
Towards Interactive Composition of Semantic Web Services

Jihie Kim and Yolanda Gil
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.
jihie@isi.edu, gil@isi.edu

Abstract

We are developing a framework for interactive
composition of services that assists users in sketch-
ing their requirements by analyzing the semantic
description of the services. We are applying this
framework to compose end-to-end simulations for
earthquake scientists. We describe the require-
ments that an interactive framework poses to the
representation of the services, and how the repre-
sentations are exploited to support the interaction.
We also describe an analysis tool that helps users
create complete and correct compositions of Web
services.

1 Introduction

Composing executable workflows out of smaller components
is essential in many areas, including large-scale scientific re-
search and business related applications. A new kind of sci-
ence is emerging from the integration of models developed by
individual scientists and groups, to result in end-to-end scien-
tific applications that result from the composition of those in-
dividual models. Another example is the composition of web
services to create new applications out from existing soft-
ware components (such as software modules or web services)
given a customer’s needs.

Web services are an emerging technology to describe and
discover these components. Research in semantic web ser-
vices provides more expressive representations that result in
more powerful techniques for services composition.

This paper argues that:

� complex applications require interactions with users,
who will need to formulate their goals at high levels of
abstraction while the system will work out the details.

� partial workflows containing high-level descriptions of
component services are needed to help users navigate
the space of possible combinations of services.

� constraints shared by abstract types of components need
to be checked at every step, since they result in commit-
ments made by users as they narrow down the space of
possible choices.

Most approaches to web service composition address au-
tomatically composing the services[19; 3; 24; 34]. How-
ever, in many contexts users will want to drive the process,
influencing the selection of components and their configu-
ration. In addition, users may only have high-level or par-
tial/incomplete description of the desired outcome or the ini-
tial state, so it may be hard to directly apply automatic ap-
proaches that require explicit goal representations. Business
agreement and past experiences of how the components were
used may also affect the development of the composition.

The goal of our work is to develop interactive tools for
composing web services where users sketch a composition of
services and system assists the users by providing intelligent
suggestions.

Interactive approaches need to address additional chal-
lenges in composing services. First of all, users may make
various types of mistakes and the system needs to help fix
them. The user may forget to specify links between the steps
or specify wrong links. There may be some missing steps
or unnecessary steps. Also, user’s input is often incomplete
(such as incomplete or abstract goal descriptions) and may
even be inconsistent with existing descriptions of the compo-
nents.

We found such issues arising in constructingcomputation
pathwaysin earthquake science where engineers interactively
compose existing or web services in order to answer their
queries. Even with a small number of services that need to
be put together to generate answers, users would benefit from
the assistance of intelligent tools that help them specify com-
plete and correct pathways.

In order to help users in this context, we have developed
a framework for guiding users in sketching a composition of
services by exploiting a semantic description of the services.
The framework is inspired by our earlier work in helping
users construct process models from pre-defined components
of objects and events[15]. In our previous work, we have
built a tool that performs verification and validation of user
entered process models by exploiting domain ontologies and
event ontologies. In this work, we first take existing service
descriptions and extend them with domain ontologies and
task ontologies that address various task types in the domain.
Our analysis tool then uses these ontologies in examining a
user’s solution (i.e., composition of services) and generating
suggestions about how to proceed.

In AAAI Spring Symposium on Semantic Web Services, Palo Alto, California, USA, 2004



Figure 1: An example computational pathway in earthquake
science domain.

The tool we built is called CAT (Composition Analysis
Tool). CAT’s analysis is driven by a set of desirable properties
of composed services including (1) all the expected results are
achieved, (2) all the links are consistent, (3) all the input data
needed are provided, and (4) all the operations are grounded
(there are actual operations that can be executed). While per-
forming these checks, CAT generates specific suggestions on
how to fix the errors based on the type of the errors and the
situation at hand. We show how these checks can effectively
help engineers build computational pathways in earthquake
science. We also show how the approach can be used in other
domains when appropriate domain ontologies and task on-
tologies are provided. As ontologies become richer, the tool
can provide more direct and focused suggestions.

