisons identify as

introducing additional cost. More details on this will be provided as we proceed through the

examination of each individual transformation in the sequence.

4.1 Remove Unnecessary Rule Firings () PS-rule)

The �rst step of EBL is �ltering out unnecessary rule �rings that did not participate in the

proof. For the given example, this transformation eliminates all other rule �rings, if there

were any, beyond those shown in Figure 2. The resulting structure can be mapped to a type

of quasi-rule, called a PS-rule (Problem-Solving rule), by providing an interpreter for it.

The interpretation of the resulting PS-rule is similar to the original problem solving episode,

except for the missing unnecessary parts.10 That is, the trace-graph of a PS-rule is similar

to the trace-graph of the problem solving, modulo the unnecessary parts.

The cost (in number of tokens) of the trace-graph is bounded by the cost of problem solving.

If there were unnecessary rule �rings in the problem solving, as is usually the case, the cost

of a PS-rule would be strictly less than the cost of the problem solving. Otherwise, the cost

would be the same as that of the problem solving.

10One other di�erence, but one that doesn't alter the token count, is that interpretation of a PS-rule

is encapsulated; that is, communication of intermediate products during the interpretation of a PS-rule is

localized completely within the PS-rule rather than going through global structures such as working memory

(Kim, 1996).

14

R3

 (at S B) (at S D)
(next B A) (next B C)

R1

(next B E)

 (at S A)

R1

(next A D)(next A B)

(operator S C) (operator S E) (operator S A) (operator S G)

R3

(at S C) (at S E) (at S A) (at S G)

R4

(success S C)

 (goal-point S GP)
 (goal-at GP C)

 (operator S B) (operator S D)

(next D A) (next D E) (next D G)

{(at S A)}

{(at S A) (next A B)}
{(at S A) (next A D)}

{(operator S B)}
{(operator S D)}

{(at S B)} { (at S D)}

{(at S B) (next B A)}
{(at S B) (next B E)}
{(at S B) (next B C)}
{(at S D) (next D A)}
{(at S D) (next D E)}
{(at S D) (next D G)}

{(goal-point S GP)}

{(operator S C)}
{(operator S E)}
{(operator S A)}
{(operator S G)}

{(goal-point S GP) (goal-at GP C)}

{(goal-point S GP) (goal-at GP C) (at S C)}

FIGURE 6: The trace-graph of the E-rule for the Grid task.

4.2 Remove Search Control () E-rule)

The PS-rule contains all the rule �rings involved in the proof. However, EBL systems ignore

search-control knowledge generated during the problem solving. The second step corresponds

to this, explicitly removing search-control rules from the explanation structure. As explained

in Section 2, the search-control rules are removed in order to increase the generality of the

learned rules.

Figure 6 shows the trace-graph of the E-rule (Explanation rule) created from the PS-rule by

removing the search-control rules. The traces of the search-control rule R2 and the nodes

representing the decisions are gone, and only the traces of the task-de�nition rules remain.

All candidates proposed by R1 now become WMEs without being �ltered by the search

control in a decision. The trace-graph of the E-rule can be mapped onto the normal proof

tree or explanation in EBL. The interpreter for the E-rule is similar to the interpreter for

the PS-rule except that the E-rule does not have to perform decisions.

The consequence of eliminating search-control knowledge is that the interpretation of the E-

rule is not constrained by the path actually taken in the original solution. The interpretation

can perform extra search even when the original search was highly directed (by the control

rules). In the above example, without constraining the operator to the best candidate |

15

Learning 4 (cand-operator ?S ?L2)

1 (at ?S ?L1)

16 (next ?L2 ?L3)

-->
(best-operator ?S ?L2)

256 (next ?L4 ?L5)
64 (next ?L3 ?L4)

A

I

(Match Search)(Problem Solving)

1 (at goal-point ?L5)

. . .
learned rule

A B C

F

I

FIGURE 7: The di�erence between the search during problem solving and the search during
the match of the learned rule.

which goes to the right | the number of tokens in the match of R1 in step (2) increases

from 4 to 8, as shown in the Figure. Overall, the total number of tokens increases from 16

to 20 for this problem.

Although the increase in cost in this example is not terribly large, it can in other cases be

huge. Consider a longer problem from the Grid task of going from point A to point I in

Figure 7. With suitable control knowledge, the system can solve the problem of �nding a

path from A to I | for example, A, B, C, F, and I | in time that is linear in the length of the

path. However, because of the elimination of search control rules in this transformation, the

EBLSoar rule learned from this search may be so general that, when it matches, it searches

over all paths of length four instead of just a single path. Figure 7 shows the relationship

between the search upon which the learning is based and the search performed, during the

match, by the EBLSoar rule learned from this search. The rule says that if you are at location

?L1 and want to get to location ?L5, and there is an operator that takes you from ?L1 to ?L2,

and there is a connected path from ?L2 to ?L5 (via two intermediate points, ?L3 and ?L4),

then the operator is the best choice. This rule is quite general, as it can solve any problem

that has a solution of length four, and �nd all such paths, which is a key di�erence from the

original problem solving with search control. This generality, however, is only obtained at

an enormous cost. That is, the cost is exponential in the length of the path. Although, using

this learned rule, the system can solve the same problem within a single rule �ring instead

of requiring multiple rule-�ring cycles, the run time can become signi�cantly longer because

of this exponential match search.

4.3 Regress ()R-rule)

The next step in EBL is regression. Replacing the variable names with unique names (build-

ing the explanation structure) and then unifying each connection between an action and a

16

R3-1
2 (operator ?S ?L2)
-->
 (at ?S ?L2)

R1-1
1 (at ?S ?L1)
2 (next ?L1 ?L2)
-->
 (operator ?S ?L2)

R4-1

-->
 (success ?S ?L3)

R3-2
4 (operator ?S ?L3)
-->
 (at ?S ?L3)

R1-2
2 (at ?S ?L2)
6 (next ?L2 ?L3)

 (operator ?S ?L3)

1 (goal-point ?S ?GP)
1 (goal-at ?GP ?L3)
1 (at ?S ?L3)

-->

R3-1

 (at S B) (at S D) (next B A) (next B C)

R1-2

(next B E)

 (at S A)

R1-1

(next A D)(next A B)

(operator S C) (operator S E) (operator S A) (operator S G)

R3-2

(at S C) (at S E) (at S A) (at S G)

R4-1

(success S C)

 (goal-point S GP)
 (goal-at GP C)

2
1

2

2
6

4

 (operator S B) (operator S D)

1
1

1

(next D A) (next D E) (next D G)

FIGURE 8: The trace-graph of the R-rule.

condition, can create an R-rule (Regressed rule) from an E-rule. We build the explanation

structure by examining the trace-graph of the E-rule that is equivalent to the explanation

(or proof tree), and applying the regression process of the EGGS algorithm (Mooney & Ben-

nett, 1986) to the explanation structure. The trace-graph of the R-rule, resulting from the

regression is shown in Figure 8. (For brevity, labels on join nodes have been omitted and

just the numbers of tokens are shown.) In this example, the structure remains the same as

in the E-rule. The interpreter for the R-rule is the same as the interpreter for the E-rule.

Except for the di�erences in the variable names, the structures of the R-rule and the E-rule

are identical. With respect to the cost, regression does not increase the number of tokens.

The number of tokens should be the same, or be reduced by the extra constraints introduced

by regression.

4.4 Unify Multiple Rules into One () U-rule)

This step of EBL uni�es the separate rules in the explanation structure into a single rule.

Figure 9 shows the result of unifying the example R-rule into the corresponding U-rule

(Uni�ed rule).11 Although R1-10, R3-10, R1-20, R3-20and R4-10 still have their own identi�able

conditions in the U-rule, there are now no intermediate rule �rings. The boundaries between

11The level of indentation in Figure 9, re
ects the rule �ring order in the problem solving. For example,

the deepest indented conditions represent R1-10, which corresponds to the instance of R1-1 that appears �rst

(topmost) in Figure 8.

