
Memory-Based Meta-Level Reasoning for Interactive Knowledge
Capture

Jihie Kim

University of Southern California/Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292 USA
+1 310 448 8769

Abstract
Current knowledge acquisition tools are oblivious to the
process or strategy that the user may be following in
entering new knowledge and unaware of their progress
during a session. Users have to make up for these
shortcomings by keeping track of the status, progress,
potential problems and possible courses of actions by
themselves. We present a novel extension to existing
systems that 1) keeps track of past problem solving episodes
and relates them to user entered knowledge, 2) assesses the
current status of the knowledge and the problem solving
using such relations, and 3) provides assistance to the user
based on the assessment. We applied the approach in
developing an intelligent assistant for decision making
tasks. The resulting interaction shows that the system helps
the user understand the progress and guides the knowledge
authoring process in terms of making the knowledge more
useful, adapting the knowledge to dynamic changes over
time, and making the overall problem solving more
successful.

Introduction
Knowledge acquisition is a challenging area of research
for developing intelligent applications. There has been a
wide range of approaches taken, including programming
by demonstration (Cypher 1993), case-based reasoning
(Bareiss et al 1989), and learning apprentices (Mitchell et
al 1986). These approaches make use of observed
examples and generalize them into a task representation.
While these approaches work well for simple tasks, for
capturing complex problem solving activities, direct
knowledge acquisition tools seem more useful (Clark et al
2001; Blythe et al 2001).
In the past we have participated in developing and
evaluating various knowledge acquisition tools. We have
analyzed various types of tasks involved in entering
complex problem solving knowledge and examined the
challenges end users face in performing such tasks (Kim
and Gil 2000,Pool et al 2003). These results show a

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

common pattern: users can easily become lost in the
process of performing various tasks involved in knowledge
authoring. Most existing knowledge acquisition tools do
not explicitly model this type of meta-level process and
cannot provide effective help.
In existing systems, knowledge entered by the user (called
k-items) are treated equally and systems do not reflect on
how each knowledge has been built and how well it has
been used over time. The systems cannot provide effective
assistance in making the k-items more useful and the
resulting problem solving more successful. For instance,
when there is an inconsistency detected between two k-
items, existing systems provide uniform error messages.
However, in order to develop actually useful k-items, users
may need to know which k-item should be modified and
how the modification improves the overall problem
solving. For example, while one of the k-items has been
successfully used over time and the system has high
confidence in it, the other k-item may conflict with some of
the past successful problem solving results and its
estimated confidence level is lower. In such a case, the
system may suggest modifying the less confident item
instead of the other.
When captured k-items are used in problem solving, the k-
items can be applied according to the level of confidence
assessed for them. That is, more confident items are
preferably used.
When confident k-items are overridden or modified, the
system notices them as unexpected event and may also
recognize that there are some changes in the problem
solving. In such cases, the system will assist users in
making appropriate k-item modifications. For example, if a
k-item becomes obsolete, the problem solving steps where
the k-item was applied may be also out-of-date and other
related k-items may become less reliable. This capability is
particularly important for the applications where there are
dynamic changes in the problem solving over time and the
associated knowledge needs to be adjusted accordingly.
Many practical applications in business and science require
this type of capability.
Here we propose a novel framework for knowledge
acquisition tools that 1) keeps track of past problem
solving episodes and relates them to each k-item 2)

