Proactive Learning for Interactive Knowledge
Capture

Jihie Kim and Yolanda Gil

Information Sciences Institute, University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292, U.S.A.
{jihie, gil}@isi.edu

Abstract. Current tools for interactive knowledge capture have little or
no learning aptitude. They are mostly oblivious to the process or strat-
egy that the user may be following in entering new knowledge, unaware
of their progress during a session, and ignorant of typical skills expected
from a good student. A user has to make up for these shortcomings by
tracking the status, progress, potential problems, and possible courses
of action themselves. We present an approach to make acquisition in-
terfaces more proactive by extending them with: 1) goals that represent
what remains to be learned, 2) strategies to achieve these goals and ac-
quire further knowledge, and 3) awareness of the current status of the
body of knowledge learned. The resulting interaction shows that the sys-
tem is aware of its progress towards acquiring the new knowledge, and
moves forward by understanding what acquisition goals and strategies
to pursue.

1 Introduction

Acquiring knowledge from end users that have no formal training in computer
science remains a challenging task [3, 5, 16,12, 8]. Acquisition interfaces use a va-
riety of approaches, including graphical and structured editors, diagnosing errors
and helping users to fix them, using existing knowledge to generate guidance for
users, etc. However, users are still solely responsible for the acquisition process,
in terms of deciding when, what, how, and how well to teach the system. Current
technology makes users feel like they are teaching a poor student with a lot of
potential, one that has a lot of knowledge but appears to have no interest in
learning. As a result, users have to wonder how to assess how well the system is
learning new knowledge: is the system acquiring the appropriate kinds of knowl-
edge? did they forget to mention something important? has the system learned
enough to answer questions about the material competently? Users that are good
teachers will think about these issues and exercise the system accordingly, but
they remain responsible for assessing the competence and quality of the system
every step of the way. In summary, today’s acquisition interfaces can be charac-
terized as passive students with little or no ability to be active participants in
the learning process.

The goal of our work is to develop acquisition interfaces that are proactive
learners, able to reason about learning activities and with initiative in partici-
pating in the process accordingly. Our approach is to enable acquisition tools to
have acquisition goals and be aware of the level of competence and confidence
of the knowledge they are acquiring. Drawing from limitations shown by previ-
ous tools in their interactions with users and from learning/teaching strategies
that are typically used in tutoring systems, we formulated goals and strategies
to turn acquisition tools into better students. Learning goals have been used to
extend automated machine learning approaches successfully [13]. In addition, we
make our tools aware of the status of what has been learned, i.e., how much they
know about a given topic and how confident they are about that knowledge. To
show the generality and useful functionality of our approach, we have used it
in the context of two different acquisition interfaces with very different input
modalities, target knowledge, and testing strategies.

The paper begins discussing the rationale behind our approach as we explored
relevant literature in different areas related to interaction and learning. We then
introduce our approach and the system we developed in the context of two very
different acquisition interfaces.

2 Proactive Acquisition Interfaces

In order to understand how to build acquisition tools that are more proactive in
learning new knowledge from users, we drew from three main sources:

1) Knowledge Acquisition — First, our past experience with users entering knowl-
edge through acquisition interfaces [references omitted for blind review]. By ana-
lyzing detailed transcripts of actions taken by users (editing, searching, testing),
we could see what knowledge acquisition activities require more effort from users
and which actions are more prone to mistakes (some pretty costly to repair).
Searching is a typical example of something that is supported by acquisition
tools by completely ignoring the context of what the user has been doing, thus
making it unnecessarily painful to find relevant items in the KB.

Also, we have consistently seen in user feedback questionnaires many items
related to making the system participate more in the process. Many items in
these wish lists could be naturally turned into activities that the system should
suggest to users when they do not know how to proceed. For example, when
the tool points out that there is an error in the knowledge base the user will
understand that there is a problem but not necessarily what to do to resolve
it. A very interesting issue that users often bring up is the difficulty of telling
whether their actions are helping the system make progress towards acquiring
the new knowledge, especially when their changes are making a temporary mess
in the knowledge base that only gels together later.

We also analyzed numerous knowledge bases created by users and noticed
that they are often incomplete or erroneous in some important way, showing
how the tools had failed to help users notice and/or correct these problems.

