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Abstract 
Current knowledge acquisition tools are oblivious to the 
process or strategy that the user may be following in 
entering new knowledge and unaware of their progress 
during a session. Users have to make up for these 
shortcomings by keeping track of the status, progress, 
potential problems and possible courses of actions by 
themselves.  We present a novel extension to existing 
systems that 1) keeps track of past problem solving episodes 
and relates them to user entered knowledge, 2) assesses the 
current status of the knowledge and the problem solving 
using such relations, and 3) provides assistance to the user 
based on the assessment.  We applied the approach in 
developing an intelligent assistant for decision making 
tasks. The resulting interaction shows that the system helps 
the user understand the progress and guides the knowledge 
authoring process in terms of making the knowledge more 
useful, adapting the knowledge to dynamic changes over 
time, and making the overall problem solving more 
successful. 

Introduction   
Knowledge acquisition is a challenging area of research 
for developing intelligent applications. There has been a 
wide range of approaches taken, including programming 
by demonstration (Cypher 1993), case-based reasoning 
(Bareiss et al 1989), and learning apprentices (Mitchell et 
al 1986).  These approaches make use of observed 
examples and generalize them into a task representation. 
While these approaches work well for simple tasks, for 
capturing complex problem solving activities, direct 
knowledge acquisition tools seem more useful (Clark et al 
2001; Blythe et al 2001). 
In the past we have participated in developing and 
evaluating various knowledge acquisition tools. We have 
analyzed various types of tasks involved in entering 
complex problem solving knowledge and examined the 
challenges end users face in performing such tasks (Kim 
and Gil 2000,Pool et al 2003). These results show a 
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common pattern: users can easily become lost in the 
process of performing various tasks involved in knowledge 
authoring.  Most existing knowledge acquisition tools do 
not explicitly model this type of meta-level process and 
cannot provide effective help. 
In existing systems, knowledge entered by the user (called 
k-items) are treated equally and systems do not reflect on 
how each knowledge has been built and how well it has 
been used over time.  The systems cannot provide effective 
assistance in making the k-items more useful and the 
resulting problem solving more successful.  For instance, 
when there is an inconsistency detected between two k-
items, existing systems provide uniform error messages.  
However, in order to develop actually useful k-items, users 
may need to know which k-item should be modified and 
how the modification improves the overall problem 
solving. For example, while one of the k-items has been 
successfully used over time and the system has high 
confidence in it, the other k-item may conflict with some of 
the past successful problem solving results and its 
estimated confidence level is lower.  In such a case, the 
system may suggest modifying the less confident item 
instead of the other.  
When captured k-items are used in problem solving, the k-
items can be applied according to the level of confidence 
assessed for them.  That is, more confident items are 
preferably used. 
When confident k-items are overridden or modified, the 
system notices them as unexpected event and may also 
recognize that there are some changes in the problem 
solving. In such cases, the system will assist users in 
making appropriate k-item modifications. For example, if a 
k-item becomes obsolete, the problem solving steps where 
the k-item was applied may be also out-of-date and other 
related k-items may become less reliable. This capability is 
particularly important for the applications where there are 
dynamic changes in the problem solving over time and the 
associated knowledge needs to be adjusted accordingly.  
Many practical applications in business and science require 
this type of capability. 
Here we propose a novel framework for knowledge 
acquisition tools that 1) keeps track of past problem 
solving episodes and relates them to each k-item 2) 



