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Abstract

The semantic grid is the result of semantic web and grid
researchers building bridges in recognition of the shared vision and
research agenda of both fields.  This paper builds on prior experiences
with both agents and grids to illustrate the benefits of bringing agents
into the mix. Because semantic grids represent and reason about
knowledge declaratively, additional capabilities typical of agents are
then possible including learning, planning, self-repair, memory
organization, meta-reasoning, and task-level coordination.  These
capabilities would turn semantic grids into cognitive grids.  Only a
convergence of these technologies will provide the ingredients to
create the fabric for a new generation of distributed intelligent
systems.
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1 Introduction

Semantic grid researchers (www.semanticgrid.org) have noted the
common themes in the semantic web and grid research agendas, as represented
in technical publications in both areas [Berners-Lee et al 01; Euzenat 01; Foster
and Kesselman 04; Berman et al 03].  These commonalities have been
articulated in [De Roure et al 01; Goble and De Roure 04; De Roure et al 04; De
Roure et al 05].  Not surprisingly, in recent years both communities share an
interest in the widespread service-based architectures. Semantic web researchers
are developing extensions to web services to include semantic representations
(http://www.w3.org/2002/ws/swsig).  Grid services and the more recent WS
framework (http://www.globus.org/wsrf) align web services with more
traditional features of grids. With this emphasis in service-based paradigms,
these fields are now sharing more than ever a research agenda with yet another
community: autonomous agents and multi-agent systems. Agent systems have
historically been developed in a modular fashion, with a clear advertisement to
other agents of their capabilities, which is an important emphasis of service-
based architectures. The research agenda in the agents community [Luck et al
05; Jennings et al 98] shares much with the semantic web and grid research
agendas.  Some commonalities have been pointed out in [De Roure 05; Luck et
al 05; Foster et al 04], including trust, negotiation, resource allocation,
composition, and autonomy.

This paper argues that neither grid nor agent systems alone can deliver
on their promise without building on one another. The arguments put forward
are based on first-hand experiences with agent systems [Chalupsky et al 02; Gil
and Ratnakar 03], scientific workflow creation and execution in grids [Deelman
et al 03a; Deelman et al 03b; Deelman et al 03c; Blythe et al 03a; Blythe et al
03b; Gil et al 04; Deelman et al 04; Kim et al 04; Maechling et al 05; Gil 06],
and metadata catalogs for grids [Tuchinda et al 04; Gil et al 05; Gil et al 06].  In
our work, we have used grid techniques to address shortcomings in agent
systems, and AI techniques to bring not only semantics but also intelligent
reasoning capabilities to grids.

The paper is organized in two main sections, one focused on why agent
systems need grids, and the second on why grids need agent systems.  The first
section discusses capabilities that grid technologies provide that would address
important limitations of agent systems, concentrating on providing robust and
sustainable performance.  These facilities include state, persistence, and
lifecycle management. The second part of the paper discusses important
capabilities developed and used in the agents community at large that would
address current limitations of grid computing.  These capabilities include
learning, planning, interaction, and coordination.  We argue that these
capabilities would take grids to a new level of scale and sophistication, able to
make complex informed decisions and flexibly adapt their performance to new
information and unexpected situations.
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2 Why Grid: Limitations of Current Multi-Agent Systems
for Robust and Sustainable Performance

Robustness is a very important requirement for distributed problem
solving of the kind performed by multi-agent systems.  Robustness is
challenging when heterogeneous collections of components need to be
coordinated in a highly dynamic non-centralized execution environment. These
are the environments that grids were designed to address.  Reliability, quality of
service, and robustness have been central themes in grid research as essential
architectural principles.  Research in multi-agent systems has focused more on
distributed operations at the task level, concentrating on architectures, agent
communication languages, and coordination [Finin et al 94; Cheyer and Martin
01; FIPA 02].  We argue that grid environments provide an ideal substrate for
developing multi-agent architectures and distributed problem solving
capabilities. This section describes key features provided by grid services
[Foster et al 02; Tuecke et al 03] and their relevance to support robust
implementations of agent-based systems.

