
Semantic Software Metadata for	
Workflow Exploration and Evolution

Lucas A. M. C. Carvalho
Institute of Computing
University of Campinas

Campinas, SP, Brazil	
lucas.carvalho@ic.unicamp.br	

Daniel Garijo
Information Sciences Institute

University of Southern California	
Marina del Rey, CA, USA	

dgarijo@isi.edu

Claudia Bauzer Medeiros
Institute of Computing
University of Campinas	

Campinas, SP, Brazil	
cmbm@ic.unicamp.br	

Yolanda Gil
Information Sciences Institute

University of Southern California	
Marina del Rey, CA, USA	

gil@isi.edu	

Abstract —	 Scientific workflow management systems play a

major role in the design, execution and documentation of
computational experiments. However, they have limited support
for managing workflow evolution and exploration because they
lack rich metadata for the software that implements workflow
components. Such metadata could be used to support scientists in
exploring local adjustments to a workflow, replacing components
with similar software, or upgrading components upon release of
newer software versions. To address this challenge, we propose
OntoSoft-VFF (Ontology for Software Version, Function and
Functionality), a software metadata repository designed to
capture information about software and workflow components
that is important for managing workflow exploration and
evolution. Our approach uses a novel ontology to describe the
functionality and evolution through time of any software used to
create workflow components. OntoSoft-VFF is implemented as an
online catalog that stores semantic metadata for software to enable
workflow exploration through understanding of software
functionality and evolution. The catalog also supports comparison
and semantic search of software metadata. We showcase
OntoSoft-VFF using machine learning workflow examples. We
validate our approach by testing that a workflow system could
compare differences in software metadata, explain software
updates and describe the general functionality of workflow steps.

Keywords—scientific workflows; software metadata; software
functions; software registries; workflow evolution.

I. INTRODUCTION
Workflow management systems [1] play a major role in

supporting scientists to design, document and execute their
computational experiments. During workflow design, scientists
use third party software or their own code to implement
workflow components. This paper investigates the issues that

arise when such software evolves in terms of how a scientist’s
workflow is affected.

There are many reasons for scientists to modify a workflow
that they created, either by changing specific steps of the
workflow (also called workflow components) or changing the
workflow structure. Changes in software used to implement
components are common and could happen for different
reasons, e.g., a newer version is available, older software is not
maintained. Also, data sources change, e.g. when datasets are
updated with new formats, which may require adjustments in
existing components and adding new ones. Thus, due to
changes in software and data, workflows must be updated
accordingly to avoid workflow decay [2] and reproducibility
issues [13]. Another important reason to update workflows is
when scientists are exploring alternative ways of performing a
computational experiment. During these exploratory tasks,
scientists often want to compare methods or try different
approaches to implement a workflow component.

In current workflow systems, scientists manage these
updates manually. However, updating a workflow is a complex
and time-consuming task, as it requires tracking down
information about the different versions of software and
functions used in the components of the workflow and
understanding the impact in other workflow steps.

In previous work [4], we elicited a set of requirements for
supporting the exploration and update of workflows motivated
by hydrology workflows and their use of models with very
different versions over the years. These requirements motivate
the need for capturing additional metadata for better describing
software used in workflows, such as software functionality and
implementation changes over time. This paper revisits those
requirements and makes them more specific through a detailed
scenario in which a decades-old machine learning software is
used in a workflow for weather prediction. Those requirements
guided the design and implementation of OntoSoft-VFF, a

Proceedings of the 14th IEEE International Conference on
eScience, Amsterdam, The Netherlands, October 2018.

semantic software metadata catalog to help scientists to manage
workflow evolution and updates. OntoSoft-VFF is based on a
novel ontology for representing software metadata. Our goal is
to use the information in OntoSoft-VFF to support scientists in
selecting appropriate pieces of software to implement a given
workflow component, to explore the use of alternative software
in their workflow, and to keep track of all workflow changes.
OntoSoft-VFF's catalog extends OntoSoft [5], an existing
metadata catalog designed for fostering scientific software
reuse and sharing.

The main contributions of this paper are the following:
• Through a scenario in which a scientist updates a

computational experiment, we revisit requirements for
software metadata to describe software that
implements workflow components.

• A software metadata catalog developed for those
requirements. The catalog is based on a novel ontology
designed to describe software functionality and its
evolution. The catalog supports comparing and
searching semantic metadata for software.

To illustrate our work, we use a running example of
machine learning workflows, since it is a domain with many
alternative methods available where software changes
frequently. This example is used to present the elements of our
ontology and the features available in the catalog. We show
how to create and update workflow components using the
semantic metadata stored in our catalog, and the benefits of
integrating the metadata catalog with a workflow system to
support scientists in their exploratory tasks. Finally, we
validated our approach showing how it addresses our
requirements. OntoSoft-VFF has been designed to be generic
and can be applied to any scientific domain.

Throughout this paper we adopt the following terminology:
• Software is a set of functions that perform similar or

related computations and are delivered as a package by
developers. An example of software is Weka [7], a
decades-old open source Java software with a widely
used collection of machine learning algorithms for data
mining tasks. A more modern and also popular
software is the Scikit-learn Python libraries [17].

• Software version is a unique state of a software as it is
being released. For example, the latest Weka release is
version 3.9.2.

• Functionality is a conceptual computation or operation
that can be performed by a piece of software. For
example, Weka implements classification, regression,
and clustering functionalities.

• Software function is the implementation of a
functionality in a software. An example is the Weka J48
function that implements a classification functionality
using the C4.5 decision tree algorithm [18].

• Software change is a relevant modification associated
with a software function over time. An example of a
change is the improvement of accuracy in the result of
a J48 classifier function.

A new software version may imply software changes as well
as modified, new, or deprecated functionalities or functions.