assesses the current status of k-items and problem solving
using such relations and 3) provides assistance to the user
based on the assessment. We have built a system called
Echo (mEta-Cognitive History analysis and Organization)
that provides these capabilities. This paper reports the
initial version of the system. Echo can be used as an
extension to existing knowledge-based systems that
support knowledge authoring and problem solving. Echo
builds a memory model that relates each k-item to the
problem solving episode it was built from, the episodes it
matched, the episodes where it was actually used, and the
episodes it can potentially contribute to. This model is
used in assessing a k-item, checking if it can be
confidently used, it conflicts with some successful results
and needs some modifications, or it needs significant
changes including deactivation. Based on this assessment,
Echo guides the user in improving and maintaining the
confidence levels of the k-items over time.
The contributions of this work are twofold. First we
present a novel architecture of intelligent systems where
memory based meta-level reasoning supports knowledge
authoring and problem solving, which defines a new class
of cognitive tools. Second, we demonstrate how the
architecture supports developing useful intelligent
assistants. We use a domain where the problem solving is
traditionally done manually but acquisition of simple
problem-solving knowledge from the user incrementally
automates the process and improves the problem solving
results.
This paper begins with example interactions with Echo,
illustrating how its meta-level reasoning helps users. We
use a simple decision making domain where captured k-
items help the user make better decisions. Then we present
the architecture of the system. We show each component
of Echo and describe a set of general algorithms
supporting meta-level reasoning. In particular we
demonstrate how the memory model is used in assessing
the status of the knowledge base and providing assistance
to the user. Next, we describe the system that was
developed for interactive decision aid, summarizing the
benefits of Echo. Finally we discuss related work and
future extensions.

Example Interactions
Here we illustrate our approach with a simple application
of visitor hosting where the user manually makes decisions
on visitor activities and meeting schedules. That is, the
user instead of a problem solver performs decision making
tasks, choosing talk time, talk location, meeting attendees,
meeting times, etc. The user can enter constraints in
making decisions as k-items based on failures and
successes of decisions that are observed. These k-items are
used in providing suggestions for new decisions, aiming at
improving the quality of the decisions over time.

In the following examples, we show example interactions
between the user and Echo. The k-items are paraphrased
in English for readability. The representation that we use
for these examples are described in below.

Assisting k-item authoring
In the following, the user enters a new k-item that
describes how Sam’s meetings with visitors should be
scheduled.
 * k-item-1: Meetings with Sam who is a division director
 should be scheduled in the late afternoon (5pm, 5:30pm)
 because he often cancels meetings.

 Echo: I am not so confident about k-item-1. It conflicts with
 some of the recent decisions. For example, do you
 remember Ken’s visit? Sam met Ken at 3pm. …
 Do you want to modify k-item-1 instead of ignoring
 these conflicts? For example, you can do one of these:

 - specify why 3pm was chosen for Ken’s visit
 - include 3pm in the suggestion
In this case, the user specifies that 3pm was chosen for
Ken’s visit because Ken had to leave early. The k-item is
modified accordingly.
 * k-item-1’: Meetings with Sam should be scheduled in the
 late afternoon (5pm, 5:30pm) if the visitor doesn’t
 leave early.

 Echo: I am now confident about k-item-1.
The confidence level of the modified k-item is higher
because it is now consistent with past decisions.
Unlike in existing knowledge acquisition tools, Echo
relates a new definition to the problems solved over time,
assesses the confidence level of the item using the
relations, and makes suggestions in the context of
improving the confidence level and making the overall
problem solving more successful. Without Echo’s
memory-based meta-level reasoning, the system may not
recognize the inconsistencies the user needs to pay
attention to and also may not provide feedback on how
user’s k-item modifications improve the knowledge base.
more successful. The approach also facilitates adaptation
of k-items when there are changes in problem solving.

Assisting problem solving with user entered k-
items
When the user has a new visitor and starts a new decision
on Sam’s meeting time, the system looks for the k-items
that can provide confident suggestions on the decision.
When it is known that the visitor does not leave early, the
system uses k-item-1 with high confidence.

 Echo: suggest selecting late afternoon (5pm, 5:30pm)
 with high confidence.

If the user’s decision conflicts with confident k-items, the
system notices it as an unexpected event and suggests
examining how relevant decisions were made in the past
before moving onto other tasks. For less confident k-
items, modification or deactivation of the k-items is

considered with higher priority. For example, if the user
selects a meeting time before 4:30pm, the system generates
this output.