17

R4-1’
1 (goal-point ?S ?GP)
1 (goal-at ?GP ?L3)
1 (R3-2’)

6 (R1-2’)
2 (R3-1’)

6 (next ?L2 ?L3)

 2(R1-1’)
1 (at ?S ?L1)
2 (next ?L1 ?L2)

-->
 (success ?S ?L3)

R3-2’
6

R3-1’

 (at S A)

R1-1’

(next A D)(next A B){(at S A)}

{(at S A) (next A B)}
{(at S A) (next A D)}

{{ (at S A) (next A B)}}
{{ (at S A) (next A D)}}

{{{ (at S A) (next A B)}}}
{{{ (at S A) (next A D)}}}

(next B A) (next B C)(next B E)
(next D A) (next D E) (next D G)

R1-2’

{{{ (at S A) (next A B)}} (next B A)}
{{{ (at S A) (next A B)}} (next B E)}
{{{ (at S A) (next A B)}} (next B C)}
{{{ (at S A) (next A D)}} (next D A)}
{{{ (at S A) (next A D)}} (next D E)}
{{{ (at S A) (next A D)}} (next D G)}

R4-1’

(success S C)

 (goal-point S GP)

 (goal-at GP C){(goal-point S GP)}

{(goal-point S GP) (goal-at GP C)}

{(goal-point S GP) (goal-at GP C)
{{{{ (at S A) (next A B)}} (next B C)}}}

FIGURE 9: A uni�ed-trace-graph of a U-rule for the Grid task.

the rules are eliminated by removing the intermediate processes of WME creation. In lieu

of these processes, the instantiations generated by matching the earlier rules in the �ring

sequence (i.e., the tokens produced by their �nal conditions) are passed directly to the

match of the later rules. In e�ect, this step replaces the intermediate WMEs with the

instantiations that created the WMEs. For example, one of R3-10's conditions receives the

instantiations of R1-10 directly as intermediate tokens, rather than receiving WMEs created

from the instantiations. Thus, R1-10, R3-10, R1-20, R3-20, and R4-10 are no longer (separate)

rules. Here, they are called subrules. A condition which matched intermediateWMEs created

by a rule in the R-rule, is replaced by a nonlinear condition which tests the tokens generated

by the subrule that is built for the rule. (What makes a condition nonlinear is explained in

the next paragraph.)

To be able to properly interpret this structure (i.e., to measure the cost change through

the transformation), an extension is required to the match algorithm. The traditional Rete

algorithm, as shown in Figure 3, requires a linear match network, in the sense that a total

ordering must be imposed on the conditions to be matched; such as C1, then C2, and

then C3. In (linear) Rete, each join node checks the consistency of a token (a partial

instantiation) against a WME, with each token itself being a linear sequence of WMEs, each

of which matches one condition. Since the intermediateWMEs of the R-rule are replaced with

instantiations in the U-rule, whenever the current condition receives instantiations instead of

WMEs, testing consistency (via a join node) between the tokens of previous conditions and

the current (nonlinear) condition should join two tokens, instead of joining a token and a

WME. That is, U-rules require the ability to perform nonlinear matches, in which conditions

18

are matched via join nodes that compare pairs of tokens, rather than just a single token and

a WME. They also require the ability to create hierarchically structured tokens (when pairs

of incoming tokens are consistent); that is, a token must now be a sequence of WMEs or

tokens (instantiations of subrules), instead of a sequence of WMEs only. An extension of

Rete, called nonlinear Rete has been implemented to interpret this intermediate structure.12

Given this extension of the match algorithm, we need to extend the de�nition of the trace-

graph to represent the cost of a U-rule.

De�nition 2 (uni�ed-trace-graph)The uni�ed-trace-graph of a U-rule is a directed acyclic

graph consisting of a set of labeled nodes and directed edges.

The nodes of the uni�ed-trace-graph for a U-rule are constructed as follows:

1. Rule nodes, condition nodes, and join nodes are constructed exactly as in a trace-graph.

2. For each subrule �ring in the quasi-rule, a subrule node is placed in the trace-graph.

The subrule node is labeled with the name of the rule from which it is generated.

The edges of the uni�ed-trace-graph for a U-rule are constructed as follows:

1. Each condition node points to the join nodes it feeds.

2. Each join node points to the join nodes, subrule nodes, and rule nodes it feeds.

3. Each subrule node points to the join nodes it feeds.

The uni�ed-trace-graph in Figure 9 shows how tokens are created while matching (inter-

preting) the U-rule. Instantiations of subrule R1-10 are provided as the instantiations of the

condition of R3-10. Also, instantiations of subrule R3-10 are provided as the instantiations of

the �rst condition of R1-20. The consistency checking between the WMEs created by �ring

R3-1 and the instantiations of the second condition are replaced by consistency checking be-

tween the instantiations of R3-10 and the instantiations of the second condition, based on the

common variables between the subrule R3-10 and the second condition. In this case, there is

one common variable, ?L2, and the join node checks the equality of the instantiations of the

variable. This process continues until R4-10 is instantiated.

Cost problems are introduced in this transformation because the number of instantiations

of a rule can be greater than the number of WMEs created from those instantiations. For

12We borrow the term used in (Scales, 1986; Lee & Schor, 1992) for referring to extensions of Rete to

interpret generalized join nodes.

19

(a) An example case of increased tokens

(x1 1 2) (x1 1 3)
(x2 2 4) (x2 2 5) (x2 3 6) (x2 3 7)

WMEs

(x3 4 8) (x3 5 8) (x3 6 8) (x3 7 8)

Rule
2 (x1 ?A1 ?A2)
4 (x2 ?A2 ?A3)

-->
1 (y ?A1 ?A4)

4 (x3 ?A3 ?A4)

2(x1 ?A1 ?A2)
4(x2 ?A2 ?A3)
8(x3 ?A3 ?A4)

. . .

(b) A worse case for U-rule match

Rule

2n(xn ?An ?An+1)

-->
1 (y ?A1?An+2)

(x1 1 2) (x1 1 3)
(x2 2 4) (x2 2 5) (x2 3 6) (x2 3 7)
(x3 4 8) (x3 4 9) (x3 5 10) (x3 5 11) (x3 6 12) (x3 6 13) (x3 7 14) (x3 7 15)
. . .
(xn 2n-1 2n) (xn 2n-1 2n+1) . . . (xn 2n-1 2n+1-1)

WMEs

(xn 2n 2n+1) (xn 2n +1 2n+1) . . . (xn 2n+1-1 2n+1)2n(xn+1 ?An+1 ?An+2)

FIGURE 10: Number of tokens can increase in a U-rule.

example, given the rule and the WMEs in Figure 10-(a), four instantiations | (x1 1 2) (x2

2 4) (x3 4 8), (x1 1 2) (x2 2 5) (x3 5 8), (x1 1 3) (x2 3 6) (x3 6 8), and (x1 1 3) (x2 3 7) (x3 7

8) | are created. Because all these instantiations generate the same bindings for variables

?A and ?D, only one tuple (WME:(y 1 8)) is generated in the problem solving. Working

memory is a set in Soar (as in many other forward-chaining rule systems), and does not

include duplicate elements. Thus, the number of tokens is increased after the WMEs are

replaced by the instantiations.

The grid task also su�ers from this problem. In the R-rule, the six instantiations of R1-2

create four WMEs since there are only four points that can be reached by moving two steps

from A. The four WMEs are then matched to the second condition of R3-2. However, in the

U-rule, the six instantiations are directly used, creating two additional tokens. This increases

the total number of tokens from 20 to 22. A worse case can arise when the working memory

is structured as in Figure 10-(b). While the number of instantiations is exponential in the

number of conditions, the number of WMEs remains at one.

4.5 Modify Rule Form for Matcher () EBLSoar rule)

The �nal step in EBL is creating a new rule in the system, and storing it in the rule memory

for future matches. In the process of creating a new rule in EBL, the hierarchy in the

explanation structure is linearized into a total ordering (as is required by nearly all rule-

based systems). That is, EBL systems ignore the hierarchical structure of rule �rings, and

the structure of the match process for the learned rules di�ers from the structure of the

problem solving. For example, the hierarchical structure in Figure 9 is linearized (totally

20

rule

EBLsoar-rule
(at ?S ?L1)
(next ?L1 ?L2)
(next ?L2 ?L3)
(goal-point ?S ?GP)
(goal-at ?GP ?L3)
-->
(success ?S ?L3)

1

2

6

6

1

(next B A) (next B C)(next B E)

 (at S A)

(next A D)(next A B)

(success S C)

 (goal-point S GP)
 (goal-at GP C)

(next D A) (next D E) (next D G)

FIGURE 11: The trace-graph of the learned EBLSoar rule for the Grid task resulting from
linearizing the U-rule.

ordered) to the structure in Figure 11. (The new rule is a task-de�nition rule, generating

candidates for successful reach to the goal point.)

Note that standard EBL systems perform little optimization in the process. However, in

EBLSoar, when a new rule is created, conditions are reordered to improve the match perfor-

mance. Also, when common conditions occur across multiple rules, duplicate match e�ort is

saved by sharing within the Rete network.

The critical consequence of this step (linearization and condition ordering) is that the match

structure of the learned rule is no longer constrained by the problem-solving structure. That

is, how instantiations of di�erent conditions are combined can be di�erent from how they

were combined during problem solving. This structural change introduces several di�erent

sources of expensiveness (Kim & Rosenbloom, 1996). Here we give two examples of these

sources.