The rest of the paper is organized as follows. Section II
introduces related research on workflow updates and software
representation. Section III describes the main scenario we are
addressing, expanding the requirements derived from previous
work. Section IV introduces OntoSoft-VFF. Section V shows
how we exploit the data published in the catalog to facilitate
workflow exploration and evolution. In Section VI we validate
our framework against the requirements in Section III. Finally,
we present our conclusions and future work in Section VII.

II. RELATED WORK
Our discussion of related work covers two areas:

approaches for workflow exploration and updates, and
approaches for software representations and software changes.

Workflow systems [1, 14, 15, 16] are mostly concerned with
workflow construction, execution and provenance collection
and inspection. Vistrails [3, 16] uses a software registry that
stores the software name and version identification to support
workflow upgrades. However, this registry does not track
changes in terms of functions and functionality, nor store
information about semantics of inputs and outputs, such as data
types and data formats. Such kinds of metadata are necessary to
support more robust approaches to update a workflow with
components for data transformation and other upgrades.

In [12], the authors proposed a framework for management
of knowledge associated with workflow evolution. The
framework, however, does not track changes in the software
used to implement the workflow components, thus missing the
opportunity to relate the effects of changes in software to the
outputs of workflow components.

Understanding how results have been produced requires
knowledge of the software being used. Work such as [6,8,11]
proposes mechanisms to represent software; however, they lack
metadata for describing changes in software, and how to use
specific software functionalities. Their representations define
inputs and outputs for the software in general, rather than
defining the inputs and outputs for a function. OntoSoft [6] is a
software registry that is concerned with representation, sharing
and reuse of software metadata. The software representation
used does not capture information about software functions and
software changes over time.

Regarding software updates, software version management
systems [11] track changes in software code. However, changes
represented in these systems do not provide enough information
to allow a scientist to filter them by software function, for
example, and track down the changes through time associated
with a specific function or functionality. Also, it is hard for a
scientist to track the issues and bug fixes related to a specific
function in a software version, because version control systems
do not explicit represent the functions available in the versioned
software.

The most common shortcoming of these approaches is the
lack of appropriate metadata to account for and appropriately
track software evolution, thereby placing a major burden to
scientists in managing workflow evolution. Even when
metadata exists, it is not designed to support workflow
exploration and updates.

III. MOTIVATING SCENARIO – REVISITING REQUIREMENTS FOR
WORKFLOW EXPLORATION AND UPDATES

In this section we show how scientists explore new
functionalities of software, so they can upgrade workflow
components using these new functionalities. In order to achieve
this goal, scientists usually go through a series of tasks that are
performed manually and without any support. They start by
identifying the function and software used in a workflow
component, and understanding the algorithms that they
implement. Scientists also need to find and compare similar
software versions and functions. Finally, when deciding either
which workflow component to upgrade or which software
function to use to implement a new component, scientists need
to be able to create or upgrade components and to change the
rest of the workflow as needed.

To illustrate the needs for supporting the management of
workflow exploration and evolution, we use an example of a
workflow designed to process weather data to make weather
predictions. We chose this scenario for several reasons. First, it
is a simple domain-independent scenario chosen to simplify our
presentation, yet it captures the complexities that we have seen
in our prior work with hydrology modeling software and
workflows [4]. Scientific modeling software has the same
issues but also additional subtleties as discussed in [4]. Second,
the scenario involves machine learning algorithms, and
consequently a large choice of options of algorithms (and thus
many exploration and update options). Lastly, we had
implemented a variety of workflows in previous work (e.g.,
[6;19;20]) using older versions of Weka, as well as new ones
using Scikit-learn and other machine learning libraries [21].
The workflows run in the WINGS [1] workflow system.

In our scenario, Alice, a meteorologist in California, wants
to predict weather for the city of Pasadena. She starts with a

very simple workflow, shown in Figure 1, that had been used to
process 2007 weather data from Santa Monica to make weather
predictions for Pasadena, both cities located in California. The
workflow no longer runs, and Alice would like to update it.

The workflow contains two workflow components
(J48Modeler and J48Classifier) from Weka that use the C4.5
decision tree algorithm. The first component uses it to learn a
decision tree model from training data (the trainingData input),
while the J48Classifier uses this learned model to classify test
data (the testData input). The ClassIndex parameter, used as
input for both workflow components, specifies that the feature
in a specific indexed column is the one we are trying to predict.
The workflow also contains two components to ingest data
since Weka uses a special comma separated data format called
ARFF (Attribute-Relation File Format).

In the discussion that follows, we will describe how in order
to decide whether (and how) to upgrade the workflow, Alice
needs to go through the documentation provided by Weka in
quite a bit of detail.

A. Finding which software is used in workflow components
A workflow does not include much information about the

software that implements each workflow component, such as
software function and version invoked. This information could
help a scientist like Alice to upgrade the workflow component
– e.g., to decide whether and how to upgrade to a new version.

Alice found in the workflow documentation that Weka is
used to implement the workflow and that both workflow
components invoke the Weka J48 functions. Alice has to read
the Weka documentation to understand that these functions
implement the C4.5 decision tree algorithm. To manage the
workflow evolution, she needs to know not only the software
and algorithm used to implement the workflow components, but
also the specific software version and functionalities invoked in
Weka to implement each of the workflow components. This
information, however, is not explicitly captured by scientific
workflow systems, which usually only store the code that
invokes the software. So, either Alice relies on the
documentation, or she looks at the actual component code to
find out how the software has been invoked and which version
is being used. The latter information, even if available, is not
easy to infer from an invocation code.

In some cases, the function invocation can help to find out
the code that is being used, but unfortunately this does not help
a scientist to understand what the function does or the semantics
of the inputs and outputs and of their data types or formats. This
information is important for scientists to know what kind of
data is needed to run a component as well as to check
compatibility between workflow components.

Alice found out by looking at the code that both components
are implemented using Weka version 3.6.2, which was released
in 2010. Through further analysis, she discovers that the
J48Modeler and J48Classifier components are implemented
invoking the J48 Java class in Weka, which is located in the
weka.classifiers.trees package and uses the C4.5 decision tree
algorithm. Now, she is ready for the next step in deciding
whether to upgrade the workflow – assessing the impact of
changing software versions.

Figure 1. A very simple workflow using a decision tree
machine learning algorithm for training and classification.

B. Understanding differences between software versions
Important changes may have been made between software

version releases, such as the addition of new functions and
changes in function interfaces which affect their invocation. To
check whether and how to upgrade a workflow, scientists often
read release notes where software developers usually describe
differences between software versions, e.g., bug fixes or
performance improvements. However, release notes may be
generic and are not designed to allow scientists to quickly
determine how general software changes affect their particular
workflows.

Alice is more interested in stable versions than development
versions, since the latter are more likely to suffer from bugs.
However, stable versions are likely to suffer of delays in
receiving new functionalities since they are tested in
development versions first. Minor and patch versions,
compared to major versions, usually provide backward
compatibility changes that should not affect function interfaces,
making workflow upgrades much easier. Changes in software
interfaces may in turn affect the implementation of the
interfaces of the workflow components. The solution is either
to recode the component, or to create additional workflow
components for data transformation to make interfaces
compatible between components again.

The latest Weka version is version 3.9.2, released in
December 2017, a minor development version. If Alice wants a
stable version, she needs to choose one from several available
releases, ranging from 3.6.3 to 3.6.15 (13 versions) and 3.8.0 to
3.8.2 (2 versions). The major version upgrades are 3.8.0 and
3.9.0. The former is stable and the latter is a development
version. None of this information is readily available, and Alice
needs to spend time analyzing the Weka documentation.

The final step in assessing choices for workflow upgrades is
to decide whether to modify the software functions adopted,
choosing alternatives with similar characteristics.

C. Finding similar software functions
New software functions may implement new functionalities

and use new algorithms, thus opening new opportunities for the
design of scientific experiments. Scientists can explore such
new functions, for instance, to carry out slightly different
computations in the workflow and compare the execution
results. In our scenario, Alice wants to try other software
functions that implement the same classification functionality
but use different algorithms.

She would like to find software functions similar to the ones
implemented in J48Modeler and J48Classifier. To do so, she
will have to decide whether to check for alternative Weka
implementations, whether to look in other software libraries.
Weka functions are more likely to accept the same data format
and data type for inputs and outputs, and for this reason she
restricts herself to choosing from Weka options.

D. Understanding differences in software functions
To decide whether to upgrade a workflow (and which

components should be updated), Alice needs to understand the
differences between versions of Weka functions. Therefore,
Alice needs to know what has changed in Weka since the

release of version 3.6.2. Since the creation of a working
workflow from scratch is a time-consuming task, especially
when the workflow may contain many data preparation steps,
an upgrade (and thus version comparison) is worth the effort.

Changes in functions may include function renaming,
addition of input parameters, and support for different input
data formats. All these kinds of changes may affect the
implementation of existing workflow components.

Alice goes through the versions of the software functions in
Weka 3.6.2 and 3.9.2 using the Weka command line interface,
the software manual, release notes and the Javadoc
documentation for help. Alice figures out that the only change
needed is to update the Weka library used in the workflow. The
function interfaces from Weka 3.6.2 and 3.9.2 versions are
exactly the same, though this is not typically the case especially
after several years have passed.

Versions may include other modifications beyond changes
in software function invocation. For instance, important
changes may be related to performance and accuracy, which
should ideally be described in release notes.

E. Identifying known issues, bug fixes affecting software
functions
A scientist may adopt a new version if it fixes some bug.

However, a new version may have unintended side effects, such
as affecting other functionalities in the workflow.

Alice is interested in releases containing fixes to bugs that
affect her workflow. Once again, she needs to read release notes
and look at the version control repository used by the Weka
project. This control version repository is used to track issues
and create bug fixes associated with code.

F. Creating a workflow component to explore new software
functions
Alice decided that she wants to use a different classification

method - the ID3 decision tree algorithm. To do this, she needs
to create new workflow components to replace the ones that use
the C4.5 decision tree algorithm in her workflow. For this, she
needs to know how to implement a workflow component in the
specific workflow system (in our case, WINGS) using the
Weka software (i.e., which inputs and parameters to use, which
outputs to expect, and what code to invoke). She also needs to
know how to invoke the appropriate Weka function.

She chooses the ID3 Java class, which implements the
desired classifier. However, she does not know which inputs to
use to implement the modeling and training components.

This Java class has several possible input parameters and
datasets. The combination of inputs allows it to perform
different functions according to the inputs used, such as create
a model using a training dataset and classify a dataset using an
existing trained model. The appropriate combination of inputs
which to carry out a specific function can only be found by
reading the manual of the software or talking to an expert in
Weka. Using Weka version 3.9.2, she can create the desired
component by invoking the ID3 java class in the package
weka.classifiers.trees.

Then she needs to create the component´s I/O and manually
map the I/O to the corresponding function I/O. This kind of

process is time-consuming and error prone. Any scientist who
wants to create a new workflow component needs to go through
the same process.

Alice learns about the Scikit-learn software, and wants to
consider using it. This is very common, particularly in science
where alternative models and libraries may provide numerous
options that are often better than upgrades to older code. Alice
consults the documentation of Scikit-learn and sees that it does
not use the ARFF format. It is typical that using new functions
from other libraries in a workflow may require additional data
transformation components in the workflow. In this case, the
conversion steps from CSV to ARFF in the workflow are no
longer needed.

