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Executive Summary 
 
Environmental cyberobservatory (ECO) planning and implementation has been ongoing for more 
than a decade now, and several major efforts have recently come online or will soon.  Some 
investigators in the relevant research communities will use ECO data, traditionally by developing 
their own client-side services to acquire data and then manually create custom tools to integrate and 
analyze it.  However, a significant portion of the aquatic ecosystem science community will need 
more custom services to manage locally collected data. The latter group represents enormous 
intellectual capacity when one envisions thousands of ecosystems scientists supplementing ECO 
baseline data by sharing their own locally intensive observational efforts.   

The Workshop for Aquatic Ecosystem Sustainability (WAES) convened in June 2011 and focused on 
the needs of aquatic ecosystem research on inland waters and oceans. A key observation is that 
integrative and holistic research results are needed to address the sustainability of these 
interconnected life-supporting ecosystems.  Only in this manner can we gain an adequate 
understanding of the impact of changing environmental conditions due to climatic variation and 
ongoing or future human activities in adjacent watershed on the biodiversity and ecosystem functions 
offered by aquatic ecosystems.   

Challenges 

Workshop participants agreed that the sustainability of these ecosystems depends on the ability of the 
research community to: 1) readily access data with local records that is collected and owned by 
individual scientists and that have bearing in global phenomena, 2) easily integrate local scientist data 
with existing data catalogs made available by cyberobservatories, government institutions, and non-
governmental organizations, and 3) efficiently process data and model phenomena in a repeatable and 
understandable manner. 

Workshop participants agreed to several observations about the challenges faced by the community: 

• Challenges and technology requirements are common across many research areas in 
environmental sciences.   

• There are many datasets collected and owned by individual scientists in a variety of areas in 
environmental and ecosystems sciences that are extremely valuable and yet are not shared.   

• Scientists collect datasets separately and maintain them locally, investing enormous amounts of 
time organizing and preparing data that,  while slightly altered in format,  are  similar in nature.   

• The difficulty of finding scientists’ local datasets is so great that many opportunities for regional 
and global synthesis are in danger of being lost.   

• Many environmental scientists are unaware of relevant advances in computer science, particularly 
in rapidly changing areas that are not traditionally connected with environmental sciences.   

• Workflows have been defined in several communities and are used for explicit process sharing 
with a number of benefits.   

• Environmental science would benefit for many reasons from faster turnaround from sensor to 
analysis.  

• The continuity of provenance and other metadata improve the usefulness of the data to individual 
scientists and enable the reuse of the transformed data by other scientists. 

• Remote sensing is positioned to have an immediate impact in environmental sciences if its use 
were better supported by infrastructure.  

• Facilitating the creation of shared data formats and metadata properties would be very beneficial. 
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Recommendations 

Workshop participants advocated new approaches to support scientists in the analysis, integration, 
and modeling of data based on:  

• A new breed of software tools in which semantic provenance is automatically created and 
used by the system,  

• The use of open standards based on RDF and Linked Data Principles to facilitate sharing of 
data and provenance annotations,  

• The use of workflows to represent explicitly all data preparation, integration, and processing 
steps  in a way that is automatically repeatable.   

The key recommendations from the workshop participants are: 

• Data sharing approaches that reduce publication cost and provide immediate benefits to the 
scientist are important in order to rescue abundant and likely insightful data in environmental and 
ecosystems science that will otherwise be lost.   

• Workflow systems that manage and automate data processing steps are crucial to enable efficient 
processing of the volumes of data required to address regional, continental, and global-scale 
environmental and ecosystems science questions.  

• More efficient processing of environmental and ecosystems science data would improve data 
collection by enabling rapid adjustment of sampling and sensor configurations.   

• Pervasive provenance recording would improve reuse and productivity by facilitating the flow of 
data and processes across research groups and disciplines.  

• Workflow sharing can drive and facilitate collaborative science projects that represent higher-
impact science efforts.  

• Data and software repositories should exhibit an economy of scale where individual efforts save 
effort to others.  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1 Introduction 
 
The transformation within the ecological community from broadly distributed independent 
investigators to a more team approach to science [Olson et al 2008], coupled with the recent and rapid 
emergence of ecological sensor networks [Porter et al. 2009], demands more standardized and 
organized ways of coupling information management with the research process. As a field science, 
ecology traditionally associates a data set with a PIs laboratory or even with the individual scientist in 
many cases. This is in contrast with physics, astronomy, and climate modeling, for example, where 
there are major group projects resulting in large shared data sets collected in concert [Graham et al 
2008]. 

There are hundreds of field stations within the US alone 
(Organization of Biological Field Stations) and 
thousands of field scientists (Ecological Society of 
America). Yet, field programs in ecology typically do 
not have the resources or technology to develop their 
own information management systems and make them 
compatible with major national initiatives.  Often data 
are sequestered or even lost after a focused research 
project is completed, wasting valuable information 
regarding long term ecologic or hydrologic trends.  
There is a need to enable a new kind of participatory 
science that leverages efforts from the individual 
laboratory toward achieving a common long-term goal 
at the national or even global scale. However, enabling 
that participation is a major challenge, due in part to the many and varied types of data that are 
collected, how they are annotated (metadata), organized (ontology), and stored, and how disparate 
data sets are brought together in a common analytical framework.  Overcoming these challenges are 
becoming increasingly difficult every year, as the advancement in sensor and network technology 
outpaces the information management systems and the scientists capable of handling the data streams.  

Environmental cyberinfrastructure and cyberobservatory (ECO) efforts have been ongoing for more 
than a decade [OOI 2005; Keller 2008]. ECO developments by the Ocean Observatory Initiative [OOI 
2010], and by the ecological [Keller 2008; Hanson 2008] and hydrologic science communities 
[WATERS 2009; CZO 2010] are evidence that the current suite of sensing technologies is adequate to 
launch these observatories. Realizing the full potential of recently established observational networks 
created to allow large spatiotemporal-scale ecological inquiry will require highly effective 
transmission of complex data to scientific communities. Fortunately, many such institutions have 
recognized the value of partnering with computer scientists to aid in facilitating data access, 
coordination, and quality. For example, the National Ecological Observatory Network (NEON) will 
collect, store and serve 30 years of open-access biological, chemical, geophysical and atmospheric 
data using standardized methods throughout North America to allow ecological forecasting at the 
continental scale [Keller et al. 2009, NEON 2009]. Data products from NEON aquatic ecosystems 
will include >200 base-level (i.e. NO3 loads, discharge and algal chlorophyll concentrations) and 
approximately 15 high-level (such as benthic macroinvertebrate diversity and nitrogen flux) 
parameters collected in 36 streams, lakes and rivers [Keller 2010, Keller et al. 2010]. The aquatic site 
network is designed to allow continental-scale ecological forecasting and provide comprehensive site-
specific data that may complement and enhance local agency- or principle investigator-led research. 
All NEON data will be made publicly available through an open-access web interface [Beasley 2010] 
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to be developed by an in-house cyber infrastructure team. The data discovery and acquisition system 
design will attempt to avoid the problems of past initiatives: data-seekers will be able to use search or 
filter functions to obtain data subsets, choose among several data output formats, and metadata 
standards (including information on provenance) will meet or exceed those employed by federal 
agencies. The cyber infrastructure system will use dataset provisioning standards, such as EML [EML 
2011], NetCDF [NetCDF 2011], and output formats in attempt to maximize data compatibility with 
research efforts independent of NEON. 

That massive new data streams are coming online is not in question.  Environmental COs coming 
online are multi-scale sensor systems, including (1) stationary in situ sensor networks or webs 
monitoring continuously in time and deployed at various spatial scales, (2) mobile sensors (e.g., 
installed on autonomous underwater vehicles, AUVs) periodically mapping spatially distributed 
properties between stations, (3) aircraft- or satellite-based remote sensing products, and, more 
recently, (4) participatory (human-assisted) data acquired using microcomputers such as smart phones 
or PDAs.  And even outside the auspices of these major observatory efforts, many individual 
investigators are actively employing one or more of these technologies to support their personal 
research portfolio.  In both cases, increasingly large data volumes are accumulating, enabling 
investigators to focus more on science questions and less on separating key observations from 
variable environmental conditions. 

However, as CO data continues to come online, an overarching question in many minds concerns 
whether or not the relevant scientific communities are in a position to rapidly deliver the intended 
scientific return of these large-scale investments.  