Our experience with multi-agent systems, and in particular with the
Electric Elves project [Chalupsky et al 02], can be used to motivate these issues.
Electric Elves supported users with office tasks and integrated a number of
agents that were heterogeneous in their function and in their implementation,
and were deployed in a distributed environment.  Some of the agents accessed
web information sources, others matched requests with agent capabilities, and
others communicated with users about task status.  As we strived to use the
system 24/7 inside and outside of our organization, we discovered that a non-
trivial amount of effort was required to keep the groups of agents functioning
appropriately.  The capabilities of each agent and the kids of information they
exchanged were clearly specified.  Yet, even such an agent community with
modest distributed and heterogeneous nature posed clear challenges.  As the
agents operate, it was necessary to monitor their status and the status of specific
requests.  This was done manually, but ideally it should handled automatically.
The kinds of status questions that came up included:  1) is the other agent still
working on my request?  2) does the agent still need my reply?  3) has the agent
already responded but the response was not received?  4) what is the status and
progress of my request?  Other problems came up when machines were down or
connections failed.  Should the requesting agents have a memory of their
requests and resend them, or should the servicing agent keep track of their
requests and reinstate them upon restart?  Who should notice that an agent is not
running and who should restart it?  Although it was possible to manage the
multi-agent system manually, this is not a desirable option and clearly
impossible if multi-agent systems are to scale up in number and heterogeneity.

These challenges are not uncommon and it is reasonable to consider they
hinder growth and scale of deployed agent communities. In a published study,
[Riemenschneider et al 04] noted problems in agent infrastructures with
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significant development effort in dependability and survivability at larger scale
(hundreds of distributed agents).  We believe that these are symptoms of the
need for better distributed infrastructure to build multi-agent systems.

These issues can be summarized as follows:
1. Introspection: Once a request is sent to an agent, it would be useful to be

able to query the agent regarding the receipt of the request, the status of
the request, and perhaps any intermediate results that the agent may have
generated.  It would be useful to setup automatic notifications of
changes in a request status.

2. Tracking multiple requests: For each agent, we have to implement a
mechanism for tracking multiple requests.  For each request, the agent
has to maintain its status, current result, etc.  and detect the same request
sent repeatedly when the message acknowledging its receipt delayed.

3. Persistence: Each agent can implement a database to store requests so
they can be recovered in case the agent process dies.  Special purpose
scripts may be needed to check the agent process and restart it if it is not
running.

4. Shelf life of requests: Each agent needs to implement a mechanism to
deal with expiration of requests.  Otherwise, all requests would be active
forever. Other services that may not have a clear date associated with
them may be harder to handle in terms of terminating the request.

5. Evolution of the specifications:  The agent specification (in many cases
due to changes in the underlying web site) may change over time.  This
requires manually tracking changes in other agent specifications, so that
request message formats could be updated.

The implementation of individual agents can be extended to support
these questions in an ad-hoc manner.  However, these problems clearly raise the
need for better infrastructure to support robust continuous operation as tasks are
executed in a dynamic distributed environment.  Instead of developing ad-hoc
solutions for these problems, it is useful to investigate whether we can build on
existing approaches in distributed computing that are designed to address these
very issues.

2.1 Some Useful Concepts in Grids

We conducted a study of how grid services would support a more robust
agent infrastructure, focusing on how the requirements discussed above would
be addressed in grids. We implemented a set of agents using grid service
definitions and found that the built-in mechanisms in grid services provided
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facilities to support much of the functionality we needed regarding the state of
the agents and the requests.  A detailed account of the implementation is
provided in [Gil and Ratnakar 03].  This section describes some useful concepts
in grids illustrated in the context of our multi-agent system.  Our
implementation was done with the Open Grid Services Infrastructure (OGSI)
[Tuecke et al 03] and its GT3 specification. Here we use terminology from that
work.  Its new generation is the WS-Resource Framework (WSRF)
(http://www.globus.org/wsrf) and has slightly different terminology but the
same underlying core concepts.  See [Foster et al 05] for a detailed mapping of
terminologies.

Grid Services are extensions of web services that incorporate several key
features that are crucial for robust distributed operations. One key feature of
grid services is the notion of lifecycle management: a request has a lifetime that
is managed by the system by assigning it a process. A request sent to a grid
service may create a transient process called grid service instance with a unique
identifier, a handle, that can be used to locate and query the instance.  The
service instance exists only for a limited amount of time, after which the
instance will be destroyed. If required, the client/application can also extend the
expiration time of the service instance.  Service instances can be created across
pools of hosts with appropriate load balancing.