For example, defining the same thing twice under two different names is typical
when knowledge entry spans several days. A similar case is defining something
that already exists in the KB. Also, defining an item that seems irrelevant to the
new body of knowledge, often because users do not realize that they forgot to
indicate how it is related to the other knowledge. Despite these errors, the final
knowledge bases are still tested for performance. The system shows candidly its
logical answer to the questions, with no sense of coverage or confidence based on
prior testing. It would seem useful for the system to have some understanding
of how much it knows and how well, and use this to qualify its answers.

The users in these studies ranged from experienced knowledge engineers to
end users, and the domains included biology, travel, and military planning. The
acquisition interfaces and knowledge representation platforms also varied in our
analysis. Generalizing across users, domains, and tools helped us formulate pat-
terns of situations and activities where the system could have been much more
helpful to the user, by recognizing certain states and triggering appropriate rules
containing suggestions for users.

2) Tutoring — Our second source of inspiration is the literature on tutorial
dialogues and principles used in intelligent tutoring systems [9, 10]. Their obser-
vations helped us understand the level of participation that our tools should aim
to have as well as the nature of good teacher-student interactions. We noticed
that many useful learning principles could be seen as learning goals and teaching
goals that students and teachers seem to pursue at different points throughout a
lesson. For example, the topic of the lesson is sometimes presented to the student
at the beginning, followed by the content of the lesson, then test questions, and
then a summary of the lesson [18,10,14]. Setting up the topic of the lesson at
the beginning helps draw on prior knowledge (subsumption to existing cogni-
tive structure) and helps the teacher detect missing prior knowledge that needs
to be provided before carrying on with the lesson [19,10,2]. This would be a
useful capability for acquisition interfaces, specially when helping users extend
a sizeable body of knowledge. A reasonable expectation in a tutoring situation
is that all new items defined must have a connection to the topic of the lesson
[15]. Because interactive acquisition tools have no such expectation users often
define new knowledge that turns out not to be used in reasoning and perhaps
should be (why would the user have bothered to define it otherwise). Testing
the student is also a major tutoring activity [6,19,4]. Some questions will test
the new knowledge with respect to existing knowledge [14,2] to ensure it fits
adequately. Students should not only be expected to give the right answer but
to do so for the right reasons [17]. The tutor should be notified if the answer
to a question asked previously changes in light of additional material taught
[7]. Acquisition interfaces are not typically very helpful in this sense, and users
are solely responsible for the design and thoroughness both test questions and
answer analysis. Another interesting aspect of a lesson is learning to describe
the new knowledge in terms that are appropriate in the domain at hand [17].
Acquisition interfaces rarely focus on acquiring this kind of lexical information,
since their goal is to acquire knowledge needed for reasonable performance but

not necessarily to give articulate responses. Finally, it appears that it is useful
to limit the nesting of lessons to a handful [17], which seems it would help our
tools keep track of what is going on as much as it helps a human student.

Many of the tutoring principles suggest a more goal-oriented behavior for
acquisition interfaces. Having acquisition goals is key to making a tool truly
proactive because it could then steer the dialogue with the user to work towards
those goals. Acquisition goals are also useful in order for the tool to understand
better what the user is trying to get to.

3) User Interaction Techniques — The third important source of ideas for de-
signing proactive acquisition interfaces is research on various aspects of user
interaction, including dialogue planning, intelligent interfaces, and agent-based
assistance. Dialogue planning systems guide users in accomplishing tasks by rea-
soning about plans and goals related to those tasks [1]. The idea of designing a
suite of plans for acquisition tasks and planning a dialogue that allows the system
and the user to collaborate in solving the task seemed appropriate for building
proactive acquisition interfaces. Alas, users have a very wide variety of choices
in terms of how to enter knowledge, which results in an unmanageable number
of possible acquisition plans that our tools would need to keep track of. Dia-
logue planning systems work best in relatively narrow domains with relatively
few alternative plans. In addition, many discourse reasoning issues handled by
dialogue systems (such as reference resolution and discourse obligations) are not
central to our problem.

Clearly, some capability to plan acquisition tasks that can accomplish current
learning goals is necessary for creating proactive acquisition interfaces. We found
ourselves designing acquisition plans that resulted in two extreme interaction
modes. They were either too constrained for the user in that he or she had to
follow the strategy dictated by the system, or they provided too many abstract
and diverse choices in order to give the user flexibility on what to do next.
Sensible interaction modes result when systems have heuristics and measures
of likelihood that help them avoid making inappropriate or unlikely suggestions
[11].