G. Requirements
In previous work we gathered several general requirements

regarding workflow component metadata, workflow updates,
and workflow comparisons [4]. Here, we focus on the first
aspect: the requirements to capture the characteristics of the
software that implements workflow components. More
specifically, we focus on describing the software used in these
components, and its evolution through time in order to support
workflow exploration and evolution. Building on the scenarios
from [4] and summarizing the scenarios above, we formulate the
following requirements:

• R1 - Workflow descriptions should capture the
software, software version, and functions used in the
implementation of workflow components.

• R2 – Scientists should be alerted about relevant updates
of software used in their workflows.

• R3 - Version descriptions should capture metadata
about differences between software functions,
particularly about their interfaces.

• R4 - Given a software package that can be used to create
many workflow components, scientists need to easily
figure out how to implement a component and how to
update an existing component with newer versions of
that software.

• R5 - Scientists should get a summary of changes
between two given software versions to understand their
differences without having to understand the history of
changes associated to each version in between the old
and the chosen one.

• R6 - Version descriptions should capture bug fixes and
known bugs and relate them to specific software
functions.

These requirements highlight the need to have metadata
associated with software packages, their versions, the software
functionality and functions that they implement, and the
software changes done to specific functions in new versions.

The scenario we described reflects the difficulty scientists
face to assess how, when and whether to upgrade their
workflows or not, even when they are code-savvy. We point out
that these difficulties are not specific to the choice of Weka or
any other software used by scientists. Rather, the scenarios

highlight that such software package repositories are designed to
support code sharing and tracking, presenting technical details
to programmers rather than efficiently highlighting conceptual
descriptions to scientists. In other words, scientists lack a more
structured and function-based representation of software to help
them to design, upgrade and understand workflows. Moreover,
in version control repositories, documentation is not provided in
machine-readable format that can be used by a workflow system
to assist the scientist in exploring and managing the evolution of
a workflow.

The next section describes OntoSoft-VFF, the framework we
designed to address the requirements presented in this section.

IV. ONTOSOFT-VFF: A FRAMEWORK TO HELP SCIENTISTS TO
EXPLORE AND UPDATE WORKFLOWS

We designed and developed OntoSoft-VFF (Ontology
framework for Software Version, Function and Functionality)
to address the requirements described in section III. This
framework is based on a novel ontology, which is used to
construct a semantic metadata catalog. OntoSoft-VFF extends
OntoSoft [5], a framework composed of an ontology and a
metadata catalog that aims to describe software metadata to
support scientists to share and reuse software. Our extension to
OntoSoft include both the novel ontology and associated
services to describe software versions, functions, functionality
and changes to software. OntoSoft-VFF provides the semantic
information needed by scientists to explore their workflows,
and to assess whether and how to update them, fully supporting
the needs exemplified in the scenarios of Section III.

Figure 2 shows an overview of our ontology. We represent
the elements already present in OntoSoft using the namespace
(sw: http://ontosoft.org/software#), whereas our new ontology
uses the namespace (vff: https://w3id.org/ontosoft-
vff/ontology#). The ontology contains terms to describe:

• Software metadata: represents software, its relations
with software versions, and other relations such as
with operating systems, programming languages, and
any software dependencies.

• Software version metadata: includes the metadata for
a given software version including new functionality
and functions.

• Software function metadata: includes metadata
regarding functions released in software versions and
their inputs and outputs.

• Software change metadata: includes metadata for
representing changes in software versions over time,
including known issues and bug fixes.

A major contribution of our work is to model software used
in workflow components with respect to its functionality and
evolution over time. In the following sections we focus on the
relevant classes and relations specified in the ontology to
address our requirements. Due to space limitations, we will only
illustrate and describe the classes and relations related to the
goals of this paper. For the same reason, we have retained here
only the parts of OntoSoft that are relevant to this discussion.

The ontology is domain independent and can be extended to
address specific requirements of domain scientists. For

example, we have found that for geosciences models it is
important to capture environmental assumptions, variables and
processes associated to modeling software [4, 9].

The ontology is available in OWL and documented in [23].

A. Describing software
Figure 3a illustrates an example of software metadata

classes and properties for representing the Weka software.
Weka is implemented using the Java programming language
and uses a GNU license. Linux is one of the operating systems
supported. Weka has the 3.9.2 version and this is its latest
version.

We use the OntoSoft sw:Software class. It has a property
sw:hasSoftwareVersion that relates a software with each of its
versions, while vff:hasLatestSoftwareVersion relates a
sw:Software to its latest version in order to provide direct access
to this specific version. sw:Software has other properties, such
as sw:hasLicense, sw:supportsOperatingSystem and
sw:hasImplementationLanguage. They represent important
information to know when creating a workflow component
using a software.

B. Describing software versions
Figure 3b illustrates the use of the classes and properties for

Weka version 3.6.2. This is a stable version of Weka released
in 2010. It has the J48Classifier and ID3Classifier functions and
is superseded by the 3.6.3 version.

We extended the OntoSoft sw:SoftwareVersion class with
properties and classes to describe internal functions, versions,
software dependencies, and version categories.
sw:SoftwareVersion has properties sw:supersededBy and

sw:supersedes to support navigation across software versions.
To these, we added the property vff:hasSoftwareFunction,
thereby linking sw:SoftwareVersion with vff:SoftwareFunction
and thus representing functions released in a version.