The �rst source arises directly from the linearization of the graph structure. By combining

sub-graphs (of the subrules) together, some of the previously independent conditions become

joined with other parts of the structure before they �nish their sub-hierarchy match. Fig-

ure 12 shows an example. Figure 12-(b) shows the trace-graph of the problem solving, given

the WMEs and rules in Figure 12-(a). For readability, the condition nodes of rules rule-conn

and rule-close are also labeled with the name of the condition. In the problem-solving episode

(and the U-rule), the conditions in a subrule (e.g., the conditions in rule-conn) are matched

independently from the other parts of the structure (e.g., the conditions of rule-close) before

its created WMEs are joined with the WMEs created by rule-close. By combining these sub-

graphs together | through linearization | some of these previously independent conditions

are joined with other parts of the structure before they �nish their sub-graph match. In the

linearized rule (Figure 12-(c) shows some possibilities that di�er only in condition ordering),

it is no longer possible to maintain independence between the conditions of rule-conn and

rule-close. For example, in the �rst case in Figure 12-(c), tokens for the conditions from

21

W1:(next1 A B1) W6:(next2 B1 C1)

W11:(near1 A D1) W15:(near2 D1 E1)

(a) WMEs and rules

rule-conn
C1:(next1 ?A ?B)
C2:(next2 ?B ?C)
-->
(conn ?A ?C)

rule-close
C3:(near1 ?A ?D)
C4:(near2 ?D ?E)
-->
(close ?A ?E)

rule-success
C5:(conn ?A ?C)
C6:(close ?A ?E)
-->
(success ?A yes)

W2:(next1 A B2)
W3:(next1 A B3)
W4:(next1 A B4)
W5:(next1 A B5)

W7:(next2 B2 C2)
W8:(next2 B3 C3)
W9:(next2 B4 C4)
W10:(next2 B5 C5)

W12:(near1 A D2)
W13:(near1 A D3)
W14:(near1 A D4)

W16:(near2 D2 E2)
W17:(near2 D3 E3)
W18:(near2 D4 E4)

rule-conn

5

5

rule-close

4

4

rule-success

5

20

(b) Trace-graph of problem solving episode (match of c1,c2 and c3,c4 are independent)

(43)

W6,W7,W8,W9,W10
W11,W12,W13,W14

W15,W16,W17,W18

(close A E1) (close A E2) (close A E3) (close A E4)

W1,W2,W3,W4,W5

5

5
20

20

(conn A C1) (conn A C2) (conn A C3) (conn A C4) (conn A C5)

W1,...,W5

W6,...,W10

W11,...,W14

W15,...,W18

C1

C2 C3

C4

C1

C2

C3

C4

(50)

4

4
20

20

W1,...,W5

W6,...,W10

W11,...,W14

W15,...,W18C3

C4

C1

C2

(48)

4

20
20

20

C3

C1

C2

C4

(64)

W11,...,W14

W1,...,W5

W6,...,W10

W15,...,W18 . . .

(c) Trace-graph of linearized structures

C5

C6

FIGURE 12: Loss of independence by linearization.

rule-close | (near1 ?A ?D) and (near2 ?D ?E) | are dependent on tokens for the conditions

of rule-conn.

This loss of independence can increase the number of tokens. For the three orderings shown

in Figure 12-(d), the number of tokens for the linearized structures are 50, 48, and 64, which

are all greater than 43. Even with an optimal ordering, the number of tokens still increases

in this example.

Another source of cost increase comes from non-optimal ordering of the conditions. As

with (Smith & Genesereth, 1985), Soar uses a heuristic ordering algorithm because of the

cost of �nding optimal orderings (Scales, 1986). Whenever this heuristic condition-ordering

algorithm creates a non-optimal ordering, additional cost may be introduced. For example,

the Grid task can create the non-optimally-ordered rule shown in Figure 11. The cost is 16

with this rule. However, with an optimal ordering, as shown in Figure 13, the cost can be

reduced to 6.

22

EBL-rule

1 (at ?S ?L1)
2 (next ?L1 ?L2)
1 (next ?L2 ?L3)

1 (goal-point ?S ?GP)
1 (goal-at ?GP ?L3)

-->
(success ?S ?L3)

rule

1

1

1

2

1
(next B C)

 (at S A)

(next A D)(next A B)

(success S C)

 (goal-point S GP)

 (goal-at GP C)

FIGURE 13: The match cost of an optimally ordered EBLSoar rule for the Grid task.

5 Modifying the Transformations

The transformational analysis in Section 4 identi�ed three sets of sources of expensiveness:

(1) removing search control, (2) disrupting the optimizations based on equivalent knowledge

(by unifying), and (3) losing e�ciencies stemming from problem-solving structures (by lin-

earizing). As mentioned earlier, these sets of sources can all be viewed as stemming from

excessive loss of information that was available during problem solving. In particular, in-

formation was lost about: (1) search control that was used; (2) which rule instantiations

created equivalent results; and (3) the structure of the problem solving.

In this section these problems are eliminated by applying three modi�cations which enable

the learning to re
ect the lost information:

1. Removing search control) incorporate search control in learning. By incorporating

search control in the explanation structure, the match process for the learned rule can

focus on the path that was actually followed.

2. Disrupting the optimizations based on equivalent knowledge) preprocess knowledge be-

fore it is used. By preprocessing the knowledge, either by grouping the equivalent pieces

of knowledge or by selecting one piece as a representative, an equivalent optimization

can be achieved. These optimizations are called token compression.

3. Losing e�ciencies stemming from the problem-solving structure) keep the problem-

solving structure. By keeping the graph structure employed in the problem solving, the

e�ciencies can be reinstated.

By applying these modi�cations to the original EBLSoar transformational sequence (Fig-

ure 14-(a)), it is altered into the Bounded EBLSoar (BEBLSoar) transformational sequence

shown in Figure 14-(b). Figure 14-(b) is annotated with the modi�cations.

The remainder of this section discusses the new BEBLSoar sequence of transformations in

23

(Domain Theory)
Given Rules

PS-rule

E-rule

(a) Original EBLsoar

R-rule

EBL soar rule

U-rule

Regress with

Domain Theory

PS-rule

R’-rule

U’-rule

Build one rule structure
and introduce token

*

*

*

compression

search control
Modify

(b) New BEBLsoar

Remove
search control

Build one rule
structure

Modify rule form
 for matcher

= BEBLsoarrule

transformational sequence
annotated with modifications

Filter out unnecessary
rule firings

Regress

 transformational sequence

FIGURE 14: Modi�cations to avoid the sources of expensiveness.

detail, including proofs that the transformations avoid cost increases. However, before doing

this, two quali�cations must be mentioned. The �rst quali�cation is that there are aspects of

the Soar architecture that can lead to overgenerality in learned rules (Laird et al., 1986) |

and thus to cost increases | whether the learning occurs via chunking or EBLSoar. However,

these architecture-level factors are separable from the rule-level transformations that are the

core of explanation-based learning. Also, in practice, these factors do not engender signi�cant

cost increases (see, for example, (Tambe et al., 1990; Doorenbos, 1993) and Section 5.4).

Thus, the analysis of these aspects can be, and has been, left to future work.

The second quali�cation is that, while the boundedness theorems in this section do guarantee

that a learned rule will not yield cost increases when the rule is used in the same situation

for which it was learned, things are trickier when a learned rule transfers to a di�erent

situation. In particular, it is possible that if the learned rule had not transferred, then

some other more e�cient problem solving method would have been used. This is a form

of Einstellung (Luchins, 1942) or masking (Tambe & Rosenbloom, 1993) that needs to be

addressed separately. Einstellung is a general problem that can occur in any system that

prefers to use more recently learned knowledge and methods over previously existing ones.

The phenomenon was, in fact, �rst identi�ed in natural systems such as people.

Now turning to the BEBLSoar transformational sequence, the �rst transformation | from

the domain theory to a PS-rule | is the same as in the original transformation sequence. We

24

prove the safety of this transformation in terms of the number of tokens in the trace-graphs.

We then discuss the transformation from a PS-rule to an R0-rule, and the transformation

from an R0-rule to a U0-rule (which is equivalent to a BEBLSoar rule), respectively. We wrap

up with a small empirical demonstration that these theoretical results in terms of tokens |

which are the core validation of BEBLSoar | still hold when cost is measured in terms of

time.

5.1 Domain Theory) PS-rule

Before we prove that this transformation is safe, we de�ne additional tools for comparing

the relationships among quasi-rules.

De�nition 3 (trace-subset) Given the initial WMEs, a quasi-rule A is a trace-subset of

a quasi-rule B, if (1) each rule node in A's trace-graph maps to a unique rule node in B's

trace-graph, where both rule nodes were derived from the same rule application in the original

problem solving episode; and (2) the label of each condition node is a subset of the label of

the mapped condition node in B's trace-graph, where the mapping is based on (1).