The workshop on Workflows for Aquatic Ecosystems Sustainability (WAES 2011) convened an 
interdisciplinary group to examine the following question: 

How do the relevant research communities guarantee the meaningful data input, 
mining, analysis and synthesis by individual scientists (i.e., members of the “long 
tail”) needed to ensure that rapid scientific and policy-related impacts stem from 
environmental observatories?  

The premise for this question is that while concentrated community intellectual resources are being 
expended on ECO research and development, there remains a major resource of relatively untapped 
scientific bandwidth from researchers operating on individual or small group bases. That is, the 
benefits of ECO to the scientific community follows what is known as a long tail distribution 
[Anderson 2004]: relatively few benefit tremendously, but a very large community of scientists 
benefits very little if at all.  Conversely, this long tail of scientists are in possession of troves of 
precious environmental data that they collect locally and that are not integrated into ECO 
infrastructure or very often not shared with the scientific community.  For them, the cost of 
participating in ECO efforts is prohibitive, while the benefits are unclear and definitely not 
immediate. WAES workshop participants discussed the need to tap this resource, both in terms of 
integrating long tail data with the ECO data and enticing long tail scientists to incorporate ECO data 
into their investigation.  

The WAES workshop participants examined the key bottlenecks and challenges to engage a greater 
portion of the scientific communities in the use of ECO, ancillary, and legacy data streams to study 
aquatic ecosystems.  Specific outcomes from this WAES workshop stemmed from the consensus that 
a large portion of individual scientists are in dire need of help in terms of adding and leveraging off of 
ECO capabilities.  Even as scientists grow increasingly comfortable with today’s technology, they 
typically carry out many manual steps of the process of configuring instruments to collect data, 
cleaning and archiving the data, and configuring, and calibrating and executing the models needed to 
synthesize the complex information, enabling them to test their hypotheses.  These individual 
scientists also need help finding additional existing data (including legacy data and newer data 
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streams from the COs) that could support their research, implying a great need for sound and 
accessible metadata and provenance practices from the perspective of the CO data and the ancillary 
data flowing from the long tail scientists.   

To address these challenges, new approaches are needed that complement existing ECO investments 
and extend them with infrastructure to support scientist-centered processes that will help to accelerate 
progress and enable new discoveries in environmental sciences. 

This document begins proposing science questions in aquatic ecosystem research that require new 
infrastructure for scientist-centered processes, showing scenarios for rivers, lakes, and ocean systems.  
It then outlines the challenges involved in improving current practices for data sharing, data reuse, 
and data processing.  Recent technologies directly relevant to those challenges are discussed.  A 
synthesis of science needs and their correspondence to technology requirements is laid out as a 
research agenda for a vision of what new science would be enabled by broadening participation of the 
long tail of scientists. 

2 Motivating Scenarios 
 

Aquatic ecosystem research spans throughout communities that focus on rivers, lakes, coastal areas, 
or oceans.  The scientific challenges faced expose significant common underlying threads. 

2.1 Rivers 

The synergistic growth of science and technology has made it possible for researchers to think about 
large-scale spatio-temporal processes which require a strategy that combines holistic and reductionist 
approaches for a positive advancement [Newman et al. 2006]. Among the major challenges within 
river systems are: (1) Integrating processes among scales such as climate change and flow regime 
within a watershed; (2) Understanding and predicting the response of species to the changing 
environmental conditions and the determination of thresholds that could trigger physiological or 
behavioral changes [Woodward et al. 2010]; and (3) Monitoring, modeling and predicting the 
transport and fate of contaminants across the 
different pathways within the watershed [Capel et 
al. 2008]. This comprehensive approach is critical 
not only for the advancement of science, but for 
the implementation of policies and regulations that 
respond to the particular necessities of the system.  

The common aspect of all these scientific 
questions is that their assessment requires the use 
and manipulation of a widespread variety of data 
sources.  Academic or governmental and non-
governmental institutional data obtained either 
through web services, other digital formats, or 
paper records including: field observations (e.g., 
river stage, fish surveys), derived parameters (e.g., 
rating curves), laboratory results (e.g., specific 
nutrient concentrations), river model inputs and 
outputs (e.g, discharge and stage forecasts). The heterogeneous nature of data sources hinders the 
ability of the scientists to focus on answering their particular research questions. Consider, for 
example, river discharge, a primary hydrologic variable and the dominant control variable in lotic 
ecosystems [Poff et al., 1997].  Discharge records abound in open-access data storehouses and 
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represent a wealth of research opportunities that could be greatly facilitated with improved data 
access systems. Fortunately, many governmental agencies maintain long-standing programs that 
collect high-resolution temporal discharge data, resulting in records that in some cases date back to 
the nineteenth century. Hydrologists have long assessed these data to detect important spatiotemporal 
patterns in snowmelt timing [Stewart et al. 2005] related to climate change, heterogeneity in flow 
regime structure among geoclimatic regions (e.g., [Poff et al. 2006]), and variability in how land use 
change impacts ecosystems [Utz et al. 2011]. In spite of the fact that these data are typically open-
access, and tools such as Web services are becoming available for accessing many relatively current 
data streams [Maidment 2008; USGS 2011], amalgamating records from multiple sites or at fine 
resolutions often proves challenging and prohibitively time-consuming.  

As the preceding example suggests, systems that streamline multisite data recovery and/or assimilate 
watershed data and metadata within and among agencies would greatly enhance efforts to assess 
patterns in flow regimes (and therefore dependent ecosystem processes and functions) at coarse 
spatial and temporal scales. In such cases, where the measured and derived parameters have already 
been standardized, we see a need for greater assistance to the scientist by automating common sets of 
procedures for data acquisition, data analysis, and ultimately synthesis of the resulting homogenized 
data streams.  

2.2 Lakes 

The study of lake ecosystems tends to be geographically limited, leading to a somewhat balkanized 
community of research.  GLEON is an international grassroots network of ecologists, physical 
limnologists, and information technology experts who have a common goal of building a scalable, 
persistent network of lake ecology observatories in order to improve understanding and management 

of lake ecosystems. The Global Lake 
Ecological Observatory Network 
(GLEON) provides several examples of 
how network science demands a highly 
organized approach to assembling data 
sets from around the world [Hanson 
2007]. Working groups within GLEON 
form around scientific themes, such as 
microbial ecology, lake physics and 
climate change, metabolism, and 
phytoplankton ecology. The kinds of 

scientific questions that emerge from working groups inevitably call for contributions of data sets 
from lake observatories (or individuals). For example, the question, “What controls ecosystem 
respiration in lakes?” spawned an effort to collect high-frequency sensor data from nearly 30 lake 
observatories.  The question, “What are the controls over phytoplankton assembly?” has led to the 
contribution of long-term phytoplankton data sets to the working group.  Both of these efforts have 
resulted in extremely valuable data sets that have spawned additional research questions and projects.  

However, the lag between formulating an important and answerable science question and realizing 
results imposes many logistical challenges, especially for organizations that operate virtually (i.e., the 
people and resources are broadly distributed), as GLEON often does.  In scientific collaborations 
there remains a fundamental bottleneck in transforming tractable ideas into scientific products. That 
bottleneck is accepting data contributions from disparate data sources and preparing those data for use 
in a common analytical framework. There are many steps involved, including: (a) agreeing on a 
controlled vocabulary and minimal metadata so that all can understand the contents of contributed 
data sets; (b) defining a set of acceptable structures for data sets so that software tools can load and 
parse data; (c) performing basic QA/QC on data to eliminate outliers and identify suspect values; (d) 
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fill gaps in data, depending on whether the size of the gap is incidental or of potential consequence for 
the analysis; (e) synchronize variable vectors in space or time so analysis software can consume the 
data; (f) visualize data. These steps make up a common process for data analysis and can be 
reasonably well defined in a general sense for lake aquatic ecosystems.  In spite of the commonality 
of this process, each research project tends to re-invent the steps in an ad hoc basis.  