In order to manage the many possible alternatives in the dialogue, proactive
acquisition interfaces need to generate acquisition plans while reasoning about
the priorities of learning goals and tasks, the likelihood of alternative choices,
and the appropriate level of detail in their suggestions to the user.

3 Approach

The key idea behind our approach is to provide acquisition interfaces with the
following capabilities:

— Acquisition interfaces should be able to represent explicitly acquisition goals.
The goals that are achieved at each point during the dialogue represent the
progress made towards acquiring the desired body of knowledge.

— Acquisition interfaces should have acquisition strategies in order to under-
stand and actively pursue what is involved in learning about a new topic.
Acquisition strategies outline how to achieve acquisition goals. Because so
many things are unknown to the system during the lesson, these strategies
can only be pursued under the user’s guidance and in a mixed-initiative
interaction.

— Acquisition tools should have awareness of what they have learned already
and what they do not know about yet, so that they can better assess their
competence and confidence in specific topics, and steer the dialogue with the
user in directions that improve their body of knowledge on both counts.

SUGSESTIONS ACQUISITION STATE =
Click here to see the suggestions by goals Lesson
Bacterial-Transcription (Scenario01)
I would like to comnect all ileas to the lessen « you didn't indicate if there are more
« Goal: | would like to connect Promoter01 to the | g bgteps
lesson
Do you want to connect Promoter0l as 'object' of | pul:pt;seztogu:stsi%rsls: T01, T02

RecognizeQ1? Y28 CURE Sl ~ Test simulations

« prior knowledge assumed

I would like to ensure that the required roles are — Bacterial-DNA
aif specified — Enzyme
« Goal: | would like to know 'object' of

Recognize0l (unfilled required role) ~ Polymerase

~ Base-Pair
i it? ves other options H P
Do vou want to specify it? [ves| | other options | « parent ‘scenaric' is teo general

I would like to establisk identily among Ftems E:nl]elﬁlerueld role 'first-subevent’ is filled by

s Goal: | would like to know if (Base—Pair02 Base— . .
Pair01) are identical o number of times tested: 3 _details

7 lves ather options
Are they the same? Knowledge |tems

» Collide0l (collide) see details
This item is complete (number of times

i would [ike to ensure that the enumeraiion of lhe
steps is compleie

"Bacter ial-Transcription” has these substeps: tested: 3)
("DNA-Melting01" "Make-Contact01" “"Recognize01" .
"Move-Through01" "Collide01"). » Hove-Through01 (move-through) see details

Are there more? [es EI unknown Igéie:ﬂ:eg)ls complete (number of times
i would [ike to ensure that ilems are as specific af R . R) |
possible P RecognizeOl (recognize) see details
s Goal: 'scenario' seems too general. | would like
to replace it with a more specific concept. ¥ Make—Contact01 (make-contact)

Do you want to replace it with one of (copy « parent 'make-contact’ seems specific enough

create) because they were used in similar cases? ved ¢ domain terms: Tight-Binding

ather options « connected to the lesson
is filled by

e required role 'object’

i would [ike to accepi new ieras and new connec!iond Polyme_raseO] i X
e required role 'base’ is filled by

Do you want to add a new step? ¥ parsauired role
Do you want to add a new object?]Jy“ + identical to no other itens

Do you want to add a new link? [ves o there were errors:(falled-preconditlons
found during test)

« number of times tested: 1 _defails

I would like to fix errors
e Goal: There was failed-precondition-found-during-|
test and | would like to fix it . . .

SOURCE: ((Make-Contact01) The polymerase object- | » DNA-Melting0l (dna-melting) see details
of mustnt-be-a be-touching with object the base of
the make—contact.) ¥ Promoter01 (promoter)

Delete-ormodify the make-contact. |81y | « parent 'promoter' seems specific enough

o noi coninecled to the lesson yel

HISTORY - idantiral +n na athar itame B

+ add link (next-event RecognizeOl Make-Contact01)
accomplished these goals:
- fix errors: unreached steps (Make-Contact01)
in this state
add rele (object Collide0l Polymerase01)
accomplished these goals:
- specify reauired role (object of Collide0l1)
- connect item (Polymerase01) to the lesson
in this state
add item (Promoter01)
accomplished these goals:
— accept a new object
raised these goals:
- connect item (Promoter01) to the lesson
in this state

Fig. 1. Proactive Acquisition of Process Descriptions.