This paper begins by introducing a problem that motivated
us to build our framework. Then we describe how existing
service definitions can be extended with domain and task on-
tologies. Next we present the current implementation of CAT
including the kinds of checks made and the suggestions pro-
vided, and then show how the system works in the context
of constructing computational pathway in earthquake science
and travel planning. Finally we discuss remaining issues and
future plans.

2 Motivation: Computational Pathway
Elicitation for Earthquake Science

One of the key problems often addressed in earthquake sci-
ence is to analyze the potential level of hazard at a given site.
For example, engineers may want to determine the probabil-
ity that some measure of earthquake shaking will be exceeded
during a specified time period. Depending on the kind of
structure, the engineer will be interested in looking at a par-
ticular Intensity Measure Type (IMT): PGA (Peak Ground
Acceleration), PGV (Peak Ground Velocity), or SA (Spec-
tral Acceleration). The engineer is concerned with the IMT
exceeding an intensity measure level. There are simulation
models available that provide an estimate of hazard at that
site for that structure as a probability that the intensity mea-
sure level will be exceeded in a certain time period. They are
called Intensity Measure Relationships (IMRs). An IMR can
analyze the impact on that site for a given earthquake forecast,
so the IMRs should be run considering Earthquake Forecast
Models (EFMs) that suggest entire sequences of earthquake
forecasts around the area where the site is located. Users can
choose different IMRs depending on the situation at hand be-

cause each IMR is designed to take into account specific types
of earth shaking phenomena. In addition, different constraints
that are associated with the IMRs have to be taken into ac-
count when they are used.

To determine the hazard level given a site, we may need to
put together various components, as shown in Figure 1, con-
sidering the overall task given and the constraints associated
with each component. We call it acomputational pathway.
A computational pathway consists of a set of operations and
a set of links that connect the operations based on their input
and output parameter constraints.

In constructing a computational pathway, engineers may
use a variety of strategies, including 1) top-down selection
of components, starting from abstract types of models and
then selecting specific ones; 2) result-based selection of com-
ponents working from desired data to select models that can
generate those results; 3) situation-based selection of compo-
nents, working from the initial data available to select com-
ponents whose constraints are consistent with those data.

Formulating complete and consistent pathways in this pro-
cess is very difficult for end users who don’t have computer
science background[15; 16]. For example, user terms may
be different from the description language that define the ser-
vices, users may not know how to describe their problems,
and they may make many different mistakes.

In order to build the pathway shown in Figure 1, users need
a proactive help from a system that understands how the path-
way is being built and generates appropriate suggestions.

3 Approach

Our approach complements simple WSDL (Web Service De-
scription Language) models[6] with both tasks and domain
ontologies as follows:

� We cast each simulation model as a web service and
describe its input and output in WSDL. A simulation
model can be invoked in several ways, and each of them
is mapped to different operations for its service.

� We use web services for message transport, but not for
reasoning about the service. That is, the WSDL descrip-
tions have “string” in the types assigned to message pa-
rameters.

� We use off-the-shelf domain ontologies to specify data
types in the WSDL descriptions. That is, parameters in
WSDL messages are mapped to terms in the domain on-
tology.

� We use a task ontology to describe abstract types of op-
erations and services. We follow the approach in[13]
to represent task types and their arguments. This repre-
sentation is based on case frames[9], where verbs are
qualified by cases that reflect their linguistic usage.

We first show how existing service descriptions can be ex-
tended with domain ontologies. Then we present CAT’s anal-
ysis functions that are built based on this extended represen-
tation.



3.1 Representing services using domain ontologies
<!-- WSDL description of the Field-2000 Web APIs.-->
<definitions name="urn:Field_2000Query"

targetNamespace="urn:Field_2000Query"
xmlns:typens="urn:Field_2000Query"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- Messages for Field-2000 Web APIs -->
<message name="F2-operation-SA-Median-VS30-Request">

<!-- Generic inputs -->
<part name="model" type="xsd:string"/>
<part name="user" type="xsd:string"/>
<part name="logwsdl" type="xsd:string"/>
<!-- Inputs specific to the model -->
<part name="MOMENT-MAGNITUDE" type="xsd:string"/>
<part name="DISTANCE-JB" type="xsd:string"/>
<part name="FAULT-TYPE-PARAMETER" type="xsd:string"/>
<part name="VS30" type="xsd:string"/>
<part name="BASIN-DEPTH-2.5" type="xsd:string"/>
...