Another key feature of grid services is that they have internal state and
support introspection.  Grid services are stateful, which means that they
maintain information across multiple operations issued over time. Therefore,
there is a standard mechanism to expose the data associated with each service
instance for query, update and change notification. This also supports third party
notification of request status. Each grid service instance can have persistent
properties associated with it that are saved on permanent storage, and can be
restored by the system on a restart of the grid service instance in case the
process is accidentally terminated (e.g., if the host goes down).

Grid services also adopt useful conventions for version management.
Grid services cannot use the same identifier if their interface specification is
changed.  This enables clients to have a handle on upgrades and changes to the
specification through declarations of the shelf life of a service specification.

Note that some of the features of grid services described here are being
considered for adoption by web service standards, such as service state
declarations and access mechanisms.

2.2 Supporting Distributed Agent Communities with Grids

The challenges raised earlier can be addressed by grid services as
follows:

1. Introspection:  The grid service data provides the infrastructure needed
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to track requests and to enable clients to setup notifications for updates
to the status of the request.

2. Tracking multiple requests:  The agent had an overhead of dealing
with multiple requests. Here, we do not have to worry about multiple
requests in the implementation of the service, since each request spawns
off a new service instance with its own properties and service data.

3. Persistence:  This is addressed by the “persistent properties” of grid
services.  Data is not lost in a machine crash because persistent storage
is provided by the grid service.

4. Shelf life of requests: In grid services, the lifetime of the service
instance can be explicitly set at the time of creation.  Also, all service
instances are destroyed after their expiration time, so there is an explicit
way to handle obsolete requests. There is no standard mechanism to set
the expiration of the request for an agent system.

5. Evolution of the specifications:  Grid services have a unique identifier
that remains the same as long as they have the same interface
specifications.  If those specifications change, the grid service will have
a new identifier.  The specifications may have an expiration date
indicated as a guarantee of validity.  This does not solve the problem,
but at least the client/application has an explicit way to be informed
about it.

Figure 1. Making agents more robust through grid services: 1) Introspection
is supported by making agents be stateful processes that have standard
operations to publish and access information about their internal state; 2)
Tracking requests through creation of unique process instances; 3) Persistence
through permanent and replicated storage of requests and other process state;
4) Management of shelf life of requests through expiration dates and other
lifecycle management techniques; 5) Responsible evolution and change
management through versioning conventions about operation changes.
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2.3 Summary: Why Grids

Figure 1 summarizes the kinds of built-in facilities from grid services
discussed in this section that can be used to provide agents with more robust
behaviors.  Grid services offer an infrastructure for distributed computing that
supports robust coordination in highly dynamic environments. Multi-agent and
distributed intelligent systems could be made more robust by taking advantage
of their mechanisms to address introspection, state, lifecycle management, and
persistence. There are many other benefits of grids that are relevant to agent
systems.  Because grid computing has addressed distributed systems bottom up,
it also provides a well-developed infrastructure for security, cross-organization
access policies, load balancing, efficient data transfer, and execution
management. These are all of interest to distributed intelligent systems.

3 Why Agent Architectures: Limitations of Current Grids
in Knowledge and Complexity

One of the prominent applications of grid computing, though many
others exist, is large-scale scientific computations.  Several years of
collaboration on workflow planning and execution in grids [Deelman et al 03a;
Deelman et al 03b; Deelman et al 03c; Blythe et al 03a; Blythe et al 03b; Gil et
al 04; Deelman et al 04] and workflow creation [Kim et al 04; Maechling et al
05] show the utility of AI techniques to assist users to create scientific
workflows and to automatically complete and map workflow tasks to resources
for execution.  We have also investigated the benefits of using mediators for
information agents to support semantic integration of metadata catalogs for
grids [Tuchinda et al 04; Gil et al 05].  The results of this work only scratch the
surface of the wide range of AI techniques utilized in agent systems.  This
section suggests the role that more advanced agent architectures and techniques
could play in specific aspects of grid computing.