SUGGESTIONS

Click here to see the suggestions by goals

ACQUISITION STATE

Lesson

! would like te connmecl all items to the lesson
» Goal: | would like to connect (Method3 Methodd
Methodd) to the lesson

Do vou want to use any of (Method3 Method4

Methodd) in building the method to compute the
available force ratio of a military task? ¥&s|
other options

check the fgice ratio of a military task in a COA
« purpose of lesson
| can solve these:

— compute the reauired force ratio of Destroyd
is 1/3 because the task is done in a defensive
operation
| cannot solve these vet:

— check the force ratio of a military task
Btecause a submethod is missing

! would like to ensure that the missing melhods a
all crealed

Goal: | would like to know how to compute the
available force ratio of a military task (missing
method)

Do you want to define it?

yes ather options

— compute the available force ratio of a
mi |l itary task pecause there is no method to do it

« number of times tested: 2 _details

Knowledge ltems
¥ Methodl (check the force ratio of a military
task in a COA)

{ would like to ensure that the enuaeration of th
aethods is coaplieile

| learned
how to compute the combat power of a battalion
how to compute the combat power of a brigade
how to compute the combat power of a company.

Are there more? EI El unknown

o main method itself

« identical to no other items

o there were errors {(pissing-submethods found
during test)

o number of times tested: 2 _details

P Method? (compute the required force ratio of a
military task)

! would like to accept new meithods

Do vou want to define a new method? Y82

see details
This item is complete (number of times tested: 2)

HISTORY

« define method (Method? (compute the reauired
force ratio of a military task))
accomp | ished these goals:

— create missing submethod for Methodl
(check the force ratio of a military task in a
COA)
in this state
specifying queries to be used

— compute the required force ratio of
Destroyd: 1/3

— compute the available force ratio of
Destroy3d: 2.13

— check Destroy3 in BlueBrigadeCOA4-2-1:
accomp | ished these goals:

— get purpose of the lesson
in this state

0K

¥ Method3 (compute the combat power of a
battalion)

« natl connected to the fesson yet

« identical to no other items

o numher of times lested’ 0

» Method4 (compute the combat power of a brigade)
see details

» Methodd (compute the combat power of a company)
see details

Fig. 2. Proactive Acquisition of Problem Solving Knowledge.

We have designed and implemented

a system called SLICK! that embodies

these capabilities. Figures 1 and 2 show the interface of our system for two
different acquisition tools, the details shown will be explained throughout the
paper. The left-hand side of the figures show the current set of acquisition goals
that are active, and the strategies suggested to the user in order to pursue each
goal. The right-hand side of the figures show the state of the knowledge base

and the awareness annotations that the

system keeps in terms of what is known

and unknown and how much the knowledge has been tested. The lower part of
the figures show the goals accomplished and raised by every action of the user.

1 Skills for Learning to Interactively Capture Knowledge

SLICK is designed to be layered over the functionality of existing acquisition
tools, and uses its own windows (shown in the figures) to interact with the user.

The acquisition tool underlying Figure 1 [references omitted for blind review]
acquires process models in terms of their substeps and the objects involved, uses
graphical input, and allows users to test the process model by asking questions
and by running a simulation. The acquisition tool underlying Figure 2 [refer-
ences omitted for blind review] helps users specify problem solving knowledge
in terms of methods and submethods, uses a structured editor for input, and
allows users to pose both parameterized and instantiated problems for testing.
This shows that the underlying acquisition tools may be very different in terms
of the kinds of target knowledge they capture, the input modality offered to
the user, and the testing and error checking strategies used. SLICK makes some
general assumptions about the underlying acquisition tool. We consider a new
body of knowledge as a collection of knowledge items (e.g., actions and objects,
problem solving methods or rules, concepts in an ontology editor), each with
an associated set of azioms (e.g., subgoal relations, range constraints, subclass
relations) that embody the knowledge about that item?.