</message>
<message name="F2-operation-SA-Median-VS30-Response">

<part name="return" type="xsd:string"/>
</message>
...
<!-- Port for Field-2000 Web APIs -->
<portType name="Field_2000Port">

<operation name="F2-operation-SA-Median-VS30">
<input message="typens:F2-operation-SA-Median-VS30-

Request"/>
<output message="typens:F2-operation-SA-Median-VS30-

Response"/>
</operation>
<operation name="F2-operation-SA-Median-Distance-JB">

<input message="typens:F2-operation-SA-Median-
Distance-JB-Request"/>

<output message="typens:F2-operation-SA-Median-
Distance-JB-Response"/>

</operation>
<operation name="F2-operation-SA-Median-MAGNITUDE">

<input message="typens:F2-operation-SA-Median-
Magnitude-Request"/>

<output message="typens:F2-operation-SA-Median-
Magnitude-Response"/>

</operation>
...

</portType>

<!-- Binding for Field-2000 Web APIs -
RPC, SOAP over HTTP -->

<binding name="Field_2000Binding"
type="typens:Field_2000Port"> ...

</binding>

<!-- Endpoint for Field-2000 Web APIs -->
<service name="Field_2000Service">

...
</service>

</definitions>

In order to support the kinds of interactions described
above, CAT needs a semantic description of the services and
their constraints on input and output parameters.

The above shows a part of WSDL representation of an
earthquake simulation service. In our work with earthquake
scientists, web services have been built for existing software
components. The service, called “Field2000Service”, is rep-
resented as a set ofoperationsthat take input data needed
to run a simulation and generate output results as numbers.
For example, an operation called F2-operation-SA-Median-
VS30 produces median values of spectral acceleration with

Figure 2: Task Ontology and Domain Ontology.

respect to valid VS30 value ranges. There are various other
Field-2000 operations that can be chosen by users depending
on the kinds of queries they have in mind, including the IMT
type (SA or PGA or PGV), the probability function (Median
or Probability of Exceedance or Standard-Deviation), the in-
dependent variable used to render the results (VS30 or Mo-
ment Magnitude or ...), etc. In this representation of a ser-
vice, all the input and output data types are simply described
as strings, so we consider it ’syntactic’ in the sense that the
description itself does not provide enough semantic informa-
tion on what each operation needs, what it does and what
it produces, which we believe are essential in supporting in-
teractive service composition. Although some of the exist-
ing services use more complex data types, most of the ser-
vice descriptions cannot directly support the kinds interac-
tions needed for constructing computational pathways.

Our approach is to take these existing syntax level ser-
vice descriptions and extend them with two types of knowl-
edge: domain term ontology and task ontology. As shown
in Figure 2, service operations can be defined using the do-
main terms defined in a domain ontology. That is, their
input and output data types can be represented using do-
main objects, and their task types can be defined as map-
pings between input data types and output data types. For
example, a task type Compute-Hazard-Level-given-IMR-
Input-Parameters has IMR-Input-Parameters as the input and
Hazard-Level as the output. There are now many domain on-
tologies available on-line including the ones in DAML ontol-
ogy library[7]. We hope that our system will be able to ex-
ploit these existing ontologies in extending the descriptions
of existing services.

The current implementation uses description logic to rep-
resent and reason about these ontologies. For example, the
above description of Field 2000 can be represented as a set of
instances, where Field-2000-Service represents a service and
F2-operation-SA-Median-VS30 is an instance representing
one of the operations. Each operation is represented with a
task type in the task ontology and its input and output param-
eters are described using the data types defined in the domain
ontology. Here F2-operation-SA-Median-VS30 is an oper-



ation that produces F2-SA-Median-wrt-VS30 given Fault-
Type, Basin-Depth, etc. (Compute-F2-SA-Median-wrt-
VS30-given-Fault-Type-&-Basin-Depth-&-...). As shown in
Figure 2, this operation is a kind of earthquake simulation
task (Compute-Hazard-Level-given-IMR-Input-Parameters).