2.3 Oceans 

Ocean ecosystem research involves gaining a better understanding of the transfer of matter and life in 
all areas of the ocean. Improved understanding will lead to better predictive capabilities for global-
scale processes, including climate change, and for local-scale events, such as toxic algae blooms and 
low-oxygen dead zones. Advances in robotics, sensor technology, and global satellite data 
communications over the last few decades permit orders of magnitude more in situ observations than 
were previously possible with traditional ship-going techniques. Achieving maximal use of these new 
observations presents a challenge for the collection of data systems (and people) that are tasked with 
managing these important archives. Though the oceanographic community has recognized this issue 
[OceanObs 2009] and has a blueprint for employing data standards (e.g., NOAA IOOS [IOOS-
DMAC 2010; de La Beaujardiere 2008]), there remain significant challenges. 

The ocean science community continues to 
operate with technical personnel that can be 
euphemistically described as “pretty good at 
Matlabtm”. For the typical researcher this 
provides the shortest path from collecting the 
observations, processing and archiving the 
data, and analyzing the data for publication. 
Unfortunately, this operational paradigm 
results in scientific output that is unrepeatable 
and obtained from original data that is 
unavailable to the larger scientific community. 
By streamlining data analysis processes within 
the community we can promote a new 
paradigm where data are routinely connected 
from the particulars of the instrument deployment to the resultant scientific product. This includes: 1) 
Tooling for provenance capture within applications that scientists use; 2) Coupling of the metadata to 
the data stream from the collection phase through finished products, analogous to photo image Exif 
metadata; 3) Software and data engineering training for those who process data; 4) Publication 
policies that encourage publication of analysis processes and software, not just data. 

3 Challenges in Current Processes 
 

Participants discussed the challenges in processing environmental data through a variety of tools and 
modes, integrating individually collected data with data shared repositories, and publishing data to 
enable reuse by others. 

3.1 Using Data from Community Repositories 

Many community repositories are available to environmental scientists.  We mentioned NEON and 
OOI in Section 1.  There are also government run data sources, some at the local and regional levels. 
Non-governmental organizations also collect environmental data that is made publicly available.  In 
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addition, agencies such as NOAA and NASA play a major role in providing infrastructure for 
collecting and managing remote sensing data. 

Shared scientific data repositories have long 
focused on the critical needs to capture data 
from upstream data producers (instruments, 
sensors and other scientific activities).  
However, what is becoming important in 
addressing the needs of the scientific 
community is turning these repositories into 
useful knowledge bases.   Many disciplines 
are constructing “pipelines” that provide 

processing and generation of scientific data sets that are ultimately housed in these data repositories. 
Within Earth Science remote sensing, for example, pipelines that produce data higher order data 
products (calibrated, gridded, etc) are generally included as part of the ground system in when new 
observing satellites are launched.  Downstream, however, many scientists are pulling data form these 
repositories, reprocessing and reformatting data, and then including them in their experiments.  This 
may include fusing data from multiple sources, observations and platforms.  This begs the question of 
whether improvements in this process can be achieved to drive more dynamic scientific discovery 
capabilities from online data repositories. 

While many of these pipelines are now traditionally constructed for each instrument or mission, there 
is an increasing interest in performing analysis across data sets that may span different instruments or 
missions, even disciplines.  This type of data integration and intercomparison is not bound to just 
observational data sets.  Within the climate research community, effort is underway to prepare 
observational data so that it can be compared against climate models.  However, within climate as 
with other disciplines, data is captured within institutions, systems and structures using different 
standards and measurements that make such analysis difficult due to the heterogeneity.  The 
overarching need is to ensure these repositories have services that provide scientists the ability to 
directly integrate them to enable more dynamic analysis. 

The movement towards building services around data repositories is critical to enabling more 
interdisciplinary science and improving the dynamic discovery capabilities.   Traditionally, scientists 
have developed their own client-side analysis environments, pulling down data from each repository.  
As part of the process, significant work is performed to reformat and transform the data to enable it to 
be combined and/or compared against data from other repositories.   As a result, these processes are 
tightly coupled on the client-side and do little to dynamically integrate remote repositories. Rather 
than following the path of integrating scientific workflows into client-side scientific applications 
developed by each investigators, the emphasis should be on developing services that support query, 
discovery, subsetting, reformatting, regriding and other basic analytics that allows for generating 
workflows that combine and process data from distributed sources.  This is a shift in the paradigm 
which puts more emphasis on getting the data into repositories to begin the data processing functions 
as part of the science investigation vs. setting up rigid pipelines.  This shift also allows for 
construction of new computational services that can be provided and allow for growth in capabilities 
over time. 

In addition to having appropriate services, another key need in generating scientific data for these 
repositories, is capturing both the raw and processed data along with high quality metadata to 
annotate it.  A particularly critical piece of that metadata is the provenance information.  This 
includes capturing the detailed steps and being able to repeat these steps are critical to ensuring that 
scientific results can be validated and it is essential that any processed data capture the provenance 
information as part of its core metadata.  This includes information about the origin, versioning, 
processing history, decisions made that impacted generation of the data, etc.   In addition, having 
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consistent, reliable metadata is important to support effective search, retrieval and fusion of these 
data. All too often, data repositories used their own internal discipline information models that 
annotate the data, but do little to support federation of data across multiple repositories since their 
underlying data models differ.   

In summary, many scientific communities are now recognizing the importance of developing both the 
scientific software services and the necessary information models that are needed to build higher 
quality repositories and to better annotate the data sets that are captured.  However, significant work 
is still required to deal with the heterogeneity and to develop the infrastructure that allows for data 
across these repositories to be brought together and disseminated in more dynamic ways.  

3.2 Processing Data Across Tools 
 
With the collaboration across disciplines within environmental sciences, the need for standardizing 
data has become apparent in order to facilitate data sharing among different tools. Data includes 
temporal and spatial data as well as their associated meta-data and database structures used for data 
storage and retrieval.  

Today, the raw data collected from sensors is processed through several tools before it becomes 
usable. A first tool, the sensor, is the raw data collection layer (Some sensors require more 
processing, but if the data can be described, it can be streamed. Otherwise, it needs to be described 
before streaming). That data is typically processed by another tool to describe and annotate it, as the 
translation layer in which the raw data is interpreted into something understandable (usable). Next, 
the data may be processed by a formatting tool, where described data is stored in a structured way to 
be saved and shared. Then, another tool for quality assurance/quality control (QA/QC) checks the 
data for completeness. At this point the data is considered ready for use.  Throughout this process, 
varying formats are used by different research groups. Manual processing is normally involved in 
each step as data is moved from tool to tool.  Key to streamlining the process, which would be very 
desirable, is to standardize the data. 

Important areas for standardization include format, dimensionality, and metadata.  Many formats exist 
for recording the same type of data, and is usually decided by the software used for processing or 
recording it, so no one format is always used. In most cases it may also be necessary to record the 
dimensionality of data; this includes the time and place data was taken – i.e., the metadata used to 
describe these attributes. This is useful for finding the right data, however, confusion arises when 
sharing data between different groups due to the varying formats and metadata structures during 
retrieval. Therefore, standardizing both the data format as well as the metadata are critical for sharing 
data among tools.  Metadata representing the provenance of the data would represent how the data 
was collected, pre-processed, or reformatted. 

Another important issue is data discovery and retrieval.  Data can be mined using web services such 
as ftp or OPeNDAP [Ornillon et al 2003]. OPeNDAP is used for scientific data networking and ideal 
for environmental data. Data can be easily stored, even in different formats, however, retrieval 
becomes an issue when a standard is not put in place. How should data be stored (locally, distributed, 
centralized)? 

Standardization remains a challenge.  Several factors need to be considered when choosing standard 
data formats and metadata structure, such as: Should we only use open source formats? Should we 
use text formats, which are easier to understand but slower to process?  Should we have one format 
for each data type, or choose a couple of widely accepted formats?  Should we base our format 
choices on most common software, such as ArcGIS?  What information is necessary in the meta-
data?    

In conclusion, data standardization allows for better data querying and less confusion in data usage. 



 14 

3.3 Publishing Data and Publishing Models 
 
Data generated by the individual scientist are often considered intellectual property and are not shared 
or published, which constitutes a tremendous loss for the scientific community. Incentives for the 

individual researcher are needed to overcome this 
cultural problem [Borgman et al 2012]. 

In addition to facilitating the process of data 
sharing by providing easy means of standardizing, 
annotating, and storing data, there should also be 
extra benefits that make sharing data not a duty 
but an investment for the individual scientist. 
Ideally, data sharing tools should provide the data 
in different standardized formats, automatically 
carry out standard data analysis, and produce 
simple plots. By employing standard tools the 
researcher can also be informed of similar data for 
comparison, and be advised of further analysis 
based on the type of data recognized. 