 Echo: Are you sure about your decision? Do you remember
 Sam’s visit and Ben’s visit? You have selected late
 afternoon times.

If there were actual changes (e.g., Sam is not a division
director anymore and he is now less busy), k-item-1 is no
longer useful, and the user may choose to modify or
deactivate it. Based on the user actions, the system may
recognize that there are some changes and analyze further
potential modifications. For example, the system suggests
examining past decisions where k-item-1 was used and
check whether they are now invalid. This may affect other
k-items that were actively used in the invalid episodes
since they may be now less reliable.

Memory-Based Meta-Level Reasoning
Echo’s analysis is driven by these meta-level goals:
• ensure that the user entered k-items are consistent and

complete
• ensure that k-items are useful in problem solving
• ensure that k-items adapt to changes in the world

Figure 1: Architecture

Figure 1 shows architecture of a knowledge-based system
where Echo’s meta-level reasoning supports knowledge
authoring and problem solving. The highlighted boxes in
the figure represent the main components that support
meta-level reasoning. The system makes use of the results
from the meta-level reasoner and provides proactive
assistance in making k-items more useful. Likewise,
during problem solving, the system makes use of the
results from the meta-level reasoner and provides
assistance based on the level of confidence assessed
through memory-based analysis.

Memory Model
We assume that each problem solving episode consists of a
set of problem solving steps. A k-item is applicable to a
problem solving step when its trigger conditions match the

features that describe the problem and the problem solving
context. For example the above k-item-1 is used when the
user tries to schedule a new meeting with Sam.
Echo keeps track of past problem solving episodes and
relates them to each k-item. Each problem solving episode
consists of:
 - problem features that describe a problem
 (e.g. schedule activities for a new visitor Carl)
 - definitions and terms used during problem solving
 (e.g. Carl’s research interests, visit date, etc.)
 - a set of problem solving steps
 (e.g. decide talk time, decide talk location, ...)

Each problem solving step maintains:
 - problem solving context
 (e.g. deciding meeting time for Sam)
 - problem solving results
 (e.g. selected 5pm for Sam’s meeting time)
 - k-items matched
 - k-items that are actually used in the problem solving
 - timestamp of the step
 - whether it is valid
The user can indicate out-of-date problem solving steps as
invalid. The invalid steps are ignored in assessing the
confidence-levels of the k-items.
Echo relates new k-items to the problem solving steps and
computes these:
- steps it matches
- steps it can potentially contribute to
- steps it conflicts with
- steps where it was used
This structure is incrementally updated for new problem
solving steps, as described below.

Assessing confidence level of k-items
Based on the memory model described above, Echo infers
whether a k-item can be confidently used, whether it
conflicts with some successful results and needs some
modifications, or it needs significant changes including
deactivation.
Echo calculates the confidence level of k-item i using a
simple equation as follows:
 w1*P(i) + w2*R(i) + w3*U(i) (1)
where P(i) is the performance level of i, R(i) is the
application recency of i, and U(i) is the application
frequency of i.

P(i) = 0, if #matched = 0
 # used / # matched, otherwise
R(i) = 0, if #matched = 0
 1 / (t(i) +1), otherwise
 where t(i) is time elapsed since the most recent match

 U(i) = 0, if # problem solving steps = 0
 # matches / # problem solving steps, otherwise

In each equation, the division normalizes the metric so that
the value is bound between 0 and 1. The relative weights
of the metrics can be chosen depending on the strategies a
given application takes.
The user can also explicitly indicate whether a k-item is
obsolete and should not be used in problem solving.