We introduced the notion of category of software versions
(vff:SoftwareVersionCategory), whose values can be: major
version, minor version, stable version and development version.
Categories can help scientists to decide which version to use to
implement a workflow component.

vff:ContainerImage was designed to describe workflow
components that use containers. Its properties such
vff:hasContainerLocation and vff:hasContainerInvocation
respectively specify its location in a container repository, and
how to invoke the container image. This allows the isolation of
a software version and its dependencies into a self-contained
unit that can run anywhere independent of the environment.

C. Describing software functions
Figure 3c illustrates an example of the J48Classifier

function in Weka 3.6.2 version. We recall from Section I that
the difference between software and function can be subtle. A
function represents a particular implementation of functionality
of a software. A function is represented with the
vff:SoftwareFunction class and implements a vff:Functionality,
specified using the vff:implementsFunctionality property. A
function might be implemented using a set of vff:Algorithm,
which are specified with the vff:usesAlgorithm property.

In Weka, a single Java class can implement several software
functions with different functionalities. Here, a function has a
unique name (vff:hasFunctionName) and a description to help
identifying its objective (vff:hasFunctionDescription).

Figure 2. Diagram with the representation of the main classes and relations of our ontology.

Functions have unique invocation, inputs, parameters, and
outputs (vff:hasFunctionInvocation, vff:InputFile,
vff:InputParameter and vff:OutputFile). The inputs and outputs
have a description, argument prefix and are associated with
vff:DataType and vff:DataFormat. We also represent the
default value associated with an input parameter
(vff:hasInputDefaultValue), since recommended defaults are
often indicated in the documentation of scientific software.

D. Describing software changes
Figure 3d shows an example of a known issue, bug fix and

change associated with the J48Classifier function in the Weka
3.6.2 and 3.9.2 versions.

A change is defined as a modification in a software function
caused by vff:BugFix or improvements (vff:SoftwareChange).
Change description includes vff:KnownIssue as well, to
represent bugs or limitations associated with
vff:SoftwareFunction and may be fixed by vff:BugFix in further
versions. Bug fixes and known issues have descriptions to help
scientists to understand how they affect vff:SoftwareFunction.

V. USING ONTOSOFT-VFF TO STORE, COMPARE AND SEARCH
SEMANTIC METADATA FOR SOFTWARE

This section presents the services provided by OntoSoft-
VFF. We designed these services by extending the OntoSoft
catalog to use the ontology extensions introduced in Section IV.

Figure 3. (a) An example of use of classes and relations from the ontology’s software module to represent metadata associated
with the Weka software. (b) An example of use of classes and properties from the ontology’s software version module to
represent metadata associated with the Weka 3.9.2 software version. (c) An example of metadata to represent the J48Classifier
function from the Weka 3.6.2 version. (d) An example of metadata to represent changes to the J48Classifier function across
Weka versions.

(b)

(a)

(c)

(d)

The catalog includes the following important features,
taking advantage of the semantic metadata and our ontology:

• Management of software functions and evolution
metadata: provides means to obtain information about
software, software version, functions and changes.

• Comparison mechanism: allows the comparison
between different software, software versions and
functions.

• Search mechanism: allows searching for software,
software version and software functions.

• Mechanism for creation of workflow components:
allows the creation of components by using the
metadata associated with software functions.

The source code of OntoSoft-VFF can be found in [24].

A. Management of software functions and evolution metadata
In OntoSoft-VFF, software developers can add metadata

about software, its versions, and available functions.
Developers can also provide information about know issues,
relevant changes and bug fixes associated with software
functions. We envision an interactive system that extracts
automatically some of this information and makes the burden
minimal on the developers.

When adding metadata for a new software version, our
framework imports all the metadata of its previous version. The
user only needs to provide information about the functions that
have changed (e.g., algorithm, inputs, outputs, function name).
When a function changes, OntoSoft-VFF creates a new URI for
its metadata, and links it using the prov:wasRevisionOf
property from the W3C PROV standard [22]. Through this URI,
a workflow component can refer to the specific version of a
function used in its implementation.

By adding bug fixes in new versions released, the user can
provide information about known issues and associate them
with specific functions in previous versions.

B. Comparison across versions and functions
The OntoSoft catalog allows the comparison of software via

its metadata. We extended this to allow the comparison of
software versions and functions as well. Our extension provides
a simple comparison for software versions based on the
functions they implement and the software version categories.

Function comparison is done by using metadata about
functionality, algorithms, data types and data formats for inputs
and outputs of functions, as well as relevant changes to
functions such as bug fixes or improvements or known issues.
Functions can be compared to other functions in the same
software version, or to functions belonging to different software
versions. This helps scientists understand the changes and
differences in functions over time.

Figure 4 shows the comparison of functions using metadata
of the functions ID3Classifier and J48Classifier in Weka
version 3.6.2. Due to space limitations, we only show
functionality, algorithm, invocation line, and input files. As we
can see, these functions have the same inputs and functionality.
However, they use different algorithms and distinct function
invocations, since they are implemented by different Java
classes in Weka.

C. Search
The search capability allows scientists to find software,

software versions, and software functions using their metadata.
Search parameters include keywords related to the software and
function names, functionality, license, data formats and data
types of function inputs and outputs.

D. Creation of workflow components
OntoSoft-VVF facilitates the creation of workflow

components using the semantic metadata associated with a
software function. This helps scientists to create a workflow
component from scratch. This mechanism is implemented as an
external tool with access to the software function metadata. Our
catalog exports the metadata in JSON format and also allows
the use of a SPARQL endpoint to query the software metadata
for the creation of workflow components. Other work can take
advantage of OntoSoft-VFF to implement a similar mechanism
for a different workflow management system.