3.2 Checking Computational Pathways with CAT
Given a computational pathway and a user task description
(i.e., a set of initial input and expected results), CAT checks
if (1) all the expected results are produced, (2) all the links are
consistent, (3) all the input data needed are provided, and (4)
all the operations are grounded (there are actual operations
that can be executed). In addition, it generates warnings on
(5) unused data and (6) unused operations that don’t partici-
pate in producing expected results. Given any errors detected,
CAT generates a set of fixes that can be potentially used by
the user. The following shows the general algorithms that are
used in checking errors and generating suggestions.

� Checking Unachieved Expected Results:

– Detect problem: for each expected result, check if it is
linked to an output of an operation or directly linked to
any of the initial input (i.e., the result is given initially).

– Help user fix problem:
1. find any available data (initial input or output from in-
troduced operations) that is subsumed by the data type of
the desired result, and suggest to add a link
2. find most general operation types in the task ontology
where an output is subsumed by the desired data type
and all the input are provided (i.e., subsumed by either
the initial input or some output from introduced opera-
tions), and suggest to add the operation types.
3. find most general operation types where an output is
subsumed by the data type of the desired result, and sug-
gest to add the operation types.

� Checking Missing Data:

– Detect problem: for each operation introduced, for each
input parameter of the operation, find if it is linked to any
(either to the initial input or to some output from intro-
duced operations).

– Help user fix problem:
1. find any initial input data or output of operations that
is subsumed by the desired data type, and suggest to add
a link.
2. find most general operation types in the task ontology
where an output is subsumed by the desired data type and
all the input are provided (i.e., subsumed by either the
initial input or some output from introduced operations),
and suggest to add the operation types.
3. find most general operation types where an output is
subsumed by the desired data type, and suggest to add
the operation types.

� Checking Inconsistent Links:

– Detect problem: for each link between data types, find if
the former one is subsumed by the latter one.

– Help user fix problem:
1. find most general operation types where an output is
subsumed by the latter one and an input subsumes the
former one, and suggest to add the operation types.

� Checking Ungrounded Operation:

Figure 3: CAT Interface.

– Detect problem: for each operation type introduced in the
pathway, check if there is a mapping to an actual opera-
tion that can be performed.

– Help user fix problem:
1. find a set of qualifiers that can be used to specialize
it and suggest to replace the operation type with a more
special one base on the qualifiers.
2. find the subconcepts of the task type in the task ontol-
ogy and suggest to choose one of them.

� Checking Unused Data:

– Detect problem: for each initial input data type and
the output from the introduced operations, check if it is
linked to an operation or an expected result.

– Help user fix problem:
1. find any missing data or unachieved results that sub-
sumes the unused data type, and suggest to add a link.
2. find most general operation types where an input sub-
sumes the unused data and some output are subsumed by
any of the missing data or unachieved results, and sug-
gest to add the operation types.
3. find most general operation types where an input sub-
sumes the unused data, and suggest to add the operation
types.

� Checking Unused Operation:

– Detect problem: for each operation introduced, check if
its output or any output from its following operations is
linked to an expected result.

– Help user fix problem:
1. suggest to add a link to connect the operation

Whenever CAT detects an error, it sends an error message
and a set of suggestions that can be used to fix the error. When
there are more than one way of computing suggestions, CAT
tries them according to the orders given in the algorithm (e.g.,
fix 1 then fix 2, ...). More details of the algorithm and its
formalism are available in[14; 31].

Note that because the system has an ontology of operation
types that describes high-level task types as well as specific
operations that are mapped to actual operations, users can
start from a high-level description of what they want without
knowing the details of what operations are available. We of-
ten find that users have only partial description of what they
want initially, and CAT can help users find appropriate ser-
vice operations by starting with a high-level operation type



Figure 4: User’s problem: Given site-address, find hazard-
level.