assesses the current status of k-items and problem solving 
using such relations and 3) provides assistance to the user 
based on the assessment.  We have built a system called 
Echo (mEta-Cognitive History analysis and Organization) 
that provides these capabilities. This paper reports the 
initial version of the system. Echo can be used as an 
extension to existing knowledge-based systems that 
support knowledge authoring and problem solving. Echo 
builds a memory model that relates each k-item to the 
problem solving episode it was built from, the episodes it 
matched, the episodes where it was actually used, and the 
episodes it can potentially contribute to.  This model is 
used in assessing a k-item, checking if it can be 
confidently used, it conflicts with some successful results 
and needs some modifications, or it needs significant 
changes including deactivation.  Based on this assessment, 
Echo guides the user in improving and maintaining the 
confidence levels of the k-items over time. 
The contributions of this work are twofold. First we 
present a novel architecture of intelligent systems where 
memory based meta-level reasoning supports knowledge 
authoring and problem solving, which defines a new class 
of cognitive tools.  Second, we demonstrate how the 
architecture supports developing useful intelligent 
assistants. We use a domain where the problem solving is 
traditionally done manually but acquisition of simple 
problem-solving knowledge from the user incrementally 
automates the process and improves the problem solving 
results.   
This paper begins with example interactions with Echo, 
illustrating how its meta-level reasoning helps users. We 
use a simple decision making domain where captured k-
items help the user make better decisions. Then we present 
the architecture of the system. We show each component 
of Echo and describe a set of general algorithms 
supporting meta-level reasoning. In particular we 
demonstrate how the memory model is used in assessing 
the status of the knowledge base and providing assistance 
to the user. Next, we describe the system that was 
developed for interactive decision aid, summarizing the 
benefits of Echo. Finally we discuss related work and 
future extensions. 

Example Interactions 
Here we illustrate our approach with a simple application 
of visitor hosting where the user manually makes decisions 
on visitor activities and meeting schedules.  That is, the 
user instead of a problem solver performs decision making 
tasks, choosing talk time, talk location, meeting attendees, 
meeting times, etc. The user can enter constraints in 
making decisions as k-items based on failures and 
successes of decisions that are observed. These k-items are 
used in providing suggestions for new decisions, aiming at 
improving the quality of the decisions over time.  

In the following examples, we show example interactions 
between the user and Echo.  The k-items are paraphrased 
in English for readability.  The representation that we use 
for these examples are described in below. 

Assisting k-item authoring 
In the following, the user enters a new k-item that 
describes how Sam’s meetings with visitors should be 
scheduled. 
  * k-item-1: Meetings with Sam who is a division director  
   should be scheduled in the late afternoon (5pm, 5:30pm)  
   because he often cancels meetings. 

  Echo: I am not so confident about k-item-1. It conflicts with   
    some of the recent decisions.  For example, do you  
    remember Ken’s visit? Sam met Ken at 3pm.  … 
  Do you want to modify k-item-1 instead of ignoring  
    these conflicts?  For example, you can do one of these: 

    - specify why 3pm was chosen for Ken’s visit  
       - include 3pm in the suggestion 
In this case, the user specifies that 3pm was chosen for 
Ken’s visit because Ken had to leave early. The k-item is 
modified accordingly. 
  * k-item-1’: Meetings with Sam should be scheduled in the   
   late afternoon (5pm, 5:30pm) if  the visitor doesn’t 
   leave  early. 

  Echo: I am now confident about k-item-1. 
The confidence level of the modified k-item is higher 
because it is now consistent with past decisions. 
Unlike in existing knowledge acquisition tools, Echo 
relates a new definition to the problems solved over time, 
assesses the confidence level of the item using the 
relations, and makes suggestions in the context of 
improving the confidence level and making the overall 
problem solving more successful.  Without Echo’s 
memory-based meta-level reasoning, the system may not 
recognize the inconsistencies the user needs to pay 
attention to and also may not provide feedback on how 
user’s k-item modifications improve the knowledge base.   
more successful. The approach also facilitates adaptation 
of k-items when there are changes in problem solving.  

Assisting problem solving with user entered k-
items  
When the user has a new visitor and starts a new decision 
on Sam’s meeting time, the system looks for the k-items 
that can provide confident suggestions on the decision.  
When it is known that the visitor does not leave early, the 
system uses k-item-1 with high confidence. 

  Echo: suggest selecting late afternoon (5pm, 5:30pm)  
  with high confidence.    