:low confidence
item

step-1

step-3

step-2

… Local KB

KB

…

…

…

…

current
problem solving

Memory Model

Meta-Level
Reasoner

Matcher

• Relate k-items with
current and
past episodes

• Assess confidence
level of k-items

• Provide assistance
based on the
assessment

user

Solve
problems

Add/modify/
deactivate

k-items

Assist
problem
solving

Assist
k-item

authoring

k-items

k-item-3

k-item-2

k-item-1

…

:low confidence
item

step-1step-1

step-3step-3

step-2step-2

… Local KB

KBKB

……

……

……

…

current
problem solving

Memory Model

Meta-Level
Reasoner

Matcher

• Relate k-items with
current and
past episodes

• Assess confidence
level of k-items

• Provide assistance
based on the
assessment

user

Solve
problems

Add/modify/
deactivate

k-items

Assist
problem
solving

Assist
k-item

authoring

k-items

k-item-3

k-item-2

k-item-1

…

{
{
{

Reflection: analyzing k-items with memory model
and providing assistance
The following algorithms show how memory model
changes through knowledge authoring (add new k-item,
modify a k-item, and deactivate/delete a k-item) and
problem solving. They also show how Echo makes use of
the memory model in providing assistance to the user.
These algorithms are general and independent of a given
application or the knowledge representation used.
--
Add-new-k-item (k-item i)
 1) find-matching-problem-solving-steps-in-memory (i)
 2) check whether the matching steps are consistent with i
 3) compute the confidence level of cl of i based on 1) & 2)
 4) When there are inconsistent steps,
 if cl is low, suggest modifying i to make it
 consistent with the matching steps
 using modify-k-item-to-make-it-consistent-with-step(i, s)
 rather than ignoring or invalidating the inconsistent steps
 otherwise (cl is high), for each inconsistent step s,
 suggest checking whether s is still valid
 rather than modifying i
Modify-k-item(k-item i-old, k-item i-new)
 1) if the confidence-level of i-old was high
 (Echo notices that there are some changes)
 2-1) find steps where i-old was used
 2-2) suggest checking whether the steps are still valid
 2) find changes in the matching steps using
 find-matching-problem-solving-steps-in-memory (i-new)
 3) detect any inconsistencies between i-new and
 the matching steps
 4) compute the confidence level cl of i-new based on 2) & 3)
 5) When there are inconsistent steps,
 if cl is low, suggest modifying i-new further to make it
 consistent with the matching steps using
 modify-k-item-to-make-it-consistent-with-step(i, s)
 rather than ignoring or invalidating the inconsistent steps
 otherwise (cl is high), for each inconsistent step s,
 suggest checking whether s is still valid
 rather than modifying i-new
Deactivate-k-item (k-item i)
 1) find past problem solving steps where i was used
 2) for each step s, unless s is consistent with other k-items
 whose confidence-level is high,
 suggest checking whether s should be invalidated
 3) deactivate i
Perform-problem-solving-step (step s)
1) find-matching-k-items(s)
2) find potentially applicable high-confidence k-items
 using find-potentially-matching-k-items(s)
 e.g. identify potentially missing problem features for match
 “is the visitor staying until late afternoon?”
3) assist the problem solving with the matching k-items based on
 their confidence levels
4) observe actual problem solving of s
5) check whether the results are consistent with the k-items that
 are brought up
6) if there are inconsistent k-items whose confidence level is
high,

 (Echo notices unexpected event)

 suggest examining s rather than
 modifying or deactivating confident k-items

 otherwise, for each inconsistent k-items i,
 suggest modifying or deactivating i to make it
 consistent with s using