Data sharing would be facilitated by: 

1. Tools that allow for easy standardization, annotation, and sharing of data while providing 
extra benefits as an incentive, such as reducing the cost of doing data conversions, plots, and 
standard multi-step analyses. 

2. A convention/standard for associating metadata and provenance with data files similar to the 
Exif standard for image files and the NetCDF standard for geophysical data files [Rew et al 
2006] and the ISO 19115-2 Lineage section [ISO 2003]. 

3. Tools that establish provenance by automatically recording processes used for data 
calibration, cleaning, and analysis, as well as handling and storing them using those standards 

4. Provenance plug-ins for existing tools that are widely used in the scientific community (e.g. 
Excel, Matlab, Python, R, etc.) or a new generation of provenance-aware tools with similar 
analytic capabilities and uptake. 

5. A peer-review system for publishing data, which will be stored as citable units in a repository 
(possibly as a new category of “data articles” in a journal).  As the scientific community will 
start to value such “data publications” towards the performance of individual scientists, this 
will provide a tremendous incentive for data sharing. 

Software sharing is just as important as data sharing but seldom recognized as a desirable practice.  
While data products created with numerical simulations are generally treated similarly to measured 
data, the notion that numerical simulations or “models” themselves should be shared as well is only 
slowly starting to gain traction in the community. Model details, underlying assumptions and the 
associated scope of applicability are often either hidden behind proprietary or badly documented and 
unintelligible code.  This hampers keeping track of the provenance of data products generated with 
the models and therefore their interpretation and reuse.  It also renders publishing and disseminating 
the models themselves extremely difficult. This is especially problematic in the light of technology 
export to developing countries.  Any software and codes used to process data could be reused by 
others, and their publication should be encouraged and rewarded. 

Software sharing would be greatly facilitated by:  
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1. Tools and standards for the unambiguous, explicit, consistent, intelligible, and well 
documented and annotated (with underlying assumptions) definition and implementation of 
models (numerical simulations).  

2. Standards, central repositories and/or other ways for publishing, storing and disseminating 
those models (just like data): as a means of  conveying the provenance of model data 
products, and for providing a library of models that can be easily adapted for similar systems 
all around the world. 

3. Tools, services, and standards to allow for or facilitate the migration of organically grown, 
decades old, large pieces of valuable model code in outdated languages to the above 
described new structures. 

4. Tools that allow for a rigorous consistency check of all aspects of a numerical model that is to 
be shared by a large user base. 

4 Common Themes and Relevant Technologies: New 
Opportunities 

 

Workshop participants discussed the role of recent research in computer science in addressing the 
above challenges, including interactive data integration tools, workflow systems, open semantic 
metadata annotation, and provenance-aware systems. 

4.1 Data Cleaning and Normalization 

Ecologists spend significant time collecting data in the field, supplementing it with data in shared 
repositories and then preparing it to be useful for running computational models. Raw data from 
sensors needs to be cleaned to remove noise and spurious data points; sometimes sensor calibration 
drift necessitates systematic adjustment of the data.  Shared datasets often need to undergo cleaning 
too given that data may have not been properly cleaned before uploading, and also because 
downloading and extraction may introduce 
artifacts that need to be removed. Once 
datasets are cleaned, they may need to be 
normalized so that, for example, all data sets 
use the same units for the same measurements. 
After normalization, the data sets can be 
integrated to produce the data sets in the 
formats required in the modeling software. 

Interactive data editors such as Microsoft 
Excel and plain text editors are popular tools 
to perform the cleaning and normalization data 
preparation steps. These tools are popular 
because they are visual and easy to use. For 
example, Excel shows the data in a familiar 
table format, offers convenient tools to make 
both ad hoc and systematic changes to data, 
and users immediately see the effects of their modifications.  The main drawback of these interactive 
tools is not that the process is tedious and time-consuming, especially for large data sets. The main 
drawbacks are that the process is not repeatable and that no provenance information is left behind. 
Repeatability is important because many data sets are collected periodically, and the cleaning and 
normalization operations need to be performed again and again. Repeatability ensures the process is 
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performed identically in each period, and once systematized, it can be performed quickly. Data 
cleaning and normalization steps can introduce errors and biases. The interactive tools do not record 
provenance information during these operations, so it is difficult to trace data sets back to the original 
raw sources.  Finally, without insight into these processes it is hard for others to understand and reuse 
published data. 

One alternative to these interactive data editors are 
scripting tools such as R, Perl and Python. The 
advantage of these tools is that once developed, 
the scripts can be efficiently applied to large data 
sets and to new versions of data sets collected 
periodically. The drawback of these tools is that 
they require programming expertise to use 
effectively. Many users who face data preparation 
tasks are not trained in programming and are 
unable to use these scripting tools. 

A new breed of tools such as Google Refine 
[Google Refine 2011], Data Wrangler [Kandel et 

al 2011], and Karma [Tuchinda et al 2011] aim to provide the ease of use benefits of the interactive 
data editors and the repeatability, efficiency and provenance support of scripting tools. The idea is to 
provide a visual interface where users build their script one small step at a time, and where the effects 
of each small step are immediately visible, like in a spreadsheet. Google Refine provides a metaphor 
similar to entering formulas in Excel, using a specialized language for building the script elements. 
Data Wrangler and Karma go one step further and enable users to provide examples of data 
transformations from which these tools infer general procedures. These tools enable users to chain 
multiple transformations, and produce scripts that can be stored and reused. For example, the user 
could demonstrate how the first entry in a column of should be normalized. The system creates a 
generalized procedure to normalize dates, and applies it to the rest of the entries in the column. If the 
effects are not what the user wants, he or she can provide another example, and the system can use all 
the examples provided to infer an appropriate procedure. Data preparation steps can be supported 
using this by-example metaphor, resulting in tools that is both easy to use like MS Excel, but offer the 
power, repeatability and provenance benefits of scripts. 

4.2 Workflows 

Scientific workflows can be developed to automate data flow and analysis and manage metadata and 
provenance, thereby helping scientists to accelerate through these time- and human resource-intensive 
aspects of the scientific process.  Sophisticated examples of workflows have existed in the ocean 
sciences community for some time (e.g., [Howe et al. 2008; Ramp et al. 2009] and have begun to 
emerge in support of ecological and hydrologic sensor network efforts [Barseghian et al. 2010; 
GLEON CDI 2011, Horsburgh et al. 2011], in some cases automating data analysis processes through 
scientific workflow systems [Gil et al 2011a].   

Scientific workflow systems are becoming an enabler of complex scientific analyses (Taylor et al 
2007). They provide a representation of complex analyses composed of heterogeneous models 
designed by several scientists. At the same time, workflows have also become a useful representation 
that is used to manage the execution of large-scale computations.  This representation not only 
facilitates overall creation and management of the computations but also builds a foundation upon 
which results can be validated and shared. Since workflows formally describe the sequence of 
computational and data management tasks, it is easy to trace back how particular data were derived 
(i.e., the provenance). Workflows have also become a tool capable of bringing sophisticated analysis 
to a broad range of users, enhancing scientific collaboration and education.   
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In order for facilitate workflow creation, scientists need to be allowed to formulate the workflows in a 
way that is meaningful to them using high-level abstractions that specify the overall structure of the 
analysis and the data to be operated on (via a visual or textual representation) in a resource-
independent way. This abstract workflow is important because it uniquely identifies the analysis to be 
conducted at the application level without 
including operational details of the execution 
environment. The workflow can thus be published 
along with the results to describe how a particular 
data product was obtained.  Some workflow 
systems such as Wings [Gil et al 2011b] allow the 
user to specify the workflow at a high-level of 
abstraction, relying on semantic technologies to 
represent domain concepts and constraints and to 
reason about them to validate, elaborate, and 
suggest workflows. 