Users can always revert to the normal acquisition interface of the tool to enter
any new knowledge. Actions done by the user through the basic acquisition tool
are intercepted by our system. While the backend tool will update the backend
knowledge base and its own user interface, SLICK will update its own structures
and user interface.

The next sections describe in more detail our approach and its implementa-
tion.

4 Acquisition Goals

Figure 3 shows the general acquisition goals that we use. We found it useful to
group acquisition goals into six themes, each with a different emphasis on what
is being learned. Other goals can be incrementally added in the future.

These high level acquisition goals are mapped to more specific goals to ac-
commodate different acquisition tools and representations. For example, in some
cases the purpose of the lesson can be specified as a suite of types of test ques-
tions that the system should be able to answer correctly after the lesson. In other
cases it could be given as an exhaustive list of new terms to be defined during
the lesson. We will discuss this in more detail in the later sections.

5 Learning Awareness

We represent awareness with two kinds of annotations: annotations to the new
body of knowledge acquired and annotations to the interaction history.

A new body of knowledge based is associated with the lesson/purpose/topic
of the session(s) where it is acquired. We structure the new body of knowledge

2 Axioms are often used in this sense when counting the size of a knowledge base.

%- SET UP LESSON AND CHECK BACKGROUND:
- Get the overall topic and purpose of the lesson.
= Acquire any assumed prior knowledge before pursuing the lesson.
= ACCEPT AND RELATE NEW DEFINITIONS:
- Accept new definitions
- Ensure that new knowledge is specific as possible.

- Ask the user to be complete when enumerating items in terms of the
elements and in terms of the significance of the order given.

- Get all the information required when existing knowledge indicates it
must he provided.
- Make all new definitions istent with existing knowled

= Connect all new items with the topic of the lesson.
= TEST AND FIX:
- Test the new body of knowledge and generate tests for the aspects
that have not heen thoroughly tested.
= Fix problems that result from self-checks or from user's indications.

= Ensure user checks the reason for the answers, not just the answers
thermnsehses.

- Confirm new answers that change in light of new knowledge over what
the user had seen the answer to be earlier.
= FITWITH EXISTING KNOWLEDGE STRUCTURES:

- Establish identity of new objects by checking if existing objects appear
to be the same.

- Generalize definitions if analogous things exist and there could be
plausible generalizations.
= ACHIEVE PROFICIENCY:
- Acquire domain terms to describe new knowledge.
= Learn to reason/generate answers efficiently and with shorter
explanations.
= REACH CLOSURE:
= Ensure that the purposefopics of the lesson were covered and the test
fuestions appropriately answered.

Fig. 3. Acquisition Goals.

as knowledge items and corresponding axioms, as explained earlier. We record
this structure (axioms associated with items, items associated with lessons) and
extend it as the user goes through the session. This basic structure is annotated
with meta-level information about its status, where we aim to capture how much
is known about that lesson/item/axiom and how confident the system is about
it. Figure 4 shows the annotations that we use.

= For each lesson:
1 = purpose of the lesson: overall topic or suite of types of
questions
= background knowledge assumed
= sub-lessons
= items and associated axioms
= overall confidence (based on tests)
= For each item inthe lesson:
= confidence (based on tests over time)
= connection to the purpose of the lesson
= relations to other items
= possible generalizations given existing background k
= domain terminclogy details (use default lexical entry, new
lexical entries and their comtexts of use)
= inconsistent with (list items or axioms)
= completeness (item is complete/user has dismissed further
questiens)
= identity with respect to other items
= identity with respect to existing background knowledge
= analogies with existing background knowledge
= associated axioms
= For each axiom in an item:
= completeness
= generality
= required information {according to background knowledge)
= inconsistent with (list items or axioms)
= confidence (hased on tests over time)

Fig. 4. Awareness Annotations about Knowledge Acquired.

A novel feature here is the focus on keeping track of what is known, not just
on what is not known. Traditionally, the focus of acquisition tools has been on
errors and gaps in the knowledge base.

A knowledge base is never complete, so these annotations should ideally
become part of the knowledge base or at least in an accessible record of how a
body of knowledge was acquired by the system in certain sessions with certain
users.