We demonstrate this mechanism by integrating our catalog
with the WINGS workflow system. Because WINGS uses
semantic workflows, this system can take full advantage of
semantic metadata available in OntoSoft-VFF´s catalog to
create workflow components. Our framework automatically
creates in WINGS the inputs and outputs for the new workflow
component and maps them to the software function’s inputs and
outputs. Using the metadata available, OntoSoft-VFF
automatically configures the interface of the new component,
including data types, and creates the invocation code to the
function in the workflow component. We assume that there is a
container image available from an online repository for each
software version, which can be used to invoke the software
function, thus avoiding the burden to install and configure the
software dependencies. This tool creates the ID3Classifier
component using the function with the same name from the
Weka 3.9.2 version. This component can be used to replace the
J48Classifier component in a workflow as in our scenarios.

Figure 4. Example of comparison between the
ID3Classifier and J48Classifier functions.

VI. VALIDATION
To validate the ontology and services of OntoSoft-VFF, we

demonstrate the ability of our framework to answer a series of
competency questions on software functions and evolution, and
the use of software functions in workflow components. The
competency questions have been drawn from the requirements
outlined in Section III.

We designed queries to be evaluated against the structured
metadata captured for the scenarios presented in Section III. We
present a description of each query, their translation into
SPARQL, and the results obtained by evaluating them. The
competency questions guided the development of our ontology
and justified the creation of classes and properties. We use the
namespace (ex: https://w3id.org/ontosoft-vff/example) to refer
to the instance of our ontology in SPARQL.

Query 1: Given a software function invoked by a workflow

component implementation, what is the software and software
version of this function?

This query is useful to identify the software and software
version of a function used to implement a workflow component.
Retrieving metadata about software used in a workflow
implementation addresses requirement R1.

Here, we are interested in retrieving the software function
(ex:weka3.6.2-J48Classifier) responsible for implementing the
J48Classifier workflow component.	 Specifically, the results
point out that this software function is from the Weka software
(ex:Weka) and was released in the Weka version 3.6.2
(ex:Weka3.6.2).

The SPARQL used for answering this query can be
formulated as follows:
select ?sw ?swVersion where {
 ?swVersion rdf:type sw:SoftwareVersion ;
 vff:hasSoftwareFunction ex:weka3.6.2-J48Classifier .
 ?sw rdf:type sw:Software ;
 sw:hasSoftwareVersion ?swVersion . }

Query 2: Are there any newer versions for a given function?
This query is useful to identify new versions of a given

function used in a workflow component. Some software
versions may not change a software function; thus, it is not the
case of finding new software versions. This query retrieves a
new function version of a given software function, which can
be further compared to understand their differences. Retrieving
metadata about software version releases addresses requirement
R2.

Here, we are interested in showing the newest version of the
J48Classifier function (ex:weka3.6.2-J48Classifier). The query
results point out that the J48Classifier function has a new
version (ex:weka3.9.2-J48Classifier) in Weka 3.9.2 version
(ex:weka3.9.2).

The SPARQL query used for answering this query can be
formulated as follows:	
select ?swVersionNew ?swFunctionNew where {
 ?swVersionNew rdf:type sw:SoftwareVersion ;
 vff:hasSoftwareFunction ?swFunctionNew .
 ?swFunctionNew rdf:type sw:SoftwareFunction ;
 prov:wasRevisionOf ex:weka3.6.2-J48Classifier . }

Query 3: What are the differences between two versions of
a given software function?

This query is useful to detect the differences between two
version of a software function, particularly their interfaces, to
use that information to upgrade a workflow component.
Detecting differences between two versions of a software
function addresses requirement R3.

Here, we are interested in the J48Classifier function from
the 3.6.2 version (ex:weka3.6.2-J48Classifier) and the 3.9.2
version (ex:weka3.9.2-J48Classifier). We run a separate query
for each software function and then compare their results to
compare the functions I/O. The results point out that there is no
difference between their interfaces (i.e., their inputs and
outputs).

The SPARQL used for answering this query can be
formulated as follows:
select ?inputName ?inputDataFormat ?inputDataType
?inputParamName ?inputParamType ?outputName
?outputDataFormat ?outputDataType where {
ex:weka3.6.2-J48Classifier rdf:type vff:SoftwareFunction ;
 vff:hasInputFile ?inputFile ;
 vff:hasInputParameter ?inputParam ; vff:hasOutputFile ?output .
 ?inputFile vff:hasInputDataFormat ?inputDataFormat ;
 vff:hasInputDataType ?inputDataType ;
 vff:hasInputName ?inputName .
 ?inputParam vff:hasInputParameterDataType ?paramType ;
 vff:hasInputParamName ? inputParamName .
 ?output vff:hasOutputDataFormat ?outputDataFormat ;
 vff:hasOutputDataType ?outputDataType ;
 vff:hasOutputName ?outputName . }

Query 4: Are there any similar functions to a given function

in newer software versions?
This query is useful to find similar functions in newer

software versions based on their functionalities. We designed
the query to find software functions that implement the same
functionality or use the same algorithm than a given software
function used in a workflow component. We can filter the
functions by software and software version or find software
function across different software. Detecting differences
between two software versions, particularly about new software
functions available addresses requirement R4.

Here, we are interested in finding a similar function to
J48Classifier (ex:weka3.6.2-J48Classifier) that implements the
same functionality in the same software version (ex:weka3.6.2).
The query results point out that the ID3Classifier function
(ex:weka3.6.2-ID3Classifier) implements the same
functionality the J48Classifier function does.

The SPARQL used for answering this query can be
formulated as follows:
select ?swFunction where {
 ex:weka3.6.2-J48Classifier rdf:type vff:SoftwareFunction ;
 vff:implementsFunctionality ?functionality .
 ?swFunction rdf:type vff:SoftwareFunction ;
 vff:implementsFunctionality ?functionality .
 ex:weka3.9.2 vff:hasSoftwareFunction ?swFunction .
 FILTER(ex:weka3.9.2-J48Classifier != ?swFunction) . }

Query 5: How to invoke a given software function?
This query is useful to implement the invocation code of a

workflow component based on the specification of an existing
software function. Retrieving metadata about software
functions, particularly their invocation code addresses
requirement R5.