In order to support the abstract workflow 
specifications, which let scientists concentrate on the science rather than on the operational aspects of 
the cyberinfrastructure, mapping technologies are needed to automatically interpret and map the user-
defined workflows onto the available resources. This is an approach analogous to traditional 
computer programming methods, where high-level languages are used to describe the computation 
without needing to specify the use of specific registers or memory locations. In this analogy, the 
“workflow mapping engine” is a compiler that translates between the high-level specifications and the 
underlying execution system and optimizing the executables based on the target architecture. The 
mapping includes finding the appropriate software and computational resources where the execution 
can take place as well as finding copies of the data indicated in the workflow instance. The mapping 
process can also involve workflow restructuring geared towards optimizing the overall workflow 
performance as well as workflow transformation geared towards data management and provenance 
information generation.  In some cases, the mapping is part of the workflow design process and is 
conducted by the user (e.g., Kepler [Ludäscher et al 2006] and Taverna [Oinn et al 2006]). In other 
cases, the mapping onto resources is done automatically (e.g., Pegasus [Deelman et al 2005]).   

The result of the mapping process is an executable workflow, which can be executed by a workflow 
engine that follows the dependencies defined in the workflow and executes the activities defined in 
the workflow nodes. For example DAGMan [Couvares et al 2007], the workflow engine behind 
Pegasus, relies on the resources (compute, storage and network) defined in the workflow to perform 
the necessary actions. As part of the execution, the data is generated along with its associated 
metadata and any provenance information that is collected.  

The separation of concerns between workflow creation, workflow mapping, and workflow execution 
allows for the design software in a modular way and to optimize the components based on their 
functionality.  

Workflows can be very complex, encompassing millions of computational tasks, or simple 
computational pipelines with just a couple elements (for example data reformatting and visualization).  
In either case, the ability to capture metadata and provenance information for these workflows is 
critical in being able to find and interpret their results. 

4.3 Metadata and Open Data Publication on the Web 

Although the benefits of metadata are well recognized, the management of metadata in day-to-day 
science is far from ideal.  First, many important metadata are buried in notebooks, emails, 
documentation files, or even worse not recorded in any form.  When metadata is recorded, it is often 
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done manually when a dataset is deposited in a repository.  Data repository managers define a 
comprehensive metadata record form that contributors must fill out painstakingly, often with limited 
understanding of its benefits and use.  One of the disincentives to recording metadata is that when 
data is retrieved from those repositories to be further analyzed, the new data products must be 
annotated manually again.   

Most metadata recorded voluntarily and informally typically contains the author and the timestamp.  
Other metadata is known to a scientist implicitly, for example by knowing who collected the data they 
would know the location where it was collected. 

Other types of metadata would also be necessary.  Of particular interest is semantic metadata that 
describes the types and properties of data.  For example, whether a dataset is temperature and where it 
is Celsius or Fahrenheit.  Semantic metadata is tremendously facilitated by the RDF web standard.  

RDF is already being adopted by some 
environmental research infrastructure.  In 
RDF, knowledge is structured in the form of 
object-property-value triples that can be 
aggregated to answer structured queries.  The 
properties are expressed in terms of an 
ontology, which can be either a community-
developed one or one developed by the 
individual scientist.  There are many tools for 
ontology mapping and integration, which 
facilitate the integration of data. 

Traditionally, this kind of metadata has been 
imposed by the developers of the shared 
repositories.  That is, a comprehensive 

metadata schema is created, and data publishers are required to provide all the fields, which may be 
irrelevant to their data, cryptic, or tedious. 

Recently, the RDF standard together with a few simple publication principles have given rise to a new 
data publication movement on the Web. The idea of Linked Data was proposed by Web inventor Tim 
Berners-Lee as a complement to the current web that links documents.  He proposed key principles 
for publishing open data on the web (http://www.w3.org/DesignIssues/LinkedData.html), so that data 
is published as openly accessible web objects, using RDF standards, and linking to other data. RDF 
links enable navigation from a data item within one data source to related data items within other 
sources using a browser.  RDF links can also be followed by the crawlers of Semantic Web search 
engines, which may provide sophisticated search and query capabilities over crawled data.   

This has resulted in a data commons that contains more than 200 datasets with 25B of interrelated 
facts contributed voluntarily by diverse communities [Bizer et al 2009].  There are standard web tools 
to find data, to reason about their metadata properties, and to query them based on the ontologies 
stated within.  Its contents include BBC programming, New York Times subject headings, CNET 
product data, publications, friend-of-a-friend networks, the PubMed bibliography and many more. 
Many of these datasets have relevance to the ecological research community.  As an example, the 
website LinkedGeoData published a Linked Data version of the OpenStreetMap dataset adding 
around 2 billion triples. It also contains DBpedia [Auer et al 07], an automatically extracted dataset of 
facts from Wikipedia’s infoboxes and that contains 769,000 triples. In May 2010, following the 
presidential directive on Open Government, the US government portal Data.gov made around 400 of 
its datasets available as Linked Data, summing up to 6.4 billion triples (The UK government has 
embarked in a similar effort). Many biomedical datasets are also available, including the Protein Data 
Bank and the These datasets are interlinked with one another.  For example, the Thomson Reuters 
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Web service that automatically generates semantic metadata for content (Calais) now supports Linked 
Data for all identified entities and links to DBpedia, Geonames, and other data assets in the cloud. 
The web of Linked Data continues to grow not just in size but also in breadth and coverage.   

The Linked Data paradigm presents new opportunities for data sharing and publication in science 
through open web publication and semantic metadata annotation.  Any scientist could publish a 
dataset as a web resource, and create metadata in RDF, using their own terms and ontologies (of 
course reusing community ontologies when appropriate and worth the trouble).  Emerging metadata 
representations could arise from this new open publication framework. 

4.4 Provenance‐Aware Tools 

Provenance metadata is particularly crucial, as it refers to the record of all steps and processes that 
were applied to some initial data in order to obtain a result.  Provenance metadata could be captured 
automatically by software, but most tools that scientists use do not capture provenance.   

Provenance is most useful to those who are not intimately familiar with a dataset and therefore do not 
know implicitly what its provenance is.  Unless provenance is represented uniformly across tools, it 
would be impossible to understand it and query it by third parties.  One key challenge is that 
provenance is understood in very different ways across many areas of computer science, library 
sciences, and other disciplines.  As a result, very diverse views and emerging standards for 
provenance have been proposed with varying degrees of adoption.  Best known from library sciences 
are the Dublin Core Metadata [DC 2011] and the Premis Vocabulary [PREMIS 2008] by the Library 
of Congress, the former emphasizes source attribution and the latter version relationships.  The 
scientific workflow community has developed 
jointly the Open Provenance Model (OPM) 
[Moreau et al 2011], focused on processes.  Other 
provenance vocabularies have been developed in 
specific communities of practice.  

A new opportunity in this area is the results of a 
community effort organized under the auspices of 
W3C, which collected use cases for provenance 
across different communities, surveyed the state of 
the art, analyzed immediate needs for 
standardization, and proposed 17 terms as the core 
of a new standardization effort [W3C Provenance 
2010].  Since April 2011, a W3C Working Group 
is pursuing this standard effort [W3C Provenance 
2011], and within a few months there will be 
common mechanisms to represent provenance.  This will create new opportunities, as this standard 
will enable exporting, querying, and integrating provenance records across different tools.   

An emerging provenance standard would foster the development of provenance-aware systems that: 
1) create provenance information as they process data, and 2) preserve and propagate provenance that 
comes to them from other systems.   

Provenance-aware systems could have a tremendous impact in facilitating the automatic creation of 
provenance metadata for scientists, enhancing the discovery, reusability, interpretation, and 
understanding of datasets of interest. 
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5 Observations and Insights 
 

Some of the observations and identified challenges that emerged from the workshop discussions are 
new and seem to have unique prominence in environmental sciences research.  Although some others 
may not be new, we include them here to highlight the importance of finding new approaches and 
new solutions. 

5.1 Community Needs 

Workshop participants agreed to several observations about the needs in the community: 

• Scientists in environmental sciences have varying degrees of resources, many of them have 
very limited resources (e.g., one person shops) and yet by being very focused on a locality they 
develop a treasure trove of data and insight on a particular data point of overall ecosystems.  The 
cost of sharing these datasets makes it impractical for them to publish the data in ECO 
repositories.  This is a unique feature of environmental sciences that must be recognized, and 
appropriate opportunities for these scientists to participate in overall community efforts must be 
facilitated. 

• Many environmental scientists are unaware of relevant advances in computer science that 
would be very appropriate for their needs, because it is hard to have visibility into rapidly 
changing areas of computer science that are not traditionally connected with environmental 
sciences.  This includes research in data and information management systems, intelligent 
assistance, and collaborative problem solving infrastructure. 