The second kind of awareness annotations that we keep is to the interaction
history. They record what action the user took at each point in time (e.g., define
a concept as a subclass of another one, define a new role for that concept, test the

10

knowledge with a question), and what progress resulted from that action in terms
of the lesson at hand. The system notes the changes to the annotations of the
body of knowledge that resulted from the user’s action. In addition, the system
records what learning goals have been achieved and what learning goals become
active, as well as what strategies seem to make sense in order to achieve those
goals. These annotations of the interaction history allow the system to share
with the user its understanding of what it is learning as the lesson progresses.

6 Acquisition Strategies

Because acquisition strategies drive the interaction with the user, acquisition
interfaces need to strike a balance between exploring and covering all possible
strategies that users can follow and not overwhelming them with options that
they are unlikely to choose in the first place. This is a very challenging problem
and an area of future work, this section describes the approach we currently use.
Consider the situation where a knowledge item is unrelated to all others
within the same lesson. This would result in an awareness annotation on that
item and activate the acquisition goal of connecting the item. To achieve this
goal, the user could pursue all kinds of options, from connecting the item to an
existing item, connecting the item to a new item that would be later connected
to an existing item, undoing an existing connection and connecting the item to
that, etc. There are many such actions imaginable, each can be instantiated with
as many items and axioms exist in the current body of knowledge. Our system
currently represents all these choices with an abstraction, namely to connect that
item to something, where something has to be instantiated by the user with some
item in the knowledge base. Our strategies are single-step strategies, and always
correspond to commands that the user can execute through the interface. These
commands include to modify a knowledge item or axiom, to ask a question or
run a test, and to add a new item or axiom to the current body of knowledge.
The acquisition strategies can be prioritized and instantiated if there is some
heuristic or some existing knowledge that apply to the situation. Our system
attempts to be a good learner by making educated guesses when possible, and
by noting (and possibly exploiting) surprise if its guesses are wrong. If the sys-
tem can use some heuristics to determine that an instantiation of an acquisition
strategy is more likely than others (for example, by drawing an analogy with ex-
isting knowledge), then that more concrete strategy would be shown to the user.
Priority schemes for acquisition goals also help narrow down which strategies
the user may pursue next. As a heuristic, strategies that do not undo previous
user actions are considered more likely. Strategies that achieve more than one
acquisition goal are considered more likely. For example, a goal to fill in required
information of an item and a goal to connect a new item to the lesson can be
both solved if the two items are connected (assuming that the first item is al-
ready connected to the lesson). Also, we use the six categories of acquisition
goals (shown earlier) to order the active goals and present them to the user in
that sequence, where the more likely goals are shown at the top. This is because

11

those six categories reflect stages that users typically follow in an acquisition
dialogue, although users often jump from one to the other as they see fit.

7 Proactive Knowledge Capture in SLICK

To show the generality and useful functionality of our system, we present our
approach in the context of the two different acquisition interfaces (introduced in
Figures 1 and 2 above) with very different input modalities, target knowledge,
and testing strategies.

When the user issues a command, the awareness annotations are extended to
include its effects. Acquisition goals will be activated, together with the relevant
set of acquisition strategies that the user may pursue. Before presenting choices
to the user, the system applies heuristics to prioritize the currently active goals
and strategies. Our system contains general heuristics that are used by default,
but it can also invoke specific modules provided by the underlying acquisition
tool and knowledge base reasoners.

7.1 Acquiring Process Descriptions

Our first example uses SLICK with a tool that enables users to specify pro-
cess models in terms of their substeps and the objects involved. Users model
a substep as a type of action from the actions available in the knowledge base
(e.g., ‘Collide’, ‘Move’, etc), and specifies the objects that fill the required roles
for that action (e.g., ‘agent’, ‘object’, ‘location’, etc). This tool has undergone
extensive user evaluations with expert biologists [citations omitted for blind re-
view]. Figure 1 shows the interface of our system. This particular scenario shows
a process model for Bacterial Transcription that combines two different versions
built by one of the expert biologists, each contained a subset of the problems
that are discussed here and that went unnoticed by the user.