Figure 5: User adds Compute-Hazard-Level-give-IMR-
Input-Parameters as suggested by CAT.

and then specializing it while the pathway is being built. A
general operation type can be specialized by itself or from the
constraints introduced by other operations in the pathway.

4 Interactive Construction of a
Computational Pathway

This section shows how the above checks and suggestions
are used in helping users construct a computational pathway,
using the problems described in Section 2. Our current im-
plementation of CAT supports a textual editor where users
can select services from a menu and make links by clicking
their input and output parameters. Users can also apply the
suggestions produced from CAT, which will update the path-
ways automatically, as shown in 3. Here we use conceptual
diagrams in order to highlight CAT’s report.

As described in Section 2, one of the key problems users
often have in earthquake science is to analyze the hazard level
of a given site. Most user may not know the details of the
existing services, i.e., what are available and how to use them,
and they may start with a high-level description the problem:
Given a site address, compute the hazard level. The user may
start with this high-level description of the task as shown in
Figure 4.

Figure 6: User specializes operation for SA and Field-2000.

Given this description of the task, CAT finds that the ex-
pected result (Hazard-Level) is not achieved (i.e. not ini-
tially given and not linked to any operations), so it generates
a warning and a set of suggestions based on the strategies de-
scribed in the previous section: first find any available data
that is subsumed by the desired data type and then find op-
erations that can produce the desired output from available
data. Since none of that types are found, it then computes
the operations that can just produce the output. A candidate
found (Compute-Hazard-Level-given-Input-Parameters) is a
high-level ”ungrounded” operation (i.e., there is no actual op-
eration of that type). However, there are operations that can
produce more specific type of objects (e.g., F2-Operation-
SA-Median-Dist-JB, F2-Operation-SA-Median-VS30, etc.).
CAT also notes that the given input (Site-Address) is not used
yet. Since there is no operation that produces the unachieved
result using the unused input, CAT suggests to add an op-
eration that just uses the input (Compute-Lat-Long-given-
Address). The user decides to add Compute-Hazard-Level-
given-Input-Parameters in this case.

Figure 5 shows that Compute-Hazard-Level-given-IMR-
Input-Parameters instead of Compute-Hazard-Level-given-
Input-Parameters is added to the computational pathway.
Here the ontology of task types are used to find the most spe-
cific subsumer of all the grounded operations covered by the
selected operation type. Since all the input parameters that
the operations take are IMR-Input-Parameters, the operation
is specialized into Compute-Hazard-Level-given-IMR-Input-
Parameters.

CAT notes several problems as shown in Figure 5, includ-
ing the operation being ungrounded yet (some of the CAT
reports are not shown for brevity). For this type of prob-
lem, if the domain ontology has definitions of the qualifiers
that distinguish different specializations of operation types,
the system can exploit them in generating suggestions. For
example, in our domain ontology, Hazard-Level can be spe-
cialized with respect to the intensity measure type (IMT), the
probability function used in the analysis, the simulation mod-
ule employed, etc. When there are a set of qualifiers, each of
them may provide a different way of specializing abstract data
types. That is, different combinations provide different paths
to reach the grounded objects. For example, F2-SA-Median-



Figure 7: User selects Median and VS30 for further special-
ization.

Figure 8: User adds EFM.

wrt-VS30 can be reached by selecting SA as the intensity
measure type, Median as the probability function, Field-2000
as the IMR used, and VS30 as the independent variable, in
any order.

When the user picks SA as the intensity measure type,
its input and output data types are recomputed according to
the actual operations that are covered, as described above.
That is, the output type changes from Earthquake-Hazard-
Level to Earthquake-Hazard-Level-with-SA. Likewise, when
the user choose FIELD-2000 as the IMR to use, its input type
changes from IMR-Input-Parameters to FIELD-2000-input-
Parameters (Figure 6).