Here, we are interested in retrieving metadata associated
with invocation of the ID3Classifier function (ex:weka3.6.2-
ID3Classifier), such as function invocation and container
invocation. By retrieving this information, we can create the
invocation code in a workflow component. The query results
point out that the function invocation is “java -jar
weka.classifiers.trees.Id3 -T testData -l inputFile -c classIndex
> classification” and the container invocation is “docker run
lucasaugustomcc/weka3.6.2”.

The SPARQL used for answering this query can be
formulated as follows:
select ?functionInvocation ?containerInv where {
 ex:weka3.9.2-ID3Classifier rdf:type vff:SoftwareFunction ;
 vff:hasSoftwareFunctionInvocation ?functionInvocation .
 ?swVersion rdf:type sw:SoftwareVersion ;
 vff:hasContainerImage ?containerImg ;
 vff:hasSoftwareFunction ex:weka3.9.2-ID3Classifier .
 ?containerImg vff:hasContainerImageInvocation ?containerInv . }

Query 6: a) Are there any known issues that affect a given

software function?
This query is useful to find out known issues that can affect

the performance or results of software functions.
Here, we are interested in retrieving known issues

associated with the ID3Classifier function (ex:weka3.6.2-
ID3Classifier). The query results point out that no known issues
are associated with this function.

The SPARQL used for answering this query can be
formulated as follows:	
select ?bug ?bugDescription where {
 ?bug rdf:type sw:KnownIssue ;
 vff:hasKnownIssueDescription ?bugDescription ;
 vff:affectsSoftwareFunction ex:weka3.6.2-J48Classifier . }

b) Are there any important changes associated with new
versions of a given software function?

This query is useful to find out which software version they
should upgrade a workflow component to take advantage of
improvements associated with versions of software functions.

Here, we are interested in retrieving changes associated with
the J48Classifier function. The query results point out that there
are no bug fixes associated with the J48Classifier function in
Weka 3.9.2.

The SPARQL used for answering this query can be
formulated as follows:
select ?bugFix ?bugFixDescription where {
 ?bugfix rdf:type vff:BugFix ;
 vff:hasBugFixDescription ?description ;
 vff:fixesKnownIssue ?knownIssue .
 ?knowIssue
 vff:affectsSoftwareFunction ex:weka3.6.2-J48Classifier . }

Retrieving metadata about known issues and bug fixes
associated with different versions of software functions used in
a workflow component addresses requirement R6.

In summary, these queries show that the requirements are
fully supported by OntoSoft-VFF, and that when they are not
supported directly the framework provides the information
necessary to address them. OntoSoft-VFF can answer
questions that have been traditionally answered by scientists
with great effort. The competency questions and the results
obtained by evaluating the queries can be found in [25].

VII. CONCLUSIONS AND FUTURE WORK
This paper presented OntoSoft-VFF, a semantic software

catalog designed and developed to help scientists to manage
workflow exploration and evolution, while they update or
investigate alternatives for their computational experiments.
OntoSoft-VFF relies on an ontology we designed to capture
software versions, functionality, and functions and their
evolution over time. This ontology is used in the construction
of OntoSoft-VFF’s underlying semantic metadata for software.

We showed that when a workflow is semantically linked to
such metadata, scientists can explore the workflow to
understand its evolution, and to compare among several
software implementations to select one to implement a
workflow’s component. While related work is mostly
concerned with workflow design, evolution, or provenance
information, our goal is to help scientists to understand the
evolution of the software used in the workflow components.

OntoSoft-VFF was built to meet requirements found
through exploration of scenarios based on our experience using
a variety of machine learning software libraries as well as
diverse hydrology models. We demonstrate through
competency questions that OntoSoft-VFF successfully meets
those requirements. The competency questions and the
scenarios are additional contributions of our work, since they
describe very common scientific practices which are taken for
granted and thus seldom explicitly formulated.

There are several possibilities for extending our work. One
of them is to further explore the scenarios and competency
questions in order to set up a benchmark for research on
workflow evolution. A limitation of OntoSoft-VFF is that the
addition of software metadata was manually done. This could
be done semi-automatically in the future. Also, we plan to
integrate OntoSoft-VFF with a workflow system to support
scientists to efficiently update their workflows as the
underlying application software evolves, and to easily explore
new designs for their computational experiments. Finally, we
plan to align to other ontologies such as the SWO, which
contains thousands of instances.

ACKNOWLEDGMENTS
This work was supported in part by the Sao Paulo Research

Foundation (FAPESP) under grants 2017/03570-3,
2014/23861-4 and 2013/08293-7, in part by a grant from the
Defense Advanced Research Projects Agency under award
W911NF-18-1-0027, and, in part by a grant from the US
National Science Foundation under award ICER-1440323 and
ICER- 1632211 (EarthCube RCN IS-GEO).

REFERENCES
[1] Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody, and

E. Deelman, “Wings: Intelligent workflow-based design of computational
experiments,” IEEE Intelligent Systems, vol. 26, no. 1, pp. 62–72, 2011.

[2] J. Zhao, J. M. Gomez-Perez, K. Belhajjame, G. Klyne, E. Garcia-Cuesta,
A. Garrido, K. Hettne, M. Roos, D. De Roure, and C. Goble, “Why
workflows break—understanding and combating decay in taverna
workflows,” in E-Science (e-Science), 2012 IEEE 8th International
Conference on. IEEE, 2012, pp. 1–9.