Theorem 1 Given the initial WMEs, if a quasi-rule A is a trace-subset of a quasi-rule B,

the number of tokens produced while interpreting A is less than or equal to the number of

tokens produced by B. That is, the number of tokens in A's trace-graph is less than or equal

to that in B's trace-graph.

proof. Because A is a trace-subset of B, by condition (1) each rule node R in A can be

mapped into a unique rule node R0 in B which is derived from the same rule application in

the original problem solving episode. (Two di�erent rule nodes in A cannot be mapped into

the same node in B.) Also, because each condition in R matches to a subset of the WMEs

matching the condition in R0 (condition (2)), there will be fewer (or the same number of)

partial instantiations (tokens) produced while matching R as is produced for R0. Thus, the

total number of tokens in A's trace-graph is bounded by the total number of tokens in B's

trace-graph.2

Theorem 2 For the same situation, the number of tokens produced while interpreting a PS-

rule is bounded by the number of tokens produced by the problem solving episode from which

the PS-rule is created.

25

proof. Because the PS-rule is produced by eliminating the rule �rings and the decisions not

connected to the result creation, the problem solving episode employs either more rules and

decisions than the PS-rule's trace-graph (when there is at least one excessive rule �ring), or

the same rules and decisions (when there is no excessive rule �ring). Thus, condition (1) of

trace-subset holds. Also, in PS-rule interpretation, only the WMEs created by the connected

decision are matched by the rule condition, while in the problem solving episode, all WMEs

are matched to all conditions. Thus, condition (2) of trace-subset holds. By De�nition 3,

the PS-rule is a trace-subset of the domain theory. By Theorem 1, the number of tokens

produced in matching the PS-rule is bounded by that in the problem solving episode. 2

For the Grid task example, the number of tokens remains the same | 16.

5.2 PS-rule) R0-rule (Regress with search control)

The transformation from a PS-rule to an E-rule has been dropped in order to retain the

search control in learning.13 The retention of search control, rather than the removal of it,

may specialize the learned rules (and the quasi-rules created between this transformation

and the learned rules), but in return it enables the rule's cost to remain bounded by the cost

of the original problem solving. Also, the learned rules are specialized only as much as was

the original problem solving episode (by the search-control rules employed in it).

The transformation from a PS-rule directly to an R0-rule requires a regression over the PS-

rule. Figure 15 shows the new R0-rule built from the PS-rule in the Grid example. Although

the characteristics of this transformation are similar to those of the original transformation,

the resulting R0-rule is di�erent from the R-rule in that copies of the search-control rules

and the subsequent decisions are kept in the structure. The total cost in number of tokens

is 16, which is the same as the match cost of the PS-rule. In general, the number of tokens

generated should either be unchanged or reduced by the introduced constraints.

Theorem 3 For the same situation, the number of tokens produced while interpreting an

R0-rule is bounded by the number of tokens of the PS-rule from which it is created.

proof. The R0-rule has the same set of rules as the PS-rule because the rules remain the

13If there are excessive control rules and the set of preferences over-determines the choice, the redundant

preferences (and their rule traces) can be pruned from the explanation to make the created rule as general

as possible (Kim, 1996).

26

 (cand-operator S B)

(best-operator S B)

 (cand-operator S C) (cand-operator S E)
 (cand-operator S A)

R3-1’’

 (at S B) (next B A) (next B C)

 (cand-operator S D)

(at S A)

(right A B)

(next B E)

 (at S A)

R1-1’’

(next A D)(next A B)

(operator S B)

(operator S C)

R3-2’’

(at S C)

R4-1’’

(success S C)

 (goal-point S GP)
 (goal-at GP C)

2
1

D

S

1
1

1

1
3

(best-operator S C)

R2-2’’

(at S B)

(right B C)S

1
1

D

1

R2-1’’

R1-2’’

R3-1’’
(operator ?G ?L2)
-->
(at ?S ?L2)

R1-1’’
(at ?S ?L1)
(next ?L1 ?L2)
-->
(cand-operator ?S ?L2)

R2-1’’
(?S ?L1)
(right ?L1 ?L2)
(cand-operator ?G ?L2)
-->
(best-operator ?S ?L2)

R3-2’’
(operator ?G ?L3)
-->
(at ?S ?L3)

R1-2’’
(at ?S ?L2)
(next ?L2 ?L3)
-->
(cand-operator ?S ?L3)

R2-2’’
(at ?S ?L2)
(right ?L2 ?L3)
(cand-operator ?G ?L3)
-->
(best-operator ?S ?L3)

R4-1’’

-->
(success ?S ?L3)

(goal-point ?S ?GP)
(goal-at ?GP ?L3)
(at ?S ?L3)

1

1
1

FIGURE 15: The interpretation of the R0-rule that is built while learning a rule from the Grid
task.

same. Thus, condition (1) of trace-subset holds. The changes made by the transformation

either make di�erent variables the same or constrain the variables as constants. Because of

these changes, a rule condition in the R0-rule either matches fewer WMEs than match the

corresponding condition in the PS-rule, or matches the same WMEs (condition (2) of trace-

subset). By Theorem 1, the number of tokens produced by the R0-rule match is bounded by

that in the PS-rule match. 2

5.3 R0-rule) U0-rule (create BEBLSoar rule)

This transformation has to perform two sub-transformations: (1) unifying the separate

rules and decisions into one structure, and (2) applying token compression. These two

sub-transformations should be applied together, because performing (1) without (2) can

increase the cost. Also, (2) is not meaningful without (1); token compression is needed

only when intermediate WMEs are replaced by tokens, which is what (1) does. The �rst

sub-transformation removes intermediate preferences along with the subsequent intermediate

27

R1’’
1 (at ?S ?L1)
2 (next ?L1 ?L2)
-->
 (cand-operator ?S ?L2)

R2’’
S (at ?S ?L1)
1 (right ?L1 ?L2)
1 (cand-operator ?S ?L2)
-->
 (best-operator ?S ?L2)

R1’’’
1 (at ?S ?L1)
2 (next ?L1 ?L2)

R2’’’
S (at ?S ?L1)
1 (right ?L1 ?L2)
1 (R1’’’)

 (cand -operator S B)

(best -operator S B)

 (cand -operator S D)

(at S A)

(right A B)

 (at S A)

R1-1’’

(next A D)
(next A B)

(operator S B)

D

R2-1’’

(at S A)

(right A B)

 (at S A)

R1-1’’’

(next A D)
(next A B)

(S B)

UD

R2-1’’’

(a) Decision in R’-rule (b) Unified Decision in U’-rule

{(at S A) (next A B)}
{(at S A) (next A D)}

{(at S A) (right A B)
{(at S A) (next A B)}}

FIGURE 16: Transforming a decision in an R0-rule to a decision in a U0-rule.

WMEs, and produces a single rule structure. Token compression needs to be introduced to

prevent any increase in the number of tokens caused by this uni�cation.

5.3.1 Unifying: Removing intermediate preferences and WMEs

Removing intermediate preferences means that the instantiations of the rules that created

the preferences are directly used in the decisions (instead of creating the preferences and pro-

cessing them in the decisions). This requires a new decision algorithm which embodies the

semantics of the decision procedure but processes instantiations instead of preferences. Re-

moving intermediate WMEs also means that this decision algorithm does not create WMEs.

The set of instantiations (of conditions) that participated in the decision is directly used

for further matches. Figure 16 illustrates this through an example transformation in which

intermediate preferences and WMEs are removed, and instantiations are directly processed

by the decision. Since the decision process in the U0-rule is di�erent from the normal deci-

sion procedure, in having to process instantiations rather than preferences, the decision is

represented in the Figure as UD (Uni�ed Decision) instead of D to denote the di�erence.

Uni�ed decisions also di�er from normal decisions in that they cannot be performed by calling

a general decision procedure. As each rule has particular patterns in its conditions and

actions, each uni�ed decision has particular patterns for its input and output. These input

and output patterns are determined by the subrules which participate in the decision. For

example, as shown in Figure 16-(b), the given uni�ed decision will process the instantiations

of the subrules and make a uni�ed decision based on the variable patterns of the subrules.

Execution of a U0-rule happens via a single match process | since a U0-rule is a single rule

28

| implying that all uni�ed decisions in the U0-rule must be performed within the match

algorithm. To support this, the match process has been augmented with a new algorithm

that simulates the decision procedure in the match in order to produce the same result

without performance overhead. Each uni�ed decision only simulates the portion of the full

decision procedure needed for the search control types which a�ected the decision. Further

details of this modi�cation are described partly in (Kim & Rosenbloom, 1996) and fully in

(Kim, 1996).