The right-hand side shows the status of the lesson and its knowledge items.
The purpose of the lesson is given in this tool as a set of test questions and the
overall effects expected after running a simulation of the process. The system
also shows the prior knowledge assumed with terms that the user searched in
the knowledge base, such as Bacterial-DNA, Enzyme, etc. The knowledge items
include actions as substeps (e.g., ‘Collide’) and objects that play a role in those
actions (e.g., ‘Promoter’). Inspecting these knowledge items, the user can check
their status. ‘Promoter’ has not been connected to any substep of the process
model. The role ‘object’ of the ‘Recognize’ step has not been yet assigned.

The learning goals that are active given this state of the lesson are shown
in the left-hand side of the screen. For each active learning goal, SLICK shows
one suggested strategy (the top-rated one) to the user and offers to show others
if the user is interested. The user can ask to see only the learning goals (this
view is not shown here), and the system will then show both achieved goals (in
this case, for example, setting up the lesson and the background) and remaining
ones (in this case, several under the “finalizing new definitions” and “testing and

12

fixing” categories). Here, the goals are ordered according to their priority and
the likelihood of the user following the proposed strategy, but notice that the
user can examine or pursue any of them. The (heuristic) top level suggestion to
the user is to assign ‘Promoter’ as the ‘object’ of ‘Recognize’ since that would
accomplish two goals (connecting ‘Promoter’ to the lesson and assigning an
‘object’ to ‘Recognize’). Some learning goals point to the missing knowledge
that was noted in the state. Other learning goals relate individual knowledge
items: determining whether two items defined by the user and that have the
exact same descriptions are the same (‘Base-Pair01’ and ‘Base-Pair02’), asking
the user whether the list of substeps is complete, and ensuring that the parent of
‘Bacterial-Transcription’ is as specific as possible (its current parent, ‘Scenario’,
is the top-level process in the knowledge base). Finally, some learning goals
shown here are the result of testing and fixing errors through a simulation that
checks the conditions and effects of each step. In this example, ‘Make-Contact’
step has a condition to check if its ‘object’ and ‘base’ roles are already in contact
(because if they already are then it is unnecessary to perform the step).

The bottom of the figure shows how each user action accomplishes and/or
raises learning goals. For example, adding a ‘next-event’ link between ‘Recognize’
and ‘Make-Contact’ made the ‘Make-Contact’ step reachable (in simulating how
the steps are executed). The user can also ask to view previous states to further
analyze the evolution of the KB.

7.2 Acquiring Problem Solving Knowledge

Our second example shows how to use SLICK to guide users to acquire problem
solving knowledge. It is shown briefly for lack of space, but with enough detail to
illustrate the generality of our approach. The underlying acquisition tool allows
users to define individual problem solving methods, each with a method body
that can invoke other problem solving methods. The tool has been tested in
different domains with a wide range of users, and is shown here with a knowledge
base to critique military courses of action that an Army officer was extending.
Figure 2 shows the interface of our system. The right-hand side shows the
state of the lesson and the knowledge items. The purpose of the lesson is given
as a collection of parameterized problems (to check the force ratio of a military
task, to compute required force ratio) and instantiated problems (to compute
the required force ratio of Destroy3). Each method is a knowledge item, and is
connected to the lesson if it is used to solve a subproblem of one of the problems
specified as purposes of the lesson. The learning goals reflect these problems as
SLICK tries to help the user decide how to proceed. Unachievable subproblems
suggest problem solving methods that remain to be defined by the user. As was
the case with the previous system, when a strategy achieves multiple goals it is
presented at the top as the most likely one for the user to pursue. Since several
methods are not connected to the purpose of the lesson (i.e., not used to check
or compute force ratios), and since there is a method still undefined that should
achieve one of the subproblems (to compute available force ratio), the system

13

proposes that one of the unconnected methods should be the new method (or
part of it).

8 Conclusions and Future Work

We have presented a new approach for interactive knowledge capture that can
be used to extend existing tools with acquisition goals, learning strategies, and
awareness annotations over the current state of the knowledge base in terms of
its completeness and competence. Our system presents users with useful infor-
mation regarding the progress made throughout the dialogue, current status of
the new body of knowledge, goals that remain to be addressed, and suggested
strategies to accomplish those goals. Whether users follow the system’s suggested
strategies may not be the most important measure of its utility. We believe that
the information that the system is capturing about its current knowledge and its
progress during the acquisition dialogue gives the user a crucial tool for exter-
nalization, i.e., an external record of the teacher/student interaction that helps
the user visualize where the lesson is at, relieving users of a significant burden
during the acquisition process. The scenarios presented highlight problems in
actual knowledge bases that their creators had neither noticed nor fixed.