If the user’s decision conflicts with confident k-items, the 
system notices it as an unexpected event and suggests 
examining how relevant decisions were made in the past 
before moving onto other tasks.  For less confident k-
items, modification or deactivation of the k-items is 



considered with higher priority. For example, if the user 
selects a meeting time before 4:30pm, the system generates 
this output. 

  Echo: Are you sure about your decision? Do you remember  
  Sam’s visit and Ben’s visit? You have selected late  
  afternoon times. 

If there were actual changes (e.g., Sam is not a division 
director anymore and he is now less busy), k-item-1 is no 
longer useful, and the user may choose to modify or 
deactivate it. Based on the user actions, the system may 
recognize that there are some changes and analyze further 
potential modifications.  For example, the system suggests 
examining past decisions where k-item-1 was used and 
check whether they are now invalid. This may affect other 
k-items that were actively used in the invalid episodes 
since they may be now less reliable. 

Memory-Based Meta-Level Reasoning 
Echo’s analysis is driven by these meta-level goals: 
• ensure that the user entered k-items are consistent and 

complete 
• ensure that k-items are useful in problem solving 
• ensure that k-items adapt to changes in the world 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 1: Architecture 

Figure 1 shows architecture of a knowledge-based system 
where Echo’s meta-level reasoning supports knowledge 
authoring and problem solving. The highlighted boxes in 
the figure represent the main components that support 
meta-level reasoning.  The system makes use of the results 
from the meta-level reasoner and provides proactive 
assistance in making k-items more useful.  Likewise, 
during problem solving, the system makes use of the 
results from the meta-level reasoner and provides 
assistance based on the level of confidence assessed 
through memory-based analysis. 

Memory Model 
We assume that each problem solving episode consists of a 
set of problem solving steps. A k-item is applicable to a 
problem solving step when its trigger conditions match the 

features that describe the problem and the problem solving 
context.  For example the above k-item-1 is used when the 
user tries to schedule a new meeting with Sam.   
Echo keeps track of past problem solving episodes and 
relates them to each k-item.  Each problem solving episode 
consists of: 
 - problem features that describe a problem  
    (e.g. schedule activities for a new visitor Carl) 
 - definitions and terms used during problem solving  
    (e.g. Carl’s research interests, visit date, etc.)  
 - a set of problem solving steps  
    (e.g. decide talk time, decide talk location, ...) 

Each problem solving step maintains: 
 - problem solving context  
    (e.g. deciding meeting time for Sam) 
 - problem solving results  
    (e.g. selected 5pm for Sam’s meeting time) 
 - k-items matched  
 - k-items that are actually used in the problem solving 
 - timestamp of the step 
 - whether it is valid  
The user can indicate out-of-date problem solving steps as 
invalid.  The invalid steps are ignored in assessing the 
confidence-levels of the k-items. 
Echo relates new k-items to the problem solving steps and 
computes these: 
- steps it matches 
- steps it can potentially contribute to 
- steps it conflicts with 
- steps where it was used 
This structure is incrementally updated for new problem 
solving steps, as described below. 

Assessing confidence level of k-items 
Based on the memory model described above, Echo infers 
whether a k-item can be confidently used, whether it 
conflicts with some successful results and needs some 
modifications, or it needs significant changes including 
deactivation.  
Echo calculates the confidence level of k-item i using a 
simple equation as follows: 
              w1*P(i) + w2*R(i) + w3*U(i)   (1) 
where P(i) is the performance level of i, R(i)  is the 
application recency of i, and U(i)   is the application 
frequency of i.   