• Challenges and technology requirements are shared across research areas in environmental 
sciences.  There are not many forums for the community to come together and articulate and 
share their needs.  When a forum such as this workshop is facilitated, the commonalities are 
palpable. 

• There are many datasets collected and owned by individual scientists in a variety of areas in 
environmental sciences that are extremely valuable and yet are not shared.  Given the 
investment to date in large cyberinfrastructure efforts, there is a question of the cost that these 
scientists would have to export their data given their limited resources and practical lack of 
incentives.  Reducing the cost of publishing datasets would open the doors to a torrent of data that 
is invaluable for environmental science research but is currently bottled up. 

• Scientists collect datasets separately, and invest enormous amounts of time organizing and 
preparing data that have in practice slightly altered formats and are quite similar in nature.  
Spreadsheets are widely used because the user interface is very accessible and they are present in 
virtually every personal computer, but are far from ideal for the tasks that scientists face.  Better 
frameworks for these data preparation and integration activities are needed. 

• The difficulty of finding datasets is so high that many opportunities are lost, even though 
there are many datasets that do exist out there that would benefit researchers.  Reusing data 
is also hard, in many cases the metadata is not useful and does not help in interpreting and 
integrating a dataset. 

• Workflows have been defined in several communities and are used for explicit process 
sharing with a number of benefits.  Scientists find they facilitate the organization of community 
efforts, since they make explicit what work needs to be done and how everyone’s contributions fit 
in the context of the overall workflows.  Finding ways to manage these workflows in more 
automated and assisted ways through workflow systems would be very beneficial in streamlining 
collaborative efforts in the community. 

• Environmental science would benefit for many reasons from faster turnaround from sensor 
to analysis.  It is easy to collect large volumes of data in a field campaign, but analysis can take 
many weeks.  These problems often amount to creative data wrangling. Data wrangling may 
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transform data into a form that a particular scientist can use; however, even after the effort to 
transform the data, other scientists cannot leverage that work.  Often, metadata is lost in the 
transformation.   

• The continuity of provenance and other metadata would not only improve the usefulness of 
the data to the initial scientist, but also add value in enabling the reuse of the transformed data by 
other scientists. 

• Remote sensing is positioned to have an immediate impact in environmental sciences if its 
use were better supported by infrastructure.  It is often hard to locate, interpret, and integrate 
with local datasets. 

• Facilitating the creation of shared data formats and metadata properties would be very 
beneficial.  There is a clear cost of community investment and potential lack of agreements and 
delays in making progress.  However, scientist face many data integration and interpretation tasks 
that would be greatly facilitated from shared representations.  Approaches to facilitate these social 
processes would be very beneficial. 

5.2 Perceived Technology Needs 

Individual scientists often spend too much time solving IT issues that can dramatically cut in to the 
amount time they have for exploratory science and discovery. Scientists spend inordinate amounts of 
time on maintenance and development of ad hoc codes, gathering and preparing data, understanding 
the data (units, error characteristics, spatial/temporal characteristics, uncertainty), developing 
knowledge of multiple data formats and metadata standards, utilizing models, and running analysis 
codes many times over, often tweaking code on a case-by-case basis. This process can be inefficient 
and time consuming, can exponentially increase the time it takes to go from hypothesis to publication, 
is not conducive to maintaining provenance, does not support reuse of code, and can inhibit 
reproducibility of results.  

Cyberinfrastructure is seen as a major part of the solution to the above problem, but scientists are 
typically viewed as consumers of it and often lack the resources and have little motivation to use 
shared data and tools. In an ideal world, scientists should be active participants and contributors to 
cyberinfrastructure and cyberobservatories to ensure that the broader environmental research 
community utilizes data gathered from individual measurements and in situ sensors. However, the 
reward/merit system for scientists is directly related to their publication record, usually within a 
narrow range of domain specific publications that do not provide an avenue to reward scientist 
participation in ECO projects. 

Several important technology needs were identified: 

• Scientific workflows have the potential to improve the exploratory scientific process by 
providing a framework to organize and formalize standard methods for preparing data and 
performing analysis. Through the use of workflows, metadata can be automatically generated 
and processing steps recorded ensuring provenance and providing the potential to breakdown data 
silos, preventing loss and underutilization of existing data. A scientific workflow framework can 
be used to break up existing processing steps in a way that supports modularity of codes (“plug 
and play”) allowing scientists to utilize different processing steps and components as needed, it 
encourages re-use of analysis (“solve once”) and data, and can help to ensure reproducibility of 
results. 

• Metadata and provenance capture should be done automatically as much as possible, 
because in practice the manual collection of metadata is not a practical approach.  There are 
many benefits to having metadata describing how data is collected (e.g., location, sensor 
characteristics), processes followed (e.g., normalization or cleaning steps), and other general 
properties of datasets.  The benefits are clear, but scientists often face costly manual processes 
filling out lengthy forms that are hard to understand and that have unclear value added to them.  
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Metadata and provenance should be captured in every tool used in scientific data analysis 
processes. 

• Data repositories could be improved to push data to scientists, facilitating finding and reuse 
of datasets.  Although many repositories are available, they are organized for people to search, 
find, and use the data themselves manually.  Better mechanisms for finding and reusing data in a 
way that is better supported by tools would be very beneficial.   

• Sharing and reuse of software for carrying out data analysis and simulations needs to be 
better encouraged and supported with infrastructure.  There are many models and tools that 
could be reused by different groups, and that could be used as steps to assemble workflows that 
do more comprehensive tasks.  Similar issues to the sharing of data are applicable here: how to 
find, understand, reuse, integrate software from other scientists.  While data repositories and data 
reuse have received significant attention in the past, the reuse and sharing of software has not. 

There is a clear theme concerning the need to support individual scientists in a more 
comprehensive and integrated way to carry out every task of the scientific analysis process: 
finding data, interpreting it, integrating it, processing it, and publishing it.  Many of these tasks 
remain manual, expensive, and not easily repeatable.   

Process-centered, comprehensive environments that support the flow of data and processes 
could pave the way to addressing bigger continental-scale interdisciplinary questions by 
facilitating data sharing across research groups and disciplines and removing the time 
consuming process of managing data analyses by hand. This would enable distributed team 
science through its capacity to formalize methods, track provenance and metadata, and enable sharing 
of data and processing codes. 

5.3 Collaboration Challenges 

Experience tells us that there are many benefits but also many challenges in multi-disciplinary 
research involving computer science (CS) researchers with environmental sciences and other 
disciplines.  

Publication outside of computer science venues is not counted for the purposes of career 
advancement.  Multi-disciplinary collaborations often result in significant software development or 
system building focus with little basic innovations and therefore are not easily published in traditional 
computer science venues.   

The difficulty of forming academic partnerships between computer science and other scientific 
disciplines can be circumvented by allowing students to earn credit by working or going into the field 
with the scientist to support data management activities.  If the work is being done at a laboratory 
rather than at a university, interns or post-docs are ideal candidates for this sort of work.  By pairing 
cyberifrastructure savvy computer science students with ecologists, data acquisition and 
transformation systems can be quickly developed.  With those systems as a basis, computer science 
researchers can then be involved in extending them in ways that require novel research.   

The timescales of the research of environmental scientists and computers scientists are often at odds.  
Computer scientists work at a faster pace, from problem to solution to publication in 6 months to a 
year.  Environmental scientists invest a lot of time in collecting data, and then in analyzing it, 
producing publications in the 2-year out timeframe.  This often makes the collaborations loose 
momentum or be hard to synchronize to be productive in the two different disciplines. 

Some suggestions for moving forward include building capacity for the future, encouraging inter-
disciplinary projects, and development of a community of practice.   



 23 

1. Building capacity today for the future: Encourage/foster collaborations at the university 
level, for example with courses and credits that pair CS students w/science students 
interesting problems. It is important to get CS students into the field. 

2. Encouraging inter-disciplinary projects: Inter-disciplinary (CS and environmental science) 
projects are key for moving forward and garnering community support. Identify opportunities 
for inter-disciplinary projects (need to identify “early adopter” scientists).  Rewards need to 
be in place for cross-disciplinary research. 

3. Development of communities of practice: Create a community of interest to connect those 
who are interested in adopting new technologies with those who are taking it upon 
themselves to become experts in their usage. The intention is to start a conversation about 
how these technologies can support research scientists in a more expeditious manner. The 
community of interest, could provide a mechanism for articulating uses of these technologies 
and help to identify collaborators, develop partnerships, and identify funding opportunities. 