Agents and grid applications face similar challenges: modeling and
understanding their external environment and making informed decisions to
achieve their tasks appropriately.  Agents typically have sensors to collect
information about their external environment and effectors to change it in order
to accomplish their tasks. These environments are often dynamic, may be shared
with other agents, and may include adversarial or interfering agents.  Grid
applications gather information about the grid environment through information
services, and affect the environment through a variety of actions such as job
submission and data management operations. Grid environments are very
dynamic in nature, since any resource available can become unavailable, and
many resources must be shared among applications.
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A variety of important contributions from agent research could be
incorporated in grids to provide significant new capabilities.  Agent
architectures are designed to exhibit autonomy, decentralized coordination, and
complex distributed behaviors in highly dynamic environments.  All these
criteria are important to grids.  This section discusses some important
capabilities developed for agent systems that could be used in grids.  Each topic
is briefly described in terms of the issues addressed in agent systems and their
potential relevance to grids.

3.1 Planning and Failure Models in Dynamic Environments

An important capability of many agents is to plan ahead in order to
accomplish complex tasks.  Planning ahead can help by assessing the feasibility
of an option being considered and by analyzing the interactions among related
aspects of a task. This enables an agent to prepare the environment to enable
later tasks as well as to coordinate better with other agents.  In addition, the
agent can understand the impact of a failure when one occurs and the best way
to fix it in the context of the overall plans.

The Remote Agent illustrates these concepts [Muscettola et al 98].  It
was developed to schedule and execute science experiments autonomously as it
flew in a spacecraft to Jupiter and beyond in the Deep Space One mission.
Using automatic planning techniques, high-level mission goals were turned into
specific actions to set the hardware of the spacecraft, to send data back to Earth,
and to partially process the data on-board.  Observations had to be arbitrated
and scheduled for the available time frames in a setting where human
controllers on ground could not possibly control the agent’s operations.  Remote
Agent used planning horizons to determine how far ahead and with how much
detail it specified its operations.  It looked ahead as far as 72 hours, but only
planned in detail the operations for the coming observation window.

Remote Agent also used models of possible failures in the hardware it
was controlling, their relationships to various indicators and diagnostics actions,
and used these models to detect and respond to failures.  Failures were detected
based on the failure conditions hypothesized and/or determined by the system.
Failures were resolved by dynamically configuring other resources available in
the spacecraft.

In grid environments, failures are commonplace due to the dynamic
availability of resources and a variety of unexpected events.  Models of failure
modes and diagnostic conditions together with approaches that resolve failures
would improve current capabilities to perform complex tasks. This would
enable advanced resource reservations, arbitration among requests, and analysis
of feasibility.  Planning ahead of execution time, and relating individual tasks to
overall common goals or optimization criteria would lead to better overall
performance.
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3.2 Planning and Control to Manage Uncertainty

In many environments, there is a disconnect between the situation that
the agent planned for and the actual situation due to uncertainty.  Uncertainty
may be a result of the impossibility of controlling sensors and effectors with
exact precision, the accumulation of errors over many steps, and the continuous
dynamics in the environment that result in errors in the agent’s models of the
external world.  Tiered architectures to combine high-level planning and low-
level dynamic control have been powerful paradigms for agents to cope with
uncertainty.

Path planning tasks illustrate the benefits of the combination of high-
level planning and low-level control (eg, [Urmson et al 03]).  Consider robot
exploration tasks that require moving around to locations where certain
observations can be made or samples collected.  High-level science goals can be
established and planned for. In a deliberate planning stage before execution.
Given the main locations or landmarks, route optimization techniques can be
used to generate an overall target plan. Intermediate waypoints can be generated
to create a path description that will steer the lower-level controls.  A tight
control loop for execution steers the motors and exploits sensor information
dynamically to reach the planned waypoints and landmarks.

Grid applications contain high-level goals to achieve complex overall
tasks that must be executed in a highly uncertain execution environment.
Higher-level planning and tasking can be combined with lower-level control
systems that can dynamically steer more execution-related decisions.

3.3 Learning to Improve Performance

Agents would be hardly considered intelligent if they repeated the same
mistakes and never improved their performance in tasks they perform routinely.
Learning may be simply collecting performance metrics and deriving statistical
predictive models, or may encompass more complex learning where efficient
procedural knowledge is compiled after reasoning from first principles.
Learning can also improve performance by recognizing common failure
conditions and designing mechanisms to anticipate and avoid them.