This process of specializing ungrounded task can be con-
tinued until a ground operation is reached (F2-operation-SA-
Median-VS30) as shown in Figure 7. Since its input parame-
ters are not connected yet, CAT reports those asmissing-data.
The existing input (Site-Address) is not compatible with any
of the desired (missing) data types, CAT uses fix type 3 and
suggests to add additional steps that have consistent output
types. For example, Compute-Earthquake-Forecast-given-
Time-Span (a ground operation called EFM) can produce a
Fault-Type.

Figure 8 shows the pathway after EFM is added. CAT
finds that there a set of unused data and missing data.
Note that one of the fixes can address two different is-
sues: Compute-Moment-Magnitude-given-Richter-Scale can

Figure 9: User adds Mag-Convert and D-COMP operations.

Figure 10: User adds a link between Site-Address and Lat-
Long of D-COMP.

resolve missing-data (Moment-Magnitude of F2-operation-
SA-Median-VS30) and unused-data (Richter-Scale of EFM).

When the user adds Mag-Convert, and then D-COMP, as
shown in Figure 9, CAT notes a mapping between Lat-Long
output from EFM and Lat-Long input of D-COMP from the
checks on missing-data and unused-data.

Figure 10 shows an example of inconsistent link where
Site-Address is directly linked to an incompatible data type,
Lat-Long. In this case, CAT suggests to add an operation
(Geocoder).

Figure 11 shows the result after adding Geocoder. The user
can continue this process until all the expected results are
achieved, all the necessary input data are provided, there are
no inconsistent links, and all the operations become ground.
As shown above, checks on missing-data and unachieved re-
sults can give hints on unused-data, and vice versa. If an
action can address more than one issues, it might be a bet-
ter choice than than others. Results on inconsistent-link and
ungrounded-operation are used for checking links entered by
users and the groundedness of the operations.

5 Composing Services for Travel Planning
This section shows that how the same approach can be used
in other domains. Figure 12 shows a process of composing
services for a travel planning. The user wants to reserve a



Figure 11: User adds Geocoder service operation.

Figure 12: Interactive Service Composition for Travel Plan-
ning.

flight first and then reserve a car based on the reserved flight.
Currently two input parameters of the Reserve-Car operation,
(pickup) time and location, are not linked yet. Both of them
can be potentially linked if the Flight-Info operation is added
in between, since it produces data on Time (Depart-Time
and Arrival-Time) and Location (Depart-Airport and Arrival-
Airport) given a flight number.

As domain ontologies become richer in content, the sys-
tem will be able to make more specific suggestions. For
example, currently, the system cannot provide a direct map-
ping between input and output parameters of Flight-Info and
Reserve-Car since each of them can be mapped to more than
one sources. However, if a richer ontology of trips are given
so that the pickup time and location should be consistent with
the time that the airplane arrives at the Arrival-Airport, then
the suggestions will become more specific. That is, the sys-
tem will suggest to link Arrival-Time and Arrival-Airport to
the Reserve-Car operation. The system will be able to filter
out the option of using Depart-City as the pick-up location
in the same way (in the suggestions for Missing-data in Fig-
ure 12).

6 Related Work
There are various related efforts concerned with composition
of web services, but they concentrate on automatic compo-
sition and do not address the user interaction issues raised
in this proposal. Existing approaches for composition of web
services[19; 23; 29; 35] use expressive languages and sophis-

ticated reasoning and planning techniques to generate valid
compositions of services. They complement our work in that
they do not address user interaction issues. The Web Services
TookKit (WSTK) [32] includes a composition engine, but it
has very limited models of the data used by the services that
limits the support that underlying reasoners can provide. Lit-
tle attention has been paid to the interactive composition of
services. SWORD[26] is a toolkit that addresses interactive
service composition. However, it is designed for developers
who have programming skills, not for end users that are the
target users of our work

Graphical tools to lay out a workflow and draw connections
among steps abound[5; 8; 17; 27; 28] but the tools are lim-
ited to simple checks on the process models because there is
no semantics associated to the individual steps and links. In
contrast, we assume a knowledge-rich environment where the
system can check whether the workflow makes sense within
the background knowledge that it has.