 modify-k-item-to-make-it-consistent-with-step(i, s)
Invalidate-past-problem-solving-step (step s)
 1) find k-items that match s
 2) for each matching k-item i,
 2-1) update the confidence-level cl of i ignoring s
 2-2) if cl becomes very low,
 suggest modifying or deactivating it
 3) invalidate s in the memory
--
When the user creates a new k-item, Echo relates it to past
problem solving episodes and analyzes whether it conflicts
with any past episodes. When the estimated confidence
level of the new k-item is low, Echo suggests modifying
the k-item to avoid the conflicts. For example, the k-item
can be specialized to avoid matches with conflicting steps.
In the example in Section 2, k-item-1 was specialized to be
applicable only when the visitor does not leave early. The
system can propose different modifications depending on
the domain and the representation language used as
described below.
A modification of a k-item may also result in changes in
the memory model. When a confident k-item is modified,
Echo notes that there are potential changes in problem
solving and suggests checking whether the old episodes
are now invalid. When there are new conflicts noticed,
Echo may suggest further modifications of the k-item.
Deactivation of k-items occurs when they are no longer
needed or relevant to the problem solving. It may trigger
invalidation of the problem solving steps where they were
actively used.
The user authored k-items are used in solving new
problems. Echo searches for potentially useful high-
confidence k-items as well as the k-items that actually
match. During problem solving, Echo re-assesses the
confidence level of the k-items based on their actual
usages in the problem solving and analyzes whether the k-
items need any modifications.
Invalidation of problem solving episodes and their steps
occur when the way problems are solved changes and the
old episodes are no longer compatible with the new
approach. The invalidated episodes are not used in
assessing k-items or making suggestions.
The supporting sub-procedures, such as find-matching-
problem-solving-steps-in-memory, find-matching-k-items, find-
potentially-matching-k-items, and modify-k-item-to-make-it-
consistent-with-step are defined based on the given
knowledge representation and the domain they are used
for. The procedures that we use for visitor hosting
domain are described in below.
In the current Echo memory model, k-items are related to
each other through problem solving steps that they match.
Inconsistencies between k-items are addressed by making
them consistent with the same problem solving steps. The

system can predict an overlap between two k-items when
they match the same steps and provide the same
suggestions. Table 1 summarizes additional capabilities
provided by Echo.
System
Assistance

Without Echo With Echo

k-item
creation

-Detect errors in
new definitions
- Suggest
modifications that
resolve the errors

- Detect conflicts with past problem
solving results as well as the errors in the
definitions
- Estimate the confidence level of the
new definition
- Suggest modifications that improve the
overall problem solving as well as
resolve the errors

k-item
modification

-Do not provide
feedback on how
the modification
improves the
knowledge
- Do not recognize
changes in problem
solving

- Provide feedback on how the
modification improves the KB
- Recognize whether there is a
significant change in problem solving
and predict further modifications
- Relate it to other changes needed for
the k-items that participate in the same
episodes

problem
solving

- K-items are used
uniformly
- do not recognize
changes in problem
solving

- Control the use of k-items based on
their confidence level
- Recognize whether there is a
significant change in problem solving
and predict further modifications

 Table 1: Additional assistance provided by Echo.

Echo for Adaptive Decision Aid
In the visitor hosting domain described earlier, each
problem consists of 1) a set of domain features that
describe the situation and 2) a set of decisions that should
be made to solve the problem. For example, a visitor
hosting problem consists of a set of features that describe a
particular visit (e.g. visitor, host, visit-date, visit-purpose
etc.) and a set of decisions on visitor activities including
talk, meetings, and lunch. In our implementation, we use
simple triples for representing domain features, which is
compatible with semantic web standards such as RDF and
OWL. For example, (Visit1 visitor Carl) means that the
current problem of Visit1 has Carl as the visitor.
Each k-item consists of 1) a set of general domain features
that describe the kinds of problems where the k-item can
be used, 2) a decision type that it can provide suggestion
on, 3) suggestions: what options to choose and what
options to avoid, and 4) free text the user entered.
For example, k-item-1 is represented as:
 In deciding (ACTIVITY_0 when ACTIVITY-TIME)
 If (VISIT_0 activities ACTIVITY_0)
 (VISIT_0 type AI-seminar)
 (ACTIVITY_0 who Sam).
 Then CHOOSE {17:00, 17:30}
 “Sam is very busy and often cancels meetings.”
A more sophisticated representation can be used but it is
outside the scope of the current work.