5.3.2 Applying token compression

Without token compression, all the instantiations of the subrules are directly transferred

to the connected rules in the U0-rule match. Figure 17 shows an example. In the �gure,

R4-variant is an extension of R4 which has one more condition that tests for prizes at the

goal point. Also, R5 tests success and proposes a new game starting from the current

position. Given these rules and the additional WMEs, matching R4-variant creates three

instantiations: I1, I2, and I3 (Figure 17-(b)). Because all of these instantiations have the

same values for the variables in the action in the R0-rule (?S and ?L3), only one WME

(success S C) is created from them in the R0-rule match. The WME is then matched to the

�rst condition of R50.

Figure 17-(c) shows a part of the U0-rule match without token compression. Because the

three instantiations are directly passed to R50, the match cost can increase. At least for

the �rst condition of R50, the number of tokens increases from 1 to 3. The increase can be

compounded when combined with likely increases from subsequent conditions.

To avoid such an increase in the number of tokens, token compression merges equivalent

tokens (tokens for the same WME) into one token. Because the variables in the action

determine which WMEs are created by action execution, one way of implementing token

compression is to explicitly represent only the values of the variables in the action (and the

mapping between the values and the variables). We call the variables in the action exposed

variables. For example, the exposed variables for the action of R4-variant are ?S and ?L3.

Given these exposed variables, as shown in Figure 17-(d), the three instantiations are merged

into one tuple (S C) which is used instead of the three instantiations in the U0-rule match.

Because the tuple represents any of the three instantiations, it is not removed until all three

instantiations are removed.

Unifying rules replaces intermediate WMEs with instantiations that created the WMEs,

and token compression replaces the instantiations with tuples of exposed variables' values.

A tuple is di�erent from a WME in that its creation and deletion are performed within

29

R4-variant

-->
 (success ?S ?L3)

1 (goal-point ?S ?GP)
1 (goal-at ?GP ?L3)
1 (at ?S ?L3)
3 (prize ?L3 ?P)

W36: (prize C PRIZE-1)
W37: (prize C PRIZE-2)

R5

-->
 (start-new-game-from ?S ?L3)

1 (success ?S ?L3)

R4-variant

R5

(success S C)

(b)R’-rule match

TC (based on ?S ?L3) :

==> create T1: (S C)

T1

(a) Given rules and WMEs

W38: (prize C PRIZE-3)

(goal-point S GP)
(goal-at GP C)

(at S C)
(prize C PRIZE-1)

(prize C PRIZE-2)
(prize C PRIZE-3)

1
1

1
3

R4-variant

R5’

(c) U’-rule match

(goal-point S GP)
(goal-at GP C)

(at S C)
(prize C PRIZE-1)

(prize C PRIZE-2)
(prize C PRIZE-3)

1
1

1
3

Instantiations (of conditions) of R4-variant
I1: (goal-point S GP) (goal-at GP C) (at S C) (prize C PRIZE-1)
I2: (goal-point S GP) (goal-at GP C) (at S C) (prize C PRIZE-2)
I3: (goal-point S GP) (goal-at GP C) (at S C) (prize C PRIZE-3)

I1,I2,I3

R4-variant

R5’

(d) U’-rule match

1
1

1
3

I1, I2, I3 are all equivalent

without token compression with token compression

FIGURE 17: Building a U0-rule with and without token compression.

one rule (U0-rule) match, instead of across multiple rule matches and decisions. In general,

because the number of tuples is always bounded by the number of WMEs, and tuples provide

the same binding information about exposed variables as do WMEs, the cost increase from

unifying can be avoided.

In order to analyze U0-rules quantitatively we need to extend our earlier concept of a uni�ed-

traced-graph to an extended-trace-graph. In the following de�nition, the extensions are shown

in bold face.

De�nition 4 (extended-trace-graph) The extended-trace-graph of a U0-rule is a directed

acyclic graph consisting of a set of labeled nodes and directed edges.

The nodes of the extended-trace-graph for a U0-rule are constructed as follows:

1. Rule nodes, subrule nodes, condition nodes and join nodes are constructed just as in a

uni�ed-trace-graph.

2. For each uni�ed decision in the U0-rule, a uni�ed-decision node is placed in

the extended-trace-graph representing the uni�ed decision.

The edges of the extended-trace-graph for a U0-rule are constructed as follows:

1. Each condition node points to the join nodes it feeds.

2. Each join node points to the join nodes, subrule nodes, and rule nodes it feeds.

30

R3-1’’’
(next B A)

(next B C)
(next B E)

R3-2’’’

R4-1’’’

(success S C)

 (goal-point S GP)
 (goal-at GP C)

1

1
3

R2-2’’’

(at S B)

(right B C)S

1
1

1

R1-2’’’

(at S A)

(right A B)

 (at S A)

R1-1’’’

(next A D)
(next A B)

2
1

UD

S

1
1

R2-1’’’

UD

 (at ?S ?L1)
 (next ?L1 ?L2)

R4-1’’’
 (goal-point ?S ?GP)
 (goal-at ?GP ?L3)

R1-1’’’{UD1{

R3-1’’’{

R1-2’’’{
UD2{

R3-2’’’{

 (next ?L2 ?L3)

S (at ?S ?L1)
 (right ?L1 ?L2)

}

R2-1’’’{

}
Shared R1-1’’’

}
}

-->
(success ?S ?L3)

}
R2-2’’’{

Shared R3-1’’’
 (right ?L2 ?L3)
Shared R2-1’’’}

}
}

(b) Hierarchical conditions of U’-rule(a) Extended-trace-graph of U’-rule

1
1

1

FIGURE 18: The extended-trace-graph and conditions of the U0-rule that is built while learning
a rule from the Grid task.

3. Each subrule node points to the join nodes and uni�ed-decision nodes it feeds.

4. Each uni�ed-decision node points to the join nodes it feeds.

The new U0-rule built from the original R0-rule in Figure 15 is shown in Figure 18. The

copies of the search-control rules and the subsequent decisions are kept in the structure. The

total cost in tokens remains unchanged, instead of increasing.

R4-1000 in Figure 18-(b) shows the hierarchical condition structure of the U0-rule. There are

two uni�ed decisions, and each of them introduces the constraints required to avoid the

sources of additional cost, as the original search-control rules and decision procedure did.

The number of tokens generated will be either the same, or reduced, by applying the above

set of optimizations. Before we prove that this transformation is safe, we de�ne one more

tool for comparing the relationships between an R0-rule and a U0-rule.

De�nition 5 (extended-trace-subset)Given the initial WMEs, a U0-rule A is an extended-

trace-subset of a quasi-rule B, if (1) each rule node and subrule node in A's extended-trace-

graph maps to a unique rule node in B's trace-graph, where both rule nodes (or the subrule

node and the rule node) were derived from the same rule application in the original problem

solving episode; and (2) for each condition node C in A and its corresponding condition node

31

D in B, each WME (or tuple, when C is for a nonlinear condition) T in C's label can be

mapped to a unique WME W in D's label in that T and W contain equivalent information

about the variable bindings.

Theorem 4 Given the initial WMEs, if a U0-rule A is an extended-trace-subset of quasi-rule

B, the number of tokens produced while interpreting A is less than or equal to the number of

tokens produced by B.

proof. Because A is an extended-trace-subset of B, each (sub)rule R in A can be mapped to

a unique rule R0 in B which is derived from the same rule application in the original problem

solving episode. For each condition node C in R, since each tuple (or WME) in the node's

label can be mapped to a unique WME in the label of the corresponding condition node C0 in

R0 (extended-trace-subset), there will be fewer (or the same) partial instantiations (tokens)

produced while matching R than are produced for R0. Thus, the total number of tokens in

A's extended-trace-graph is bounded by the total number of tokens in B's trace-graph. 2

Theorem 5 Given the initial WMEs, the number of tokens produced while interpreting a

U0-rule is bounded by the number of tokens of the R0-rule from which it is created.

proof. Each subrule in the U0-rule is created from a unique rule in the R0-rule. Thus,

each subrule in the U0-rule's extended-trace-graph maps to a unique rule in the R0-rule's

trace-graph (condition (1) of extended-trace-subset). Since the uni�ed decision �lters out

candidates based on search-control semantics, and token compression picks one representative

for each set of duplicate instantiations, condition (2) of extended-trace-subset holds. By

Theorem 4, the number of tokens produced by the U0-rule match is bounded by that in the

R0-rule match. 2

This completes the proofs that the individual transformations are bounded. From here it is

a short step to proving the overall boundedness of BEBLSoar.

Theorem 6 For the same situation, the number of tokens produced while interpreting a

BEBLSoar rule is bounded by the number of tokens produced by the problem solving episode

from which it was learned.

proof. Follows directly from Theorems 2, 3, and 5. 2

32

To illustrate how match works di�erently for the rules learned by BEBLSoar from those

learned by EBLSoar, Figure 19 shows the number of tokens generated at each condition

during the match of a corresponding pair of learned rules from the Grid task (but from a

longer problem than previously used as an example). In the EBLSoar rule (Figure 19-(a)),

there are huge cross products in the match, leading to a maximum number of 3989 tokens

at a condition. In the BEBLSoar rule (Figure 19-(b)), the number of tokens at a condition

does not grow to more than 4.