A wide range of learning techniques is used in agent systems.  These
include reinforcement learning from reward feedback, learning Markov decision
processes to improve overall policies, and symbolic compilation of behavior-
triggering rules (e.g., [Kaelbling et al 95; Dietterich 00; Hengst 00; Newell 90;
Anderson et al 04; Knoblock 94]).

In grid environments, performance and quality of service are paramount
concerns.  In such a highly dynamic and uncertain execution environment,
learning and adaptation mechanisms would improve resource assignment and
load balancing.
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3.4 Learning to Handle Novel Situations

Dynamic environments and continuous operations lead to unusual and
unanticipated situations, and autonomous agents must resort to learning
techniques that expand their initial knowledge and skills.

Learning techniques to handle novel situations include exploration and
experimentation to gather additional knowledge about the new situation,
learning from first principles, learning from observation of other agents,
learning cooperative behaviors in situations that require capabilities that the
agent does not have, and selecting when and how to resort to learning from user
instruction when all else fails [Lieberman 01; van Lent and Laird 99; Gil 93;
Cypher 93; Dent et al., 1992].

Grid applications function in very complex environments.
Unanticipated behaviors and situations require adaptive capabilities in order to
function appropriately in novel environments.  Learning to detect and resolve
unpredictable situations will be an important capability for autonomous
operations.

3.5 Problem Solving and Memory Structures

Complex behaviors that require a range of skills and scope often require
organizing knowledge and problem solving abilities and bring to bear only the
relevant factors for any given situation.  By reasoning at various levels of
abstraction, and by organizing memory structures with appropriate relevance
indices, agents are able to scale up in the size and coverage of their behaviors.

Perhaps the most complex agents have been developed with the Soar
architecture [Newell, 1990], which has been used to develop agents in simulated
worlds used for training and tutoring.  Complex and interdependent decision
factors are organized in separate problem spaces, each with its own goal set,
search strategies, and search control heuristics.  Problem spaces are related
through subgoals, where an unresolved decision in a problem space may trigger
a separate problem space that brings to bear additional factors to consider in
making that decision.  Large amounts of knowledge are needed to describe
goals, tasks, and problem solving methods.  Additional knowledge is learned
automatically by the system as it performs tasks.  All this knowledge is
structured and indexed in memory for efficient retrieval and performance.  A
long-term memory organizes problem-solving rules into the problem spaces that
they are applicable for.  A short-term memory is used to store knowledge
relevant to the problem-space currently active. Powerful memory matching
schemes bring to the working memory used for a particular problem space all
the rules from long-term memory that are applicable to the decision at hand.
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Interacting decisions may result in backtracking.  This complex deliberation
mechanism is complemented by learning techniques that improve performance
by generalizing and compiling new rules.  These learned rules are immediately
applied when a similar decision is encountered in the future, avoiding the
repetition of the deliberation process.

As grid applications scale up, there will be many complex and
interrelated decisions and constraints regarding the resources and services
available.  Complex and well-informed decisions can only be made if the
decision space can be appropriately represented and factored.  The knowledge
in the system must be structured so the relevant portions that need to be brought
to bear are indexed and retrieved.

3.6 Metareasoning

Meta-reasoning enables an agent to make decisions about what to reason
about, setting its own goals and deciding how to allocate its resources.

Retracting active behaviors in response to new information has been
researched in beliefs-desires-intentions (BDI) architectures [Morley & Myers,
2004; Rao & Georgeff, 1998; Bratman et al., 1998].  A dynamic control system
incorporates new beliefs by observing the current state, creates desires based on
its pending tasks and goals, and based on them decides what intentions to
trigger by selecting from possible venues of action.  The deliberation often
results in meta-level reasoning to assess whether to retract or continue pursuing
currently active behaviors.  Meta-reasoning is used in other contexts to decide
whether to explore and acquire new capabilities by seeking novel experiences or
to exploit current abilities to maximize performance.  Meta-reasoning is also
appropriate to decide how to partition a complex tasks into subtasks carried out
by distributed agents, and on the subsequent coordination and communication as
well as failure repairs.