6 Vision: Enabling New Aquatic Ecosystem Science 
Workshop participants discussed forward-looking scenarios for aquatic ecosystem research.  We 
present here a vision for ecosystem science and for new cyberinfrastructure. 

6.1 Enabling New Aquatic Ecosystem Science: Nitrogen and Carbon Dynamics 

As a working example, we pose a visionary scenario for an aquatic ecosystem science question 
sufficient in both scale and complexity to require acquisition, analysis and synthesis of a broad 
spectrum of legacy and modern CO data.  The science question is typically posed as a hypothesis that, 
for complex environmental systems, is often summarized as a conceptual model that encapsulates the 
underlying processes.  The workflows for addressing this science question involve automating the 
parameterization, calibration, and testing of this model-encapsulated hypothesis.  In this example, the 
workflow was directed at investigating current nitrogen and carbon dynamics in an estuarine 
ecosystem together with the associated management-relevant quantity of the estuarine filter function, 
i.e., the amount of carbon and nitrogen that is exported to the atmosphere within the estuary (akin to 
the carbon and nitrogen buffering capacity of the estuary).  This workflow might also be framed so as 
to automate testing of a specific hypothesis related to nitrogen and carbon dynamics, for example: 
Hypothesis:  Estuarine algal blooms are controlled by the hydrograph and water quality of the river 
(which are coupled to land use in the watershed).   The resulting overall workflow sketched by the 
workshop group is summarized in Figure 1. 

For the sake of brevity, we do not consider here details regarding the granularity of coverage, such as 
the number and spacing of instrumented stations.  Instead we focused on the types of data expected.  
A first step toward solving the task at hand would be to obtain and collect previous knowledge and 
specific data from the system in question.  In a multi-scale sensing context, this would include:   

(1) Historical/Legacy Data.  These include data defining the geometry (or other inputs) of 
the estuary and river channel, including geomorphological data such as bathymetry and 
sediment types, water quality data derived from past sampling approaches and other 
information which will help to inform the design of the observational network.  Remote 
sensing or related geospatial products, such as the National Land Cover Database (NLCD) 
may also be useful (e.g., relating land use changes to estuarine processes).  Much of this data 
is available in the scientific literature or government reports and websites.   An obvious issue 
with many of the historical data sets is that they are usually measured on an irregular basis 
(e.g., NLCD is available for 1992, 2001 and 2006). Digitizing, standardizing and updating 
these heterogeneous datasets requires substantial effort.  When it is done once, the results 
should be easily shared. 
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     Figure 1: A sketch for a workflow for nitrogen and carbon dynamics in an estuary ecosystem. 

 
(2) Traditionally Sampled Data.  These data include water grab samples analyzed for 

parameters such as trace nutrients, metals, organic microbial species and enumeration.  
Again, digitizing, standardizing, updating, and integrating these data requires substantial 
effort. 

(3) Stationary In-Situ Sensor Data.  These data are from instrumented buoys or river 
gauging stations equipped with sensors monitoring local water conditions (temperature, 
salinity, dissolved oxygen, and sometimes other parameters, such as pH, nitrate, total 
suspended solids (TSS), dissolved organic matter (DOM), chlorophyll-a, and point velocity 
(ADV) or velocity profiles (ADP).  Often these stations also monitor meteorological 
conditions (air temperature, precipitation, relative humidity, solar radiation, wind speed and 
direction).  Similar data from nearby agency-maintained stations may be available.  River and 
estuary gauging stations are also typically equipped with depth sensors which can be used to 
monitor tide changes or from which river discharge is estimated based on a periodically 
updated rating curve.    These data are typically available as times series for a fixed location 
(the ADP data being an exception).  Much of this data will be available online from 
government administered databases, and some of it streaming continuously.  Obtaining and 
cleaning all necessary data, as well as incorporating them in a standardized format is still a 
largely manual, cumbersome process and represents a major bottleneck for the scientist. 

(4) Mobile In-Situ Sensor Data.  These sensors are similar to those mentioned above but 
they are conveyed by human-piloted ships or AUVs over planned or adaptively managed 



 25 

courses to provide a three-dimensional trace of the water conditions in the estuary.  
(5) Remote Sensing (Aerial/Satellite and Land-Based) Data:  Satellite products from 

LandSat or MODIS are available are regular time intervals and are useful for defining land 
use and boundaries on a relatively coarse spatial scale.  MODIS can also be used to determine 
ocean surface temperature and color related to suspended solids (TSS) and phytoplankton 
(chlorophyll).  Aircraft-based sensors such as AVIRIS can be used to provide hyperspectral 
reflectance imagery at higher spatial resolutions, but significantly less frequently as a 
satellite, as these sensors are typically operated as shared systems.  Aircraft-based LIDAR 
(including green LIDAR) is also becoming increasingly available and might be useful in the 
estuary scenario to delineate the micro-topography of the intertidal zones and perhaps the 
bathymetry of shallow portions of the estuary.  Ground-based systems in this category 
include coastal radar (CODAR) stations which provide real-time ocean surface velocity 
fields, and possibly distributed temperature sensing (DTS) systems if delineating dynamic 
and spatially distributed phenomena like groundwater discharges into the estuary or intertidal 
boundaries.  In general, this category of data includes large spatial data sets, such as images, 
radiometric spectra, and vector fields (e.g., CODAR surface velocities).  Some of these data 
products are relatively standardized (e.g., satellite products) while others requires significant 
effort including pre-processing (geo-referencing, radiometric correction) and post-processing 
(e.g., alteration detection, segmentation, classification). 

Using the above data, domain scientists can formulate and test their hypothesis by implementing 
appropriate numerical simulations of the estuary.  Simulations generate synthetic data describing the 
continuum of physical and biogeochemical properties and processes occurring in the estuary.  Other 
synthetic data may be created using simpler statistical models, for example, to resample or interpolate 
between points in time series or synoptic data sets. With data acquired, cleaned, standardized, and 
used to develop the conceptual model of the estuary, the hypothesis can be quantitatively tested.  
Model parameters as well as model structures are iteratively refined until the model output data 
sufficiently matches measured monitoring data, meaning the hypothesis represented by the model is 

accepted to represent reality within an 
acceptable level of confidence or uncertainty.  
At this point the result of the scientific task at 
hand can be extracted, e.g., either in form of a 
confirmed or falsified hypothesis or in the form 
of ecosystem management relevant integrated 
data products. For the presented example, these 
results could be, e.g., estimates for the system-
wide carbon and nitrogen cycling as well as the 
efficiency of the estuarine filter function. 
Furthermore the uncertainties associated with 
these estimates can also be determined. 

Modeled synthetic data, however, may also be 
treated as an additional data source in the above 
list and can be employed to complete additional 
scientific tasks. With model data, challenges 
center around capturing and managing the 

metadata needed to create these models, including their boundary conditions and spatiotemporally 
distributed parameters, and the provenance of the simulations, which range from preliminary tests, to 
calibration/assimilation, to hypothesis-testing or forecasting. 

For assessing ecosystem metabolism and element cycling, the core process of 1) implementation of a 
hypothesis of ecosystem functioning via building a numerical model from known building blocks 
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based on domain expertise, and 2) iterative testing and refinement of the hypothesis by comparison of 
model output to measured, is the same for virtually any aquatic ecosystem.  Furthermore, not only are 
similar types of data used, but also the toolbox of building blocks used to construct a numerical 
simulation is virtually the same for many different systems. Hence, what is needed is a commonality 
of building blocks for “plugging in” new observational components, including new types of 
measurements and expansion of existing measurements in time and/or space. 

The whole aquatic biogeochemical modeling community would greatly benefit from a facilitation of 
workflow composed of tools that 1) provide high quality, standardized input data for numerical 
simulations, and 2) allow for the modular construction of numerical simulations via the selection of 
pre-coded building blocks, yet retain enough plasticity that new building blocks can be easily defined 
and added.  In the context of the estuary hypothesis described above, it is likely that both a larger 
number and broader array of scientists (beyond the modeling community) would contribute to the 
developing and interpreting the resulting observations if sophisticated workflows consistently 
directed the hypothesis testing.   Clearly, more eyes (and perspectives) on the testing and outcomes 
would result in a more rapid understanding of the system and therefore how to best manage resources 
connected to the system.   