In Figure 19-(b), braces mark the beginning and ending of subrules. This hierarchical struc-

ture re
ects the problem-solving structure. Shared subrules are not shown in the �gure for

brevity. The conditions shared across the di�erent sub-parts re
ect the multiple usage of

those conditions in the original problem solving. This multiple usage keeps the cost bounded,

by constraining the sub-parts as they were in the problem solving. Although the rule con-

ditions built by BEBLSoar look rather complex, and can be di�cult to read, they introduce

the constraints required to avoid the sources of cost increase and thus to bound the cost of

the learned rule.

5.4 Timing Demonstration

The new BEBLSoar learning system follows the transformation sequence shown in Figure 14-

(b), and utilizes an interpreter for search-control incorporated, token compressing, nonlinear

rules. Since the previous sections have proven that BEBLSoar provides bounded learning

in terms of the number of tokens generated during rule match, an extensive experimental

validation of this implementation is not called for. However, it is important to at least

demonstrate that this theoretical boundedness in tokens carries over to real boundedness in

time, with all the additional complexities that are involved (such as variations in time per

token and growth e�ects from learning multiple rules).

So, in this section, we take a brief look at comparative timings for EBLSoar and BEBLSoar

in several tasks that have proven in the past to learn expensive rules: the Grid task, the

N-Queen task, and the Magic Square task (Tambe et al., 1990). We compare the CPU

times from three di�erent variations of Soar 6.0.4 (a C-based version of Soar) on a Sun

SPARCstation-20/61: without learning, with the rules learned by EBLSoar, and with the

rules learned by BEBLSoar. The results are presented in Figure 20.

The results from the Grid task are the average problem solving time (in seconds) for two

sequences of problems, one containing problems with a path length of six and the other

problems of length seven. In the length six Grid tasks, the average CPU time with EBLSoar

33

[1](problem-space ?G ?P)
[1] (name ?P path)
[4] (cand-operator ?G ?X)
[4] (name ?X goto-loc)
[4] (state ?G ?S)
[4] (at ?S? L1)
[4] (at ?X ?L1)
[4] (to ?X ?L2)
[16] (next ?L2 ?L3)
[64] (next ?L3 ?L5)
[255] (next ?L5 ?L6)
[1011] (next ?L6 ?L7)
[3989] (next ?L7 ?L4)
[3989] (goal-point ?G ?GP)
[225] (at ?GP ?L4)
[225] (last-loc ?S ?L)

(a) EBLsoar rule (b) BEBLsoar rule

{{{
{[4] (cand-operator ?G ?O7)}
{[4] (problem-space ?G ?P1)
 [4] (cand-operator ?G ?O7)
 [4](name ?P1 path)
 [4] (state ?G ?S1)
 [4] (cand-operator ?G ?O7)
 [4] (at ?S1?L1) [1] (to ?O7 ?L2)
}
{[4] (cand-operator ?G ?O6)}}}

[3] (at ?O6 ?L3)
[3] (down ?L3 ?L4) [1] (to ?O6 ?L4)
{ { [4] (cand-operator ?G ?X)}

 [3] (at ?X ?L5)
 [3] (right ?L5 ?L6) [1] (to ?X ?L6)}}}

{{ [4] (cand-operator ?G ?O9) }
[3] (at ?O9 ?L7)
[3] (up ?L7 ?L8) [1] (to ?O9 ?L8)}}

[1] (goal-point ?G ?D)
{{{

{[1] (problem-space ?G ?P2)
 [1] (state ?G ?S2)
 [1] (at ?X3 ?L9)
 [1] (at ?S2 ?L9)
[1] (to ?X3 ?L10)}

[1] (next ?L10 ?L9)}}
{

[4] (next ?L10 ?L11)
{[1] (down ?L10 ?Ll11)}}

{[4] (next L10 ?L12) [4] (right L10 ?L12)}
{[4] (next ?L10 ?L13) [1] (up ?L10 ?L13) }
{

{
{ [1] (next ?L12 ?L10) }
[4] (next ?L12 ?L14) [1] (down ?L12 ?L14)
[4] (next ?L12 ?L15) [1] (right ?L12 ?L15)
[4] (next ?L12 ?L16) [1] (up ?L12 ?L16) }

 [1] (at ?D ?L17)
{ {

[4] down ?Ll15 ?L17)}
. . .
}}}

--> (best-operator ?G ?X3)--> (best-operator ?G ?X)

FIGURE 19: Number of tokens for corresponding learned rules in the Grid task.

34

Magic Square Task

2.0

4.0

6.0

time (sec)

Average
CPU

8.0

2-Queen Task

0.1

0.2

0.3

3-Queen Task

2.0

time (sec)

Average
CPU

4.0

6.0

8.0

10.0

Grid Task (length 6)

: without learning

: EBLsoar

1.0

2.0

15.0

3.0

time (sec)

Average
CPU

: BEBLsoar

Grid Task (length 7)

24.0

6.0

4.0

2.0

220.0
time (sec)

Average
CPU

4-Queen Task

0.5

1.0

1.5
6.91

3.47

0.23 0.22

0.08

0.71

9.02

1.00

0.16

0.28

15.06

1.87

220.34

2.71

** **

0.84

1.09

time (sec)

Average
CPU

time (sec)

Average
CPU ** : couldn’t finish

FIGURE 20: Average CPU times for expensive-rule tasks.

rules is eight times greater than the average CPU time of the system without learning. In

the length seven tasks, the time with EBLSoar rules is roughly eighty times greater than

the time without learning. EBLSoar clearly slows down the problem solving in both cases;

that is, it is an expensive-rule task. Also, the slowdown factor in the length seven tasks is

greater than that in the path six tasks, so the problem is getting worse as the problems get

bigger. However, the time with BEBLSoar rules is always less than the time before learning;

in particular, the time is less than half of that without learning.

The 2-Queen task is to place two queens in a 3 � 3 grid without them being attacked by each

other. The 3-Queen task and 4-Queen task place three and four queens, respectively, in a 4

� 4 grid. In the 2-Queen task, the time with EBLSoar rules is almost the same as the time

without learning. In the 3-Queen task, the time with EBLSoar rules is more than ten times

greater than the time without learning. As in the Grid task cases, the slowdown factor seems

to increase as the size of the task increases. In fact, in the 4-Queen task, the system could

not even �nish learning with EBLSoar. The number of tokens for the learned rule reached

more than eight million and the system could not allocate enough memory. In contrast,

with BEBLSoar rules, time after learning is always bounded by time without learning, and is

roughly three to four times better than the time without learning.

The Magic Square task is to place tiles 1 through 9 in a 3 � 3 square in such a manner that

all of the rows, columns, and diagonals sum to the same number. The results show the same

35

pattern as in the N-Queen tasks. With EBLSoar rules, the system could not �nish learning.

However, the CPU time with BEBLSoar rules is bounded by the time without learning |

the time without learning is greater than the time with BEBLSoar rules by a factor of two.

6 Related Work

Considerable prior work has occurred on reducing the expensiveness of learned rules. One

class of approaches to the expensive-rule problem has focused on directly reducing the cost

of learned rules. Some approaches have restructured and simpli�ed the learned rules to

semantically equivalent ones in order to reduce the match cost of the rules (Prieditis &

Mostow, 1987; Minton, 1988). Other approaches have analyzed the problem solving structure

that is the basis of the learning to either avoid particular structures (such as recursion) in

the learned rules (Etzioni, 1990), or to preserve such structures in the learned rules (Shell

& Carbonell, 1991; Shavlik, 1990; Subramanian & Feldman, 1990). The approach described

here is similar in spirit to this last thread. Although we don't focus on explicitly identifying

particular problem solving structures, we do use the structure of the problem solving as a

strong constraint on the form of the learned rule. Where we go beyond the earlier work is in

identifying all the aspects of the problem solving structure of the given performance system

that can lead to increased cost in the learned rule if not accounted for, and then eliminating

them.

A second class of approaches to the expensive-rule problem is selective learning, where the

utility of learned knowledge is evaluated and only the useful knowledge is kept. Several

systems assume a �xed distribution of problems, and select those performance-system trans-

formations that allow increased utility; for example, PRODIGY/EBL's utility evaluation

(Minton, 1988), where it measures the utility in terms of the savings and cost of a rule, and

rules are deactivated if their utility is estimated as negative. PALO (Greiner & Jurisica,

1992) and Composer (Gratch & Dejong, 1992) navigate through the space of performance

elements, and select rules only if they show incremental utility. The information �ltering

model (Markovitch & Scott, 1993) proposes a more general framework for selective learning,

and de�nes various methods for eliminating harmful knowledge from the learning system.

The approach presented in this paper is able to dispense with the processes of utility eval-

uation and �ltering, yet still provide a boundedness guarantee with respect to the cost of

individual rules.

Although the selective approaches are weaker with respect to this form of boundedness, they

36

do have the advantage that they can deal directly with both the potential issue of expensive

transfer to problems other than the one for which a rule was learned and the issue of average

growth e�ect | in both cases, by �ltering learned rules whose net e�ects are negative. With

respect to expensive transfer, we have not yet run across a case where this is actually a

problem; however, should it turn out to be a real problem, some form of solution may need

to be added to the boundedness techniques introduced here. With respect to the average

growth e�ect, we expect to be able to utilize recent optimizations that enable acquiring over

one million rules while still allowing their e�cient use (Doorenbos, 1993; Doorenbos, 1994),

although the combination of this result and the approach described here still needs to be

analyzed.

A third class of approaches to the utility problem is to use inductive learning techniques to

learn simpler (or approximate) control rules with reduced match cost (Cohen, 1990; Zelle

& Mooney, 1993). These approaches are on the other side of the spectrum of maintaining

versus dropping (or simplifying) information for e�ciency in the learning process. BEBLSoar

keeps the performance information as well as the accuracy information in learning to provide

boundedness of learned rules.

A fourth class of approaches has focused explicitly on providing boundedness in learned

rules, as we do here. They have focused on absolute boundedness | where guarantees are

provided on the absolute cost of using learned (or any) rules | rather than on the relative

boundedness that has been the focus here (where the cost of using learned rules is bounded

by the cost of the problem solving they replace). Absolute boundedness comes closer to the

kinds of guarantees that are required in hard real-time systems; however, they can only do

so by sacri�cing either expressivity (Tambe et al., 1990; Tambe & Rosenbloom, 1994) or

completeness (Haley, 1987; Barachini & Verteneul, 1988). Also learned rules may become

very speci�c when expressivity is sacri�ced. Relative boundedness can maintain whatever

real-time guarantees have already been provided by the pre-learning performance system |

although while not providing real-time guarantees on the pre-learning performance system

| without these limitations.

A �fth class of approaches has focused on reducing the cost of learned rules by utilizing better

match algorithms (Doorenbos & Veloso, 1993). The approach described here also focuses

on the match algorithm. It starts with a state-of-the-art Rete algorithm and augments it in

various ways to enable cheaper matches of learned rules. However, simply reducing the cost

of using existing learned rules is not enough for boundedness. It is also necessary to change

the structure of the learned rules in fundamental ways, and thus also of the match algorithm

used for them.

In addition to these �ve classes of approaches to the expensive-rule problem, the work de-

37

scribed here is related to other work that has employed a transformational view of EBL

(Keller, 1983; Mostow, 1983; Bostrom, 1993; Segre & Elkan, 1994). In this related work,

learning is explicitly viewed as occurring via a sequence of transformations. The focus is on

developing a useful set of basic transformations, and via them a large space of potentially

useful sequences of transformations. EBL is then one possible transformational sequence in

this space. What this related work has in common with the work described here, is the focus

on learning via a transformational sequence. However, our focus here has been on using the

transformational sequence as a tool for developing a bounded learning algorithm, rather than

on a general exploration of the space of learning sequences.

7 Conclusion

Many learning systems su�er from the utility problem, where the time for problem solv-

ing after learning is greater than the time before learning. Discovering how to assure that

learned knowledge will in fact speed up system performance has been a focus of research in

explanation-based learning (EBL). This article focused on ensuring that the cost of using

learned rules is no more than the cost of the problem solving they replace, based on the idea

that expensiveness is inadvertently and unnecessarily introduced into learned rules by the

learning algorithms themselves. We developed a two step process: (1) �nding the complete

set of sources that can make learned rules expensive for a particular system, and then (2)

modifying the learning process to avoid these sources. To �nd the set of sources of expen-

siveness, we introduced a novel way of analyzing the learning process | the transformational

analysis. The essence of the analysis is to decompose the learning process into a sequence of

transformations in which the cost of intermediate products can be computed. By computing

and comparing the match cost of each intermediate product, the cost changes through the

learning were measured and isolated within particular transformations.

This research used EBLSoar, with a state-of-the-art Rete match algorithm, as a vehicle for

the investigation. EBLSoar has been decomposed into a sequence of transformations from a

problem solving episode to the matching and �ring of a learned rule. The match cost of each

intermediate product (quasi-rule) was measured by counting the number of tokens produced

in the match to generate the result. By analyzing the transformations, we identi�ed a set of

sources which can make the output rule expensive. In addition to identifying the sources, the

analysis also pointed the way towards modi�cations of the transformational sequence that

could eliminate the sources. The set of sources and the corresponding modi�cations are:

38

1. Removing search control) incorporate search control in learning. By incorporating

search control in the explanation structure, the match process for the learned rule can

focus on the path that was actually followed.

2. Disrupting the optimizations based on equivalent knowledge) preprocess knowledge

before it is used. By preprocessing the knowledge, either by grouping equivalent pieces

of knowledge or by selecting one as a representative, an equivalent optimization can be

achieved.

3. Losing e�ciencies stemming from the problem-solving structure) keep the problem-

solving structure. By keeping the graph structure employed in the problem solving, the

e�ciencies can be reinstated.

As mentioned earlier, one general way of viewing these three sources of cost increase is

as excessive loss of information. The kinds of information that are lost in the learning

process don't lead to incorrectness in the resulting rules, but do lead to signi�cant losses

in e�ciency. The corresponding modi�cations avoid the loss in e�ciency by retaining the

appropriate information through the learning process.

Implementing the identi�ed modi�cations requires signi�cant changes in the underlying Soar

architecture, especially in the learning and match algorithms. This set of modi�cations has

been applied to EBLSoar, converting the original sequence of transformations into a provably

bounded one, called BEBLSoar. In addition, the match algorithm has been extended to

handle search-control incorporated, token compressing, nonlinear rules. The boundedness

of the resulting system has been empirically demonstrated in three di�erent expensive-rule

tasks.

Looking towards the future, several outstanding problems still require attention. First, it is

important to understand the extent to which this same approach can apply to other imple-

mented EBL systems, and perhaps even more broadly to other speed up learning systems,

to see if similar gains in boundedness can be achieved there. For example, PRODIGY/EBL

(Minton, 1988) can be viewed as consisting of a transformational sequence that starts with

a target concept, and recursively specializes the concept with respect to a problem solving

episode until it reaches primitive concepts. The uni�ed result of the specialization becomes

the conditions of a new rule. Then PRODIGY/EBL simpli�es the rule to reduce the match

cost and performs a utility evaluation to discard high cost rules. Finally, the resulting learned

rule is added into its rule system. This sequence of transformations may be analyzed in terms

of how each one a�ects the cost. That is, the intermediate products may be interpreted based

on its performance system, and compared in order to identify which transformations intro-

duce additional costs. It may even be possible to design structures similar to trace-graphs

39

that could serve as the basis for computing these costs (Minton, 1993), and to further focus

the search for sources of cost increase by concentrating on those locations where the learning

mechanism discards information used during problem solving.

Second, using nonlinear rules leads to diminished rule readability. Even with indenting to

re
ect the level of hierarchy, the sharing of sub-conditions is still di�cult to understand.

One way of relieving this problem is to further simplify the structure of the rules. There

are additional ways of simplifying the graph structure beyond those already implemented,

including modi�cations to the nonlinear structure to make it more e�cient (Kim, 1996). By

implementing such optimizations, the match performance may be improved, as well as the

readability of the rules. It is also possible to improve readability by linearizing the rules

when presenting them to humans. In this way it would be possible for them to focus on the

content of the learned rule, without being distracted by the structure.

Third, as mentioned in Section 5, the proof of how BEBLSoar provides boundedness does not

cover the aspects of the Soar architecture that can lead to overgenerality in learned rules. A

similar analysis for these aspects is needed.

Fourth, a more thorough investigation of the additional specialization engendered by BEBLSoar

is warranted. We know that its level of specialization is no worse than the problem solving

from which it learns rules (Section 5), and that it is less than what is engendered by existing

approaches which limit expressiveness in order to guarantee absolute boundedness (Kim &

Rosenbloom, 1993). However, we do not yet have a full characterization of its impact on

performance or the number of rules that must be learned.

Fifth, and �nally, BEBLSoar needs to be combined with a solution to the average growth

e�ect. Earlier work on the average growth e�ect in chunking has shown that it is possible to

learn large numbers of rules without hurting overall system performance (Doorenbos, 1993;

Doorenbos, 1994). However, because the rules created by BEBLSoar can be di�erent from

the rules created by chunking, the problem still needs to be addressed in terms of BEBLSoar.