Grid environments will include many components that could optimize
various aspects of performance, pursue opportunistic courses of action, and
reconsider goals selected or postponed.  The ability to make meta-level
decisions will likely impact overall performance and even the resilience of the
system to accomplish complex tasks in the light of drastic changes in the
environment.

3.7 Intervention and Interaction

Many agent systems require human interaction, either because they are
assisting humans and need to report progress or results, or because they perform
collaborative tasks that involve human-agent cooperation.  Such interaction
skills require the ability to explain the reasons for a response or for a question,
the ability to incorporate information provided by a human, and modeling the



12

human user in terms of their skill level as well as their assumptions based on
prior dialog conducted with the agent.

Conversational agents and dialog systems offer architectures to support
the communication between a user and a complex system [Allen et al 01; Sidner
et al 03; Grosz and Kraus 99].   Tasks that require user-system collaboration can
be successfully accomplished through shared task structures that include
explanations provided by the system about its behavior, as well as models of
user’s beliefs and the skills they contribute to the task at hand.

Grid environments are envisioned to serve a wide variety of uses and
users.  Some grid environments are accessed daily by computer researchers and
professionals, system developers, high-school students, and expert domain
scientists.  Usability remains a challenge for grid environments.  User steering
of grid applications, needed in some domains, require users to understand the
status of intermediate results of applications so additional or alternative tasks
can be inserted.  Helping users understand the workings of such complex
systems as they are relevant to their particular tasks and goals would be
facilitated by user and dialog modeling techniques as well as explanation-
centered system design.

3.8 Coordination, Shared Goals, and Adversarial Models

Complex tasks are often only possible by drawing from groups of agents
with complementary skills or resources.  Coordinating the delegation and
accomplishment of subtasks in an multi-agent system has let to important
research results in defining and maintaining joint shared goals, teamwork
behavior, and hierarchical subtask organizations.  Other agents often get in the
way of accomplishing tasks, and in some cases may have adversarial or
competing goals.

The Robocup agents exemplify this research area, as teams of robots or
software players need to coordinate their behavior by playing different roles in
the team in the presence of an opposing team (http://www.robocup.org).  What
to communicate and when, how to detect whether a team goal is threatened and
can be supported by changing an agent or the overall team behavior,
dynamically changing goals and even roles within the team, and how to thwart
the plans of adversarial agents are among the issues that arise in this multi-agent
domain.  Coordination needs not be centralized.  When all agents have models
of shared goals, they can support mechanisms to plan and enforce jointly agreed
intentions.  Plan recognition techniques can create models of adversarial plans
which can be incorporated into the planning process.



13

Grid applications could be designed to be more flexible with
architectures that support declarative representations of overall tasks and goals,
and manage delegation and coordination among individual components that
may then act autonomously to make their contributions to the overall task.

Figure 3. Increased sophistication in agent architectures that could benefit
grid computing: from basic capabilities such as modularity, autonomy,
swarm-level coordination, and immersion in their environment, to more
advanced capabilities such as problem solving and memory organization,
metareasoning, learning, shared goals, adversarial reasoning, and human-
system collaboration.

3.9 Summary: Why Agents

Agent architectures offer valuable techniques to provide the autonomy
and flexibility required in highly dynamic and heterogeneous environments.
These are defining characteristics of grid environments.  Figure 3 summarizes
some of the capabilities discussed here, and highlights the increasing
sophistication that agent architectures can support.  Grid applications would
benefit from incorporating such techniques.

4 Conclusions

Agent systems embody current AI research on distributed intelligent
systems.  Yet, agent systems have drawn in very limited ways from distributed
computing, which hinders their scalability and long-lived operations.  Grids, in
turn, aim to develop similarly intelligent capabilities but from the bottom up,
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and have concentrated more on managing low-level resources than higher-level
tasks. Cross-cutting research across both areas would enable significant
progress in grids as well as agents research.

Semantic grids bring declarative representations of knowledge to grids,
and once that knowledge is available there are various cognitive capabilities
typical of agent systems that become possible including learning, self-repair,
planning, meta-reasoning, coordination, and communication abilities. The result
will be cognitive grids, a new generation of distributed intelligent systems that
will be significantly more capable, autonomous, and adaptive.
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