Web service composition has many parallels with soft-
ware composition[12; 10], though there are many signifi-
cant differences including the distributed nature of web ser-
vices and the encapsulation techniques that they provide.
Web services can be seen as a higher layer of abstraction
than software provides, and can be extended with expressive
languages to support composition in more powerful ways.
Similar formal techniques to those in this paper have been
used successfully to integrate software components[33; 4;
18], but only in fully automated settings. DAML-S is a se-
mantic markup language for services that enables the expres-
sion of a complex service as well as the composition of ser-
vices[1].

Some languages to support composition of services are
based on expressive formalisms to represent complex com-
binations of services[20; 21]. These languages include, for
example, conditional expressions. This work is complemen-
tary in that it investigates the formal underpinnings of such
languages, while our focus is on usability.

7 Discussion and Future Work
This paper presents a framework for interactive service com-
position where the system assists users in constructing a com-
putational pathway by exploiting semantic description of ser-
vices. We have built a tool that analyzes a sketch of a path-
way based on the definitions of task types and their input and
output data types, and generates error messages and specific
suggestions to users.

We believe that our framework can be applied various
problems if appropriate domain ontologies can be accessed
and services are represented according to the domain terms
defined in the ontologies. For example we may exploit the on-
tologies now available on-line including the ones available in
the DAML ontology library[7] that are reusable across differ-
ent applications. Task ontologies are relatively rare but may
become more commonplace if they have clear value added in
supporting more flexible composition of services. Currently
our task ontologies are manually built, but we are planning
to investigate a way of generating a hierarchy of general task
types according to the kinds of input and output of given op-



erations.
We are also investigating uses of automatic composition

approaches in our interactive framework. For example, when
users want to see possible completion of the pathways given
their initial sketches, the system may send a request to an AI
planning module.

Acknowledgments
We would like to thank Marc Spraragen for his contribution
to our discussions. This research was funded by National Sci-
ence Foundation (NSF), award number EAR-0122464.

References
[1] A. Ankolenkar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Mar-

tin, D. McDermott, S. A. McIlraith, S. Narayanan, M. Paolucci,
T. R. Payne, and K. Sycara. DAML-S: Semantic Markup for Web
Services. In The First International Semantic Web Conference
(ISWC), Sardinia (Italy), 2002.

[2] Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott,
D., McIlraith, S., Narayanan, S., Paolucci, M., Payne, T., Sycara,
K.: DAML-S: Web Service Description for the Semantic Web.
International Semantic Web Conference (2002) 348-363.

[3] Burstein, M., McDermott, D., Smith, D.: Derivation of glue
code for agent interoperation. Agents (2000) 277-284.

[4] Chien, S., and Mortensen, H. ”Automating Image Processing
for Scientific Data Analysis of a Large Image Database,” IEEE
Transactions on Pattern Analysis and Machine Intelligence 18
(8): pp. 854-859, August 1996.

[5] Chin Jr, G., Leung, R., Schuchardt, K., Gracio, D.: New
paradigms in problem solving environments for scientific com-
puting. Proceedings of IUI-02.

[6] Christensen, E., Curbera, F., Meredith, G., and Weer-
awarana, S. WSDL: Web Service Description Language,
http://www.w3.org/TR/wsdl, 2001.

[7] DAML Ontology Library: http://www.daml.org/ontologies
(2003).

[8] Edge Diagrammer. http://www.pacestar.com/edge/.

[9] Fillmore, C., 1968. The case for case. In Bach, E., and Harms,
R.T., eds., Universals in Linguistic Theory.

[10] Heineman, G., and Councill, W. (Eds). Component-Based
Software Engineering: Putting the Pieces Together. Addison-
Wesley, 2001.

[11] Hendelr, J.: Agents and the Semantic Web. IEEE Intellignet
Systems (Special Issue on Semantic Web), 16(2), 2001.

[12] Jennings, N.: Building complex, distributed systems: the case
for an agent-based approach, Comms. of the ACM, 44 (4) 35-41,
2001.