The following shows the application specific sub-
procedures that support the general Echo algorithms
described above.
--
find-matching-problem-solving-steps-in-memory (k-item i)
 1) find matching past decisions using domain features
 in the episode and the decision type
modify-k-item-to-make-it-consistent-with-ste (k-item i,decision d)
 - specialize i to avoid matches with d or
 - add options chosen in d as good options or
 - remove bad options avoided in d or
 - deactivate i
find-matching-k-items (decision d)
 1) find matching k-items using the domain features introduced
 for the current decision problem and the decision type
find-potentially-matching-k-items (decision d)
 1) find high confidence k-items that can match d
 with an additional problem feature
 2) create temporary definitions of the missing features
 based on other features used in the match
 3) query the user whether the features are actually satisfied
--

Related Work
There have been various techniques developed to help end
users directly author problem solving knowledge. Some
tools exploit strong background knowledge (Clark et
al.,2001) and or specific tasks and problem solving
strategies (Birmingham and Klinker 1993) to guide the
user. Some use constraints from knowledge representation
language and prototypical knowledge authoring steps
(Davis 1979; Tallis and Gil 1999). Other tools focus on
detecting errors in the knowledge entered by the user
(Blythe et al 2001). The Echo algorithms can be used in
combination of other sources of user guidance available in
the system. For example, when the system detects errors in
new k-item definitions, the results may be combined with
Echo’s analysis and used in further prioritizing possible k-
item modification actions. Other language dependent or
task dependent features may be also exploited in
constraining the knowledge authoring actions.
Some knowledge acquisition tools make use of test cases
in validating or synthesizing new definitions (Bareiss et al.,
1989; Ginsberg et al., 1985). However these systems do
not exploit the history of how k-items are built and how
they are used, and cannot associate them with the
progresses the user makes over time.
There are some case-based reasoning efforts concerned
with utility of cases and case maintenance (Smyth and
Keane 1995; Leake and Wilson 2000). Although their
focus was not interactive knowledge acquisition and the
analysis does not explicitly use the history of knowledge
changes, their case evaluation techniques can be used in
combination with the existing k-item confidence metrics.
In the past, we have developed a dialogue tool for
interactive knowledge acquisition (Kim and Gil 2002). The
tool incorporates the dynamics of tutor-student interactions

in order to support users in their role of tutors of
computers, making acquisition tools better students.
Assessment of k-items and their progresses over time in
Echo can be combined with other dialogue strategies and
be used in structuring the front-end interactions for
knowledge authoring.

Summary and Future Work
This paper presents a novel architecture for knowledge-
based systems that exploits memory-based meta-level
analysis of k-items in guiding knowledge authoring and
problem solving. Unlike existing knowledge acquisition
tools, Echo assesses the status of knowledge authored by
the user and exposes the assessment results, allowing the
user to understand what the system has learned and how it
can be further improved. The architecture is used in
developing an intelligent assistant for manual decision
making tasks. The resulting system guides the knowledge
authoring process in terms of making the k-items more
useful, adapting k-items to dynamic changes in the
problem solving over time, and making the overall
problem solving more successful.
We are currently extending the Echo algorithms in order to
assess the space of problems covered by the k-items and
predict what types of new k-items are needed. It will be
based on the problems solving steps where there are no
applicable k-items. Furthermore, the system will assess its
competence level in solving various types of problems.
We are also building a more explicit model of k-item
relations, combining the existing memory model and the
model of interdependencies between k-items (Kim and Gil
1999). This will allow us to analyze evolution of relevant
k-items and to predict related changes more directly.
We plan to perform more intensive analysis of the user
interactions with the system and evaluate the performance
of Echo in terms of effectiveness of assistance and quality
of k-items built. An ablation experiment, where the
baseline tool resulting from eliminating Echo’s meta-level
reasoning is compared with the full Echo system, is
considered.

Acknowledgement
We would like to thank Yolanda Gil, Jim Blythe, Tim
Chklovski, Jose-Luis Ambite-Molina, Ke-Thia Yao, Marc
Spraragen, and Donovan Artz for helpful comments. This
work is supported by Department of Defense, award
number N66001-03-C-8006 and DARPA's Personalized
Assistant that Learns (PAL), award number
NBCHD030010.