In a broader scientific context, the impact of scientific workflows of the type envisioned here is 
difficult to assess, but likely to be transformative.  These workflows will provide high quality, 
standardized data, integrated from heterogeneous observational perspectives as input for complex and 
flexibly structured environmental simulations.  Many in the community use informal sketches of 
workflows already to describe these processes.  We have caught glimpses of how transformative the 
automation of such workflows may be when we view short-term weather reports.  However, the 
biogeochemical processes at stake are much more complex than the weather, which draws largely 
from physical processes.  With this in mind, it may be better to think of these workflows together 
with the data and metadata they transform as virtual multi-scale sensors, analogous to the first 
microscope.  Few realized at the time of its discovery that the microscope would open an entirely new 
field of science. Just as few can now predict the impact of the “long tail” of science collaboratively 
engaged in cyberobservatory enabled inquiries. 

6.2 Enabling Technologies: Envisioning a “Data Librarian” 

We describe here a novel concept of a “Data Librarian” that illustrates a range of novel technologies 
that could be useful to the long tail of scientists.  This system would interact with an individual 
scientist, and is more proactive that existing systems in providing assistance to publish, share, reuse, 
and analyze datasets.  By doing so, the system is giving added value to the scientist in terms of an 
immediate reward that helps their work.  The new capabilities are inspired by recent developments in 
machine learning and semantic technologies, and point to the possibility that a new generation of data 
management systems can be developed.  We focus here on two key aspects of a Data Librarian: 1) the 
ability to assist in the creation of metadata, 2) the ability to proactively suggest to the scientist items 
of interest to process the data.  The former would lower the cost of metadata creation significantly, 
the latter would provide immediate benefits to the scientist for any investment they make in metadata 
creation. 

When a scientist has a dataset and uploads it to a Data Librarian, the system would automatically 
propose semantic descriptions of the data and suggests adding them as metadata.  For example, the 
system would detect, for example, that a dataset looked like weather station data, and automatically 
identify some of the columns as temperature and humidity.  This kind of capability could be 
developed based on machine learning techniques developed in recent years [Carman and Knoblock 
2006; Dereszynski and Dietterich 2011].  The basic idea is that if the system has seen data of a certain 
type before, and has been told what type it is, it could use that information to automatically build 
recognizers to assign that type to new data.   
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A Data Librarian would help with quality control by detecting values that are out of range and 
suggesting common fixes.  For example, a temperature reading may be impossible, a Data Librarian 
would flag is to the user.  The user could fix it by entering the average value of the prior and 
subsequent readings, and indicate that this fix should be used to handle other incorrect values.  A Data 
Librarian would automatically generalize the fix and apply to other values out of range.  It would also 
add the fix to a library of common quality control techniques that it can offer other users as they clean 
their datasets. 

A Data Librarian would also automatically assign 
metadata to future datasets that the scientist 
uploads based on context and history of prior 
uploads by the scientist.  For example, suppose a 
scientist uploads a daily dataset and creates 
metadata specifying the sensor and the site.  The 
system would assume the same sensor and site for 
future data uploads.  If a scientist uploads several 
datasets and adds metadata indicating that they 
have been normalized, the system could simply 
confirm with the user that future datasets were 
prepared in the same way and automatically add 
that metadata as well.  A Data Librarian would 
apply all the quality control processes that the user 
has preferred in the past. 

When a scientist takes the trouble to specify 
metadata about a dataset, the Data Librarian could suggest to the scientist relevant workflows that 
could be used to process their data.  For example, a scientist uploading sensor data about water 
quality could be presented with workflows that the system knows about for doing metabolism 
calculations, and offer to run them automatically.  This would give the scientist an immediate benefit 
for her effort in creating metadata: just by specifying the type of data that they have the system can 
help them run interesting analyses. 

Throughout these processes, a Data Librarian would keep detailed provenance records of all the 
processes applied to the original data.  Any manipulations of the data would be instrumented to allow 
the collection of these provenance records.  This provenance would then be available so the system 
can retrieve it and suggest it for reuse and so other scientists can interpret the data.  A Data Librarian 
would export data to other systems together with its corresponding metadata and provenance. 

A Data Librarian would also use metadata to find other relevant data that would supplement the 
scientist’s original dataset.  For example, suppose a scientist uploads a dataset and describes it as 
water quality data collected from a specific station in a river.  The Data Librarian would show them 
the workflow for calculating water metabolism together with a complementary dataset that it has 
access to in an ECO site has riverbed characteristics and that is needed to run the workflow in 
conjunction with the scientist’s dataset.  The Data Librarian might also suggest datasets from other 
users that contain similar sensor measurements and are in geographical proximity to the dataset 
uploaded by the scientist.  For example, the system would show datasets from nearby locations in the 
same river, and suggest workflows with flow models that exploit data from several stations. 

To facilitate stewardship of data and software, different instances and even different implementations 
of the Data Librarian software could be set up for different spheres of expertise and scope in the 
ecological research community.  Data Librarians could communicate with one another to be aware of 
other community datasets, metadata and ontologies, and models and workflows. 
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7 Conclusions 
 

This report discussed significant challenges in environmental sciences for the long tail of scientists 
that currently draw limited or no benefits from ECO investments.  These include the effort required to 
find relevant ECO data, the difficulties in integrating their data with ECO data, and the cost of 
carrying out data analysis processes mostly manually.  The report also proposed technologies to 
address some of these challenges through automation and assistance for semantic metadata 
annotations, workflow management, provenance recording, and semantic web publication 
technologies.  The report also discussed observations and insights contributed by workshop 
participants on the community and technology needs, and the challenges for meshing those needs in a 
practical context.  The report outlined a vision for future environmental science research practices, 
showing an example scenario for nitrogen and carbon dynamics and proposing a “Data Librarian” to 
illustrate the technical vision that would support the science scenario.   

The key recommendations from the workshop participants are: 

• Data sharing approaches that reduce publication cost and provide immediate benefits to 
the scientist are important in order to rescue a lot of data in environmental science that 
will otherwise be lost.  Vast amounts of data are confined to the local file system of 
investigators that collect and curate readings often over many years.  These datasets are not 
shared because of the cost involved in their publication.  The development of systems that 
automatically add metadata through learning technologies would lower that cost significantly.  
In addition, new technologies can be developed to give scientists immediate rewards for their 
data publication efforts, by offering to do common quality control and data analysis processes 
on their data. 

• Workflow systems that manage and automate data processing steps are crucial to 
enable efficient processing of the volumes of data required to address continental-scale 
global-scale environmental science questions.  A lot of effort by scientists is misplaced on 
developing scripts, installing software packages, writing data cleaning and reformatting 
codes, and managing the overall orchestration of these individual steps.  Instead, these 
processes should be shared in community repositories of workflows and software 
components, much like there are community repositories of data. In addition, creating and 
executing these processes could be managed through workflow systems, saving scientists 
time and recording automatically valuable provenance information.  

• More efficient processing of environmental data would improve data collection by 
enabling rapid adjustment of sampling and sensor configurations.  If data analysis 
processes are carried out in the order of days rather than months, then the scientists could 
adjust sensors in time to collect improved information about particular phenomena detected 
with their analyses. 

• Pervasive provenance recording would improve reuse and productivity by facilitating 
the flow of data and processes across research groups and disciplines. Provenance 
records provide a context for any dataset that enables its reuse, as they describe how the data 
was collected, analyzed, and published. This can have a profound effect on facilitating the 
sharing of data across scientific disciplines. 

• Workflow sharing can drive and facilitate collaborative science projects that represent 
higher-impact science efforts.  Workflows express how datasets contributed by different 
groups are processed at different stages of an analysis.  Workflow also express what steps are 
included in the process and clarify which groups are responsible for steps.  Workflows 
effectively represent temporal dependencies that can help collaborative science projects.  
They also make explicit the role of the contributions by every participant.   
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• Data and software repositories should exhibit an economy of scale where individual 
efforts save effort to others.  The investments of individual scientists should be leveraged so 
that others do not have to repeat work or incur costs that could be saved through reuse.   

Although the backgrounds of the participants and the proposed discussion topics focused on aquatic 
ecosystems, the findings and recommendations of the workshop have broader applicability to 
ecological sciences and to science practices in all disciplines. 
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