[13] Gil, Y., and Blythe, J.: How Can a Structured Representation
of Capabilities Help in Planning? AAAI workshop on Represen-
tational Issues for Real-World Planning Systems, 2000.

[14] Kim, J., Gil, Y.:, and Spraragen, M.: An Intelligent Assistant
for Interactive Workflow Composition. ISI internal report, 2003.
http://www.isi.edu/ikcap/scec/CAT/cat-10-01-2003.pdf.

[15] Kim, J. and Gil, Y.: Knowledge Analysis on Process Models.
Proceedings of International Joint Conference on AI (2001).

[16] Kim, J. and Gil, Y.: Acquiring problem-solving knowledge
from end users: Putting interdependency models to the test. Pro-
ceedings of AAAI-2000, (2000).

[17] KHOROS PRO 2001. http://www.khoral.com/
[18] Lansky, A., Friedman, M., Getoor, L., Schmidler, S., and

Short, N. ”The COLLAGE/KHOROS Link: Planning for Image
Processing Tasks”, 1995 AAAI Spring Symposium on Integrated
Planning Applications.

[19] McDermott, D..: Estimated-Regression Planning for Inter-
actions with Web Services. AI planning systems Conference
(2002).

[20] McIlraith, S. and Fadel, R. Planning with Complex Ac-
tions. Proceedings of the Ninth International Workshop on Non-
Monotonic Reasoning (NMR2002), pages 356-364, April, 2002.

[21] McIlraith, S. and Son, T. Adapting Golog for Composition of
Semantic Web Services. Proceedings of the Eighth International
Conference on Knowledge Representation and Reasoning

[22] Myers, K.: Planning with Conflicting Advice. Proceedings of
the Fifth International Conference AI Planning and Scheduling
(2000).

[23] Narayanan, S., and McIlraith, S.: Simulation, Verification, and
Automated Composition of Web Services. Proceedings of the
World Wide Web Conference, Honolulu, Hawaii, 2002.

[24] Paolucci, M., Kawamura, T., Payne, T., Sycara K.: Semantic
Matching of Web Services Capabilities. The First International
Semantic Web Conference (2002).

[25] Payne, T., Singh, R., and Sycara, K.: Browsing Schedules - An
Agent-based approach to navigating the Semantic Web. The First
International Semantic Web Conference (2002).

[26] Ponnekanti, S., and Fox, A. SWORD: A Developer Toolkit for
Web Service Composition. In Proc. of the Eleventh International
World Wide Web Conference, Honolulu, HI, 2002.

[27] Procedure Charter http://www.imagespro.com/programs/2118/.
[28] SmartDraw. http://www.smartdraw.com/.
[29] Sheshagiri, M., desJardins, M., and Finin, T. A Planner for

Composing Services Described in DAML-S. ICAPS 2003 Work-
shop on Planning for Web Services Program.

[30] Smith, S., Lassila, O., and Becker, M: Configurable mixed ini-
tiative systems for planning and scheduling. In A. Tate, editor,
Advanced Planning Technology. AAAI Press, (1996).

[31] Spraragen, M. et al: A formal model for intelligently assited
interactive workflow composition. ISI internal report, 2003.

[32] Srivastava, B. et al. Web Services Toolkit (WSTK),
http://www.alphaworks.ibm.com/tech/webservicestoolkit. 2000.

[33] Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., and
Unerwood, I. Deductive Composition from Astronomical Soft-
ware Libraries. Technical Report, SRI International and NASA
Ames Research Center, 1993.

[34] Sycara, K., Lu, Klusch, M., and Widoff S.: Dynamic Service
Matchmaking among Agents in Open Information Environments.
Journal ACM SIGMOD Record, Special Issue on Semantic Inter-
operability in Global Information Systems, A. Ouksel, A. Sheth
(Eds.), (1999).

[35] Thakkar, S., Knoblock, C., Ambite, J., and Shahabi, C.: Dy-
namically Composing Web Services from On-line Sources. In
Workshop on Intelligent Service Integration, The Eight National
Conference on Artificial Intelligence (AAAI), Edmonton, Al-
berta, Canada.