P(i) =      0,  if  #matched = 0  
               # used / # matched, otherwise 
R(i) =      0,  if #matched  = 0 
               1 / (t(i) +1), otherwise 
                where t(i) is time elapsed since the most recent match 

  U(i) =      0, if # problem solving steps = 0 
               # matches / # problem solving steps, otherwise 

In each equation, the division normalizes the metric so that 
the value is bound between 0 and 1. The relative weights 
of the metrics can be chosen depending on the strategies a 
given application takes.  
The user can also explicitly indicate whether a k-item is 
obsolete and should not be used in problem solving.   
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Reflection: analyzing k-items with memory model 
and providing assistance  
The following algorithms show how memory model 
changes through knowledge authoring (add new k-item, 
modify a k-item, and deactivate/delete a k-item) and 
problem solving. They also show how Echo makes use of 
the memory model in providing assistance to the user. 
These algorithms are general and independent of a given 
application or the knowledge representation used.  
---------------------------------------------------------------------------- 
Add-new-k-item (k-item i)  
    1) find-matching-problem-solving-steps-in-memory (i) 
    2) check whether the matching steps are consistent with i 
    3) compute the confidence level of cl of i based on 1) & 2) 
    4) When there are inconsistent steps, 
        if cl is low, suggest modifying i to make it  
         consistent with the matching steps  
          using modify-k-item-to-make-it-consistent-with-step(i, s) 
         rather than ignoring or invalidating the inconsistent steps 
       otherwise (cl is high), for each inconsistent step s, 
         suggest checking whether s is still valid  
         rather than modifying i  
Modify-k-item(k-item i-old, k-item i-new) 
    1) if the confidence-level of i-old  was high  
         (Echo notices that there are some changes) 
           2-1) find steps where i-old was used  
           2-2) suggest checking whether the steps are still valid  
    2) find changes in the matching steps using 
          find-matching-problem-solving-steps-in-memory (i-new) 
    3) detect any inconsistencies between i-new and 
          the matching steps 
    4) compute the confidence level cl of i-new based on 2) & 3) 
    5) When there are inconsistent steps, 
         if cl is low, suggest modifying i-new further to make it  
           consistent with the matching steps using 
            modify-k-item-to-make-it-consistent-with-step(i, s) 
           rather than ignoring or invalidating the inconsistent steps 
        otherwise (cl is high), for each inconsistent step s, 
          suggest checking whether s is still valid  
          rather than modifying i-new 
Deactivate-k-item (k-item i) 
   1) find past problem solving steps where i was used 
   2) for each step s, unless s is consistent with other k-items  
        whose confidence-level is high,  
        suggest checking whether s should be invalidated 
   3) deactivate i  
Perform-problem-solving-step (step s) 
1)  find-matching-k-items(s)  
2) find potentially applicable high-confidence k-items  
    using find-potentially-matching-k-items(s) 
     e.g. identify potentially missing problem features for match 
       “is the visitor staying until late afternoon?” 
3) assist the problem solving with the matching k-items based on  
     their confidence levels 
4) observe actual problem solving of s 
5) check whether the results are consistent with the k-items that  
      are brought up 
6) if there are inconsistent k-items whose confidence level is 
high, 

   (Echo notices unexpected event) 

    suggest examining s rather than  
    modifying or deactivating confident k-items 

    otherwise, for each inconsistent k-items i, 
    suggest modifying or deactivating i to make it 
    consistent with s using 