[3] D. Koop, C. E. Scheidegger, J. Freire, and C. T. Silva, “The provenance
of workflow upgrades,” in International Provenance and Annotation
Workshop. Springer, 2010, pp. 2–16.

[4] L. A. M. C. Carvalho, B. T. Essawy, D. Garijo, C. B. Medeiros, and Y.
Gil, “Requirements for supporting the iterative exploration of scientific
workflow variants,” in Proceedings of the Workshop on Capturing
Scientific Knowledge (SciKnow), held in conjunction with the ACM
International Conference on Knowledge Capture (K-CAP), Austin,
Texas, 2017.

[5] Y. Gil, V. Ratnakar, and D. Garijo, “Ontosoft: Capturing scientific
software metadata,” in Proceedings of the 8th ACM International
Conference on Knowledge Capture. Palisades, NY: ACM, 2015.

[6] Y. Gil, P. A. Gonzalez-Calero, J. Kim, J. Moody, and V. Ratnakar, “A
semantic framework for automatic generation of computational
workflows using distributed data and component catalogues,” Journal of
Experimental & Theoretical Artificial Intelligence, vol. 23, no. 4, pp.
389–467, 2011.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The Weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[8] J. Malone, A. Brown, A. L. Lister, J. Ison, D. Hull, H. Parkinson, and R.
Stevens, “The software ontology (SWO): a resource for reproducibility in
biomedical data analysis, curation and digital preservation,” Journal of
biomedical semantics, vol. 5, no. 1, p. 25, 2014.

[9] D. Garijo, D. Khider, Y. Gil, L. A. M. C. Carvalho, B. T. Essawy, S.
Pierce, D. H. Lewis, V. Ratnakar, S. Peckham, C. Duffy, and J. Goodall,
“A semantic model catalog to support comparison and reuse,”
Proceedings of the 9th International Congress on Environmental
Modelling and Software (iEMSs), Fort Collins, Colorado, USA, 2018.

[10] D. Oberle, S. Grimm, and S. Staab, “An ontology for software,” in
Handbook on ontologies. Springer, 2009, pp. 383–402.

[11] R. Conradi and B. Westfechtel, “Version models for software
configuration management,” ACM Computing Surveys (CSUR), vol. 30,
no. 2, pp. 232–282, 1998.

[12] E. C. Withana, B. Plale, R. Barga, and N. Araujo. "Versioning for
workflow evolution." In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pp. 756-765.
ACM, 2010.

[13] D. Garijo, S. Kinnings, L. Xie, L. Xie, Y. Zhang, P.E. Bourne and Y. Gil.
Quantifying reproducibility in computational biology: the case of the
tuberculosis drugome. PloS ONE, 8(11), 2013.

[14] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M.,
Carver, T., Glover, K., Pocock, M.R., Wipat, A. and Li, P. 2004. Taverna:
a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17), pp.3045-3054.

[15] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B. and Mock,
S., 2004, June. Kepler: an extensible system for design and execution of
scientific workflows. In Scientific and Statistical Database Management,
2004. Proceedings. 16th International Conference on (pp. 423-424).
IEEE, 2004.

[16] Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J. and Silva, C.T., 2008,
June. Querying and re-using workflows with VsTrails. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data
(pp. 1251-1254). ACM, 2008.

[17] Pedregosa, F., Varoquaux G., Gramfort, A. Michel V., Thirion, B. Grisel
O., Blondel, M. Prettenhofer, P. Weiss, R. Dubourg, V. Vanderplas, J.
Passos, A. Cournapeau, D. Perrot, M., and E. Duchesnay. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning
Research. 12: 2825–2830

[18] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993.

[19] Hauder, M., Gil, Y., and Y. Liu. A Framework for Efficient Text
Analytics through Automatic Configuration and Customization of
Scientific Workflows. Proceedings of the Seventh IEEE International
Conference on e-Science, Stockholm, Sweden, 2011.

[20] Sethi, R. J., Jo, H., and Y. Gil. Reusing Workflow Fragments Across
Multiple Data Domains. Proceedings of the Seventh Workshop on
Workflows in Support of Large-Scale Science (WORKS'12), held in
conjunction with SC 2012, Salt Lake City, Utah, 2012.

[21] Gil, Y.; Yao, K.; Ratnakar, V.; Garijo, D.; Steeg, G. V.; Szekely, P.;
Brekelmans, R.; Kejriwal, M.; Luo, F.; and Huang, I. P4ML: A Phased
Performance-Based Pipeline Planner for Automated Machine Learning.
Proceedings of Machine Learning Research, ICML 2018 AutoML
Workshop, 2018.

[22] Moreau, L.; Missier, P.; Belhajjame, K.; B'Far, R.; Cheney, J.; Coppens,
S.; Cresswell, S.; Gil, Y.; Groth, P.; Klyne, G.; Lebo, T.; McCusker, J.;
Miles, S.; Myers, J.; Sahoo, S.; and Tilmes, C. 2013. PROV-DM: The
PROV Data Model. World Wide Web Consortium (W3C)
Recommendation, 2013.

[23] L. A. M. C. Carvalho, D. Garijo, C. B. Medeiros, and Y. Gil, The
OntoSoft-VFF Ontology. Version 1.0.0. Available from:
https://w3id.org/ontosoft-vff/ontology.

[24] L. A. M. C. Carvalho, D. Garijo, C. B. Medeiros, and Y. Gil, The
OntoSoft-VFF Source Code. Version 1.0.0. Zenodo.
http://doi.org/10.5281/zenodo.1414544.

[25] L. A. M. C. Carvalho, D. Garijo, C. B. Medeiros, and Y. Gil, The
OntoSoft-VFF Evaluation: Competency Questions. Version 1.0.0.
Zenodo. http://doi.org/10.5281/zenodo.1414552.