Acknowledgment

This research was supported under subcontract to the University of Southern California

Information Sciences Institute from the University of Michigan, as part of contract N00014-

92-K-2015 from the Advanced Systems Technology O�ce (ASTO) of the Defense Advanced

Research Projects Agency (ARPA) and the Naval Research Laboratory (NRL); and under

contract N66001-95-C-6013 from the Information Systems O�ce (ISO) of the Defense Ad-

vanced Research Projects Agency (ARPA) and the Naval Command and Ocean Surveillance

40

Center, RDT&E division (NRaD). We would like to thank Jonathan Gratch, Steve Minton,

and Milind Tambe for helpful comments on this work.

References

Barachini, F. & Verteneul, G. (1988). The challenge of real-time process control for produc-

tion systems. In Proceedings of the Seventh National Conference on Arti�cial Intelligence,

pages 705{709.

Bostrom, H. (1993). Improving example-guided unfolding. In Proceedings of ECML-93,

pages 124{135.

Cohen, W. W. (1990). Learning approximate control rules of high utility. In Proceedings of

the Seventh International Conference on Machine Learning, pages 268{276.

Dechter, R. (1990). Enhancement schemes for constraint processing: Backjumping, learning,

and cutsets decomposition. Arti�cial Intelligence, 41:273{312.

DeJong, G. F. & Mooney, R. (1986). Explanation-based learning: An alternative view.

Machine Learning, 1(2):145{176.

Doorenbos, B. (1993). Matching 100,000 learned rules. In Proceedings of the Eleventh Na-

tional Conference on Arti�cial Intelligence.

Doorenbos, B. (1994). Combining left and right unlinking for matching a large number of

learned rules. In Proceedings of the Twelfth National Conference on Arti�cial Intelligence.

Doorenbos, B. & Veloso, M. M. (1993). Knowledge organization and the utility problem.

In Proceedings of the Third International Workshop on Knowledge Compilation and Speedup

Learning.

Etzioni, O. (1990). Why Prodigy/EBL works. In Proceedings of the Eighth National Con-

ference on Arti�cial Intelligence, pages 916{922.

Fattah, Y. E. & O'Rorke, P. (1993). Explanation-based learning for diagnosis. Machine

Learning, 13:35{70.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object pattern match

problem. Arti�cial Intelligence, 19(1):17{37.

Gratch, J. & Dejong, G. (1992). COMPOSER: A probabilistic solution to the utility prob-

41

lem in speed-up learning. In Proceedings of the Tenth National Conference on Ariti�cial

Intelligence, pages 235{240.

Greiner, R. (1991). Finding optimal derivation strategies in redundant knowledge bases.

Arti�cial Intelligence, 50(1):95{115.

Greiner, R. & Jurisica, I. (1992). A statistical approach to solving the EBL utility problem.

In Proceedings of the Tenth National Conference on Arti�cial Intelligence, pages 241{248.

Haley, P. V. (1987). Real-time for Rete. In Proceedings of ROBEXs'87: The Third Annual

Workshop on Robotics and Expert Systems.

Katukam, S. & Kambhampati, S. (1994). Learning explanation-based search control rules

for partial order planning. In Proceedings of the Twelfth National Conference on Arti�cial

Intelligence, pages 582{587.

Keller, R. M. (1983). Learning by re-expressing concepts for e�cient recognition. In Pro-

ceedings of the National Conference on Arti�cial Intelligence, pages 182{186.

Kim, J. (1996). Bounding the Cost of Learned Rules: A Transformational Approach. PhD

thesis, University of Southern California.

Kim, J. & Rosenbloom, P. S. (1993). Constraining learning with search control. In Proceed-

ings of the Tenth International Conference on Machine Learning, pages 174{181.

Kim, J. & Rosenbloom, P. S. (1995). Mapping explanation-based learning onto Soar: The

sequel. Technical Report :Transformation analyses of learning in SOAR. ISI/RR-95-4221,

Information Sciences Institute and Computer Science Department University of Southern

California.

Kim, J. & Rosenbloom, P. S. (1996). Learning e�cient rules by maintaining the explanation

structure. In Proceedings of the Thirteenth National conference on Arti�cial Intelligence,

pages 763{770.

Laird, J. E., Congdon, C. B., Altmann, E., & Doorenbos, R. (1993). Soar User's Manual:

Version 6, 1 edition.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general

intelligence. Arti�cial Intelligence, 33:1{64.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1985). Chunking in Soar: The anatomy of a

general learning mechanism. Machine Learning, 1.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Overgeneralization during knowledge

42

compilation in Soar. In Proceedings of the Workshop on Knowledge Compilation, pages

46{57.

Lee, H. S. & Schor, M. I. (1992). Match algorithms for generalized Rete networks. Arti�cial

Intelligence, 54:249{274.

Luchins, A. S. (1942). Mechanization in problem solving. Psychological Monographs, 54.

Markovitch, S. & Scott, P. D. (1993). Information �ltering : Selection mechanism in learning

systems. Machine Learning, 10(2):113{151.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning.

In Proceedings of the Seventh National Conference on Arti�cial Intelligence, pages 564{569.

Minton, S. (1993). Personal communication.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based general-

ization { a unifying view. Machine Learning, 1(1):47{80.

Mooney, R. J. & Bennett, S. W. (1986). A domain independent explanation-based gener-

alization. In Proceedings of the Fifth National Conference on Arti�cial Intelligence, pages

551{555.

Mostow, D. J. (1983). Machine transformation of advice into a heuristic search procedure.

In R. Michalski, J. C. & Michell, T., (Eds.), Machine Learning: An Arti�cial Intelligence

Approach. Palo Alto, CA, Tioga Press. In press.

Prieditis, A. E. & Mostow, J. (1987). PROLEARN: Towards a Prolog interpreter that learns.

In Proceedings of the Sixth National Conference on Arti�cial Intelligence, pages 494{498.

Rosenbloom, P. S. & Laird, J. E. (1986). Mapping explanation-based generalization onto

Soar. In Proceedings of the Fifth National Conference on Arti�cial Intelligence, pages 561{

567, Philadelphia. AAAI.

Rosenbloom, P. S., Laird, J. E., & Newell, A., (Eds.) (1993). The Soar Papers: Research on

Integrated Intelligence. Cambridge, MA, MIT Press.

Rosenbloom, P. S., Laird, J. E., Newell, A., & McCarl, R. (1991). A preliminary analysis of

the Soar architecture as a basis for general intelligence. Arti�cial Intelligence, 47(1-3):289{

325.

Scales, D. J. (1986). E�cient matching algorithms for the Soar/Ops5 production system.

Technical Report KSL-86-47, Knowledge Systems Laboratory, Department of Computer Sci-

ence, Stanford University.

43

Segre, A. & Elkan, C. (1994). A high-performance explanation-based learning algorithm.

Arti�cial Intelligence, 69:1{50.

Shavlik, J. W. (1990). Aquiring recursive and iterative concepts with explanation-based

learning. Machine Learning, 5:39{70.

Shell, P. & Carbonell, J. (1991). Empirical and analytical performance of iterative operators.

In The 13th Annual Conference of The Cognitive Science Society, pages 898{902. Lawrence

Erlbaum Associates.

Smith, D. E. & Genesereth, M. (1985). Ordering conjunctive queries. Arti�cial Intelligence,

26:171{215.

Subramanian, D. & Feldman, R. (1990). The utility of EBL in recursive domain theories. In

Proceedings of the Eighth National Conference on Arti�cial Intelligence, pages 942{949.

Tambe, M., Johnson, W. L., Jones, R. M., Koss, F., Laird, J. E., Rosenbloom, P. S., &

Schwamb, K. B. (1995). Intelligent agents for interactive simulation environments. AI Mag-

azine, 16:15{39.

Tambe, M., Kalp, D., Gupta, A., Forgy, C. L., Milnes, B. G., & Newell, A. (1988). Soar/PSM-

E: Investigating match parallelism in a learning production system. In Proceedings of the

ACM/SIGPLAN Symposium on Parallel Programming: Experience with applications, lan-

guages, and systems, pages 146{160.

Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The problem of expensive chunks and

its solution by restricting expressiveness. Machine Learning, 5(3):299{348.

Tambe, M. & Rosenbloom, P. S. (1993). On the masking e�ect. In Proceedings of the

Eleventh National Conference on Arti�cial Intelligence, pages 526{533.

Tambe, M. & Rosenbloom, P. S. (1994). Investigating production system representations for

non-combinatorial match. Arti�cial Intelligence, 68(1):155{199.

Zelle, J. & Mooney, R. (1993). Combining FOIL and EBG to speed-up logic programs. In

Proceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence, pages

1106{1111.

44