        modify-k-item-to-make-it-consistent-with-step(i, s) 
Invalidate-past-problem-solving-step (step s)  
    1) find k-items that match s  
    2) for each matching k-item i, 
         2-1)  update the confidence-level cl of i ignoring s 
         2-2) if cl becomes very low,  
                 suggest modifying or deactivating it 
    3) invalidate s in the memory 
---------------------------------------------------------------------------- 
When the user creates a new k-item, Echo relates it to past 
problem solving episodes and analyzes whether it conflicts 
with any past episodes. When the estimated confidence 
level of the new k-item is low, Echo suggests modifying 
the k-item to avoid the conflicts.   For example, the k-item 
can be specialized to avoid matches with conflicting steps. 
In the example in Section 2, k-item-1 was specialized to be 
applicable only when the visitor does not leave early. The 
system can propose different modifications depending on 
the domain and the representation language used as 
described below. 
A modification of a k-item may also result in changes in 
the memory model.  When a confident k-item is modified, 
Echo notes that there are potential changes in problem 
solving and suggests checking whether the old episodes 
are now invalid.   When there are new conflicts noticed, 
Echo may suggest further modifications of the k-item. 
Deactivation of k-items occurs when they are no longer 
needed or relevant to the problem solving. It may trigger 
invalidation of the problem solving steps where they were 
actively used.  
The user authored k-items are used in solving new 
problems. Echo searches for potentially useful high-
confidence k-items as well as the k-items that actually 
match. During problem solving, Echo re-assesses the 
confidence level of the k-items based on their actual 
usages in the problem solving and analyzes whether the k-
items need any modifications. 
Invalidation of problem solving episodes and their steps 
occur when the way problems are solved changes and the 
old episodes are no longer compatible with the new 
approach. The invalidated episodes are not used in 
assessing k-items or making suggestions. 
The supporting sub-procedures, such as find-matching-
problem-solving-steps-in-memory, find-matching-k-items, find-
potentially-matching-k-items, and       modify-k-item-to-make-it-
consistent-with-step are defined based on the given 
knowledge representation and the domain they are used 
for.   The procedures that we use for visitor hosting 
domain are described in below. 
In the current Echo memory model, k-items are related to 
each other through problem solving steps that they match. 
Inconsistencies between k-items are addressed by making 
them consistent with the same problem solving steps.  The 



system can predict an overlap between two k-items when 
they match the same steps and provide the same 
suggestions.  Table 1 summarizes additional capabilities 
provided by Echo. 
System 
Assistance 

Without Echo With Echo 

k-item 
creation 

-Detect errors in 
new definitions 
- Suggest 
modifications that 
resolve the errors 

- Detect conflicts with past problem 
solving results as well as the errors in the 
definitions 
- Estimate the confidence level of the 
new definition 
- Suggest modifications that improve the 
overall problem solving as well as 
resolve the errors 

k-item 
modification 

-Do not provide 
feedback on how 
the modification 
improves the 
knowledge 
- Do not recognize 
changes in problem 
solving 

- Provide feedback on how the 
modification improves the KB 
- Recognize whether there is a 
significant change in problem solving 
and predict further modifications 
- Relate it to other changes needed for 
the k-items  that participate in the same 
episodes 

problem 
solving 

- K-items are used 
uniformly 
- do not recognize 
changes in problem 
solving 

- Control the use of k-items based on 
their confidence level 
- Recognize whether there is a 
significant change in problem solving 
and predict further modifications 

     
    Table 1: Additional assistance provided by Echo. 

Echo for  Adaptive Decision Aid 
In the visitor hosting domain described earlier, each 
problem consists of 1) a set of domain features that 
describe the situation and 2) a set of decisions that should 
be made to solve the problem.  For example, a visitor 
hosting problem consists of a set of features that describe a 
particular visit (e.g. visitor, host, visit-date, visit-purpose 
etc.) and a set of decisions on visitor activities including 
talk, meetings, and lunch.  In our implementation, we use 
simple triples for representing domain features, which is 
compatible with semantic web standards such as RDF and 
OWL.  For example, (Visit1 visitor Carl) means that the 
current problem of Visit1 has Carl as the visitor.  
Each k-item consists of 1) a set of general domain features 
that describe the kinds of problems where the k-item can 
be used, 2) a decision type that it can provide suggestion 
on, 3) suggestions: what options to choose and what 
options to avoid, and 4) free text the user entered.  
For example, k-item-1 is represented as: 
   In deciding (ACTIVITY_0 when ACTIVITY-TIME) 
    If  (VISIT_0 activities ACTIVITY_0) 
        (VISIT_0 type AI-seminar)  
       (ACTIVITY_0 who Sam). 
    Then CHOOSE {17:00, 17:30} 
    “Sam is very busy and often cancels meetings.” 
A more sophisticated representation can be used but it is 
outside the scope of the current work. 