References
Bareiss, R., Porter, B., Murray, K.: Supporting Start-to-Finish
Development of Knowledge Bases. Machine Learning 4,1989.

Birmingham, W and Klinker, G., Knowledge-acquisition tools
with explicit problem-solving methods, The Knowledge
Engineering Review, 8 (1), pp. 5-25, 1993.
Blythe, J. Kim, J., Ramachandran, S., and Gil, Y., An Integrated
Environment for Knowledge Acquisition. Proceedings IUI-2001.
Clark, P., Thompson, J., Barker, K., Porter, B., Chaudhri, V.,
Rodriguez, A., Thomere, J., Mishra, S., Gil, Y., Hayes, P. and
Reichherzer, T., Knowledge Entry as the Graphical Assembly of
Components. Proceedings of K-Cap-2001, pp. 22-29, 2001.
Cypher, A. Watch what I do: Programming by demonstration.
Allen Cypher, Ed. MIT press, 1993.
Davis, R., Interactive Transfer of Expertise: Acquisition of New
Inference Rules. Artif. Intell. 12(2): 121-157 (1979).
Friedland, N., Allen, P., Witbrock, M., Matthews, G., Salay, N.,
Miraglia, P., Angele, J., Staab, S., Israel, D., ,Chaudhri, V.,
Porter, B., Barker, K., and Clark, P., Towards a Quantitative,
Platform-Independent Analysis of Knowledge Systems. KR 2004.
Ginsberg, A., Weiss, S., Politakis, P., SEEK2: A Generalized
Approach to Automatic Knowledge Base
Refinement,.Proceedings of IJCAI 1985: 367-374, 1985.
Kim, J. and Gil, Y., Deriving Expectations to Guide Knowledge
Base Creation. Proceedings of AAAI-1999, 235-241, 1999.
Kim, J. and Gil, Y., Acquiring Problem-Solving Knowledge from
End Users: Putting Interdependency Models to the Test.
Proceedings of AAAI-2000, 2000.
Kim, J. and Gil, Y. Deriving Acquisition Principles from
Tutoring Principles, Proceedings of the Intelligent Tutoring
Systems Conference, , pp. 661-670, 2002.
Kira, Z. and Arkin, R., Forgetting Bad Behavior: Memory
Management for Case-Based Navigation,
2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2004.
Leake, D., and Wilson, D., Guiding case-base maintenance:
Competence and performance. Proceedings of the 14th European
Conference on Artificial Intelligence Workshop on Flexible
Strategies for Maintaining Knowledge Containers, 2000.
Marcus, S., SALT: A Knowledge-Acquisition Tool for Propose-
and-Revise Systems. In Marcus, S., editor, Automating
Knowledge Acquisition for Expert Systems, pages 81—123, 1988.
Mitchell, T., Mahadevan, S. and Steinberg, L., LEAP: A learning
apprentice for VLSI design. Proceedings of IJCAI-1985, pp. 574-
580, 1985, 1985.
Pool, M., Murray, K.. Fitzgerald, J,. Mehrotra, M., Schrag, R.,
Blythe, J., Kim, J., Chalupsky, H., Miraglia, P., Russ, T., and
Schneider D., Evaluating SME-Authored COA Critiquing
Knowledge, Proceedings of K-CAP 2003, 2003.
Smyth, B. and Keane, M., Remembering to Forget: A
Competence-Preserving Deletion Policy for Case-Based
Reasoning". In: Proceedings IJCAI- 1995.
Tallis, M., and Gil, Y.,. "Designing Scripts to Guide Users in
Modifying Knowledge-based Systems". Proceedings of AAAI-
1999,
Zhu, J. and Yang Q., Remembering to Add: Competence-
preserving Case-Addition Policies for Case Base
Maintenance, Proceedings of IJCAI-1999: 234-241, 1999.