We will expose our system to users starting this month, in order to gather
feedback about what should be shown in the interface. We also plan to extend
the work on dialogue plans for acquisition tasks, and incorporate a plan recogni-
tion module that relates user commands with multi-step plans. Finally, we would
like to incorporate in our system other useful principles of student/teacher in-
teractions. For example, tracking the history to limit the subnesting of lessons
and to detect thrashing (defining something, then changing it to fix a problem,
then changing it back and getting the problem again).

References

1. Allen, J.; Byron, D.; Dzikovska, M.; Ferguson, G.; Galescu, L.; and Stent, A. 2001.
Towards conversational human-computer interaction. AI Magazine.

2. Ausubel, D. 1968. Educational psychology: A cognitive approach. New York: Holt,
Rinehart and Winston.

3. Blythe, J.; Kim, J.; Ramachandran, S.; and Gil, Y. 2001. An integrated environment
for knowledge acquisition. In Proceedings of the IUI-2001.

4. Brown, J. S., and Burton, R. R. 1978. Diagnostic models for procedural bugs in
basic mathematical skills. Cognitive Science 2:155-191.

5. Clark, P.; Thompson, J.; Barker, K.; Porter, B.; Chaudhri, V.; Rodriguez, A.;
Thomere, J.; Mishra, S.; Gil, Y.; Hayes, P.; and Reichherzer, T. 2001. Knowledge
entry as the graphical assembly of components. In Proceedings of K-CAP-2001.

6. Collins, A., and Stevens, A. L. 1982. Goals and strategies of inquiry teachers.
Advances in Instructional Psychology 2:65-119.

7. Core, M. G.; Moore, J. D.; and Zinn, C. 2000. Supporting constructive learning
with a feedback planner. In Proceedings of the AAAI Fall Symposium on Building
Dialogue Systems for Tutorial Applications.

14

8. Eriksson, H.; Shahar, Y.; Tu, S. W.; Puerta, A. R.; and Musen, M. 1995. Task
modeling with reusable problem-solving methods. Artificial Intelligence 79:293-326.

9. Forbus, K., and Feltovich, P., eds. 2001. Smart Machines in Education. AAAI
press.

10. Fox, B. 1993. The Human Tutorial Dialog Project. Lawrence Erlbaum.

11. Horvitz, E. 1999. Principles of mixed-initiative user interfaces. In Proceedings of
CHI-99.

12. McGuinness, D. L.; Fikes, R.; Rice, J.; and Wilde, S. 2000. An environment for
merging and testing large ontologie. In Proceedings of KR-2000.

13. Ram, A., and Leake, D., eds. 1995. Goal-Driven Learning. MIT press.

14. Rose, C. P.; Jordan, P.; Ringenberg, M.; Siler, S.; VanLehn, K.; and Weinstein,
A. 2001. Interactive conceptual tutoring in Atlas-Andes. In Proceedings of Al in
Education.

15. Sleeman, D. H. 1984. Inferring student models for intelligent computer-aided
instruction. In Michalski, R. S.; Carbonell, J. G.; and Mitchell, T. M., eds., Machine
Learning: An Artificial Intelligence Approach. Springer. 483-510.

16. Tecuci, G.; Boicu, M.; K, K. W.; Lee, S.; Marcu, D.; and Bowman, M. 1999. An
integrated shell and methodology for rapid development of knowledge-based agents.
In Proceedings of AAAI-99.

17. VanLehn, K.; Freedman, R.; Pamela, J.; Murray, C.; Osan, R.; Ringenberg, M.;
Rose, C.; Schulze, K.; Shelby, R.; Treacy, D.; Weinstein, A.; and Wintersgill, M. 2000.
Fading and deepening: The next steps for Andes and other model-tracing tutors. In
Proceedings of ITS-2000.

18. Woolf, B., and Allen, J. 2000. Spoken language tutorial dialogue. In Proceedings of
the AAAI Fall Symposium on Building Dialogue Systems for Tutorial Applications.
19. Woolf, B. P., and McDonald, D. D. 1984. Building a computer tutor: Design issues.

IEEE Computer 17(9):61-73.