The following shows the application specific sub-
procedures that support the general Echo algorithms 
described above. 
---------------------------------------------------------------------------- 
find-matching-problem-solving-steps-in-memory (k-item i) 
    1) find matching past decisions using domain features  
          in the episode and the decision type 
modify-k-item-to-make-it-consistent-with-ste (k-item i,decision d) 
        - specialize i to avoid matches with d or 
        - add options chosen in d as good options or 
        - remove bad options avoided in d or 
        - deactivate i 
find-matching-k-items (decision d) 
    1) find matching k-items using the domain features introduced  
         for the current decision problem and the decision type 
find-potentially-matching-k-items (decision d) 
    1) find high confidence k-items that can match d  
        with an additional problem feature 
    2) create temporary definitions of the missing features 
         based on other features used in the match 
    3) query the user whether the features are actually satisfied 
---------------------------------------------------------------------------- 

Related Work 
There have been various techniques developed to help end 
users directly author problem solving knowledge. Some 
tools exploit strong background knowledge (Clark et 
al.,2001) and or specific tasks and problem solving 
strategies (Birmingham and Klinker 1993) to guide the 
user. Some use constraints from knowledge representation 
language and prototypical knowledge authoring steps 
(Davis 1979; Tallis and Gil 1999). Other tools focus on 
detecting errors in the knowledge entered by the user 
(Blythe et al 2001). The Echo algorithms can be used in 
combination of other sources of user guidance available in 
the system. For example, when the system detects errors in 
new k-item definitions, the results may be combined with 
Echo’s analysis and used in further prioritizing possible k-
item modification actions.  Other language dependent or 
task dependent features may be also exploited in 
constraining the knowledge authoring actions.   
Some knowledge acquisition tools make use of test cases 
in validating or synthesizing new definitions (Bareiss et al., 
1989; Ginsberg et al., 1985). However these systems do 
not exploit the history of how k-items are built and how 
they are used, and cannot associate them with the 
progresses the user makes over time.    
There are some case-based reasoning efforts concerned 
with utility of cases and case maintenance (Smyth and 
Keane 1995; Leake and Wilson 2000).  Although their 
focus was not interactive knowledge acquisition and the 
analysis does not explicitly use the history of knowledge 
changes, their case evaluation techniques can be used in 
combination with the existing k-item confidence metrics.   
In the past, we have developed a dialogue tool for 
interactive knowledge acquisition (Kim and Gil 2002). The 
tool incorporates the dynamics of tutor-student interactions 



in order to support users in their role of tutors of 
computers, making acquisition tools better students. 
Assessment of k-items and their progresses over time in 
Echo can be combined with other dialogue strategies and 
be used in structuring the front-end interactions for 
knowledge authoring. 

Summary and Future Work 
This paper presents a novel architecture for knowledge-
based systems that exploits memory-based meta-level 
analysis of k-items in guiding knowledge authoring and 
problem solving. Unlike existing knowledge acquisition 
tools, Echo assesses the status of knowledge authored by 
the user and exposes the assessment results, allowing the 
user to understand what the system has learned and how it 
can be further improved. The architecture is used in 
developing an intelligent assistant for manual decision 
making tasks. The resulting system guides the knowledge 
authoring process in terms of making the k-items more 
useful, adapting k-items to dynamic changes in the 
problem solving over time, and making the overall 
problem solving more successful. 
We are currently extending the Echo algorithms in order to 
assess the space of problems covered by the k-items and 
predict what types of new k-items are needed.  It will be 
based on the problems solving steps where there are no 
applicable k-items.  Furthermore, the system will assess its 
competence level in solving various types of problems. 
We are also building a more explicit model of k-item 
relations, combining the existing memory model and the 
model of interdependencies between k-items (Kim and Gil 
1999). This will allow us to analyze evolution of relevant 
k-items and to predict related changes more directly. 
We plan to perform more intensive analysis of the user 
interactions with the system and evaluate the performance 
of Echo in terms of effectiveness of assistance and quality 
of k-items built.  An ablation experiment, where the 
baseline tool resulting from eliminating Echo’s meta-level 
reasoning is compared with the full Echo system, is 
considered. 
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