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Abstract—Scientific workflows define computational processes
needed for carrying out scientific experiments. Existing workflow
repositories contain hundreds of scientific workflows, where
scientists can find materials and knowledge to facilitate workflow
design for running related experiments. Identifying reusable
fragments in growing workflow repositories has become in-
creasingly important. In this paper we present PSM-Flow, a
probabilistic subgraph mining algorithm designed to discover
commonly occurring fragments in a workflow corpus using a
modified version of the Latent Dirichlet Allocation algorithm. The
proposed model encodes the geodesic distance between workflow
steps into the model for implicitly modeling fragments. PSM-
Flow captures variations of frequent fragments while maintaining
its space complexity bounded polynomially, as it requires no
candidate generation. We applied PSM-Flow to three real-world
scientific workflow datasets containing more than 750 workflows
for neuroimaging analysis. Our results show that PSM-Flow
outperforms three state of the art frequent subgraph mining
techniques. We also discuss other potential future improvements
of the proposed method.

I. INTRODUCTION

Scientific workflows describe computational experiments
which typically involve computational steps, along with the
datasets used and generated by those steps. Scientific work-
flows are created in workflow systems that manage their execu-
tion in the required computational resources [11]. Representing
workflows explicitly improves the reproducibility of scientific
experiments [10].

Scientific workflow repositories contain collections of
recorded scientific workflows [22]. Users may explore and
reuse workflows created by others to facilitate the development
of their computational experiments. While one can directly
reuse an existing workflow, only a portion or fragment of a
workflow is often reused. In addition, identifying commonly
used fragments of workflows facilitates overviewing and ex-
ploring the contents of a workflow repository.

In [9], the authors formulated reusable workflow fragment
identification as a frequent subgraph mining problem, and
applied frequent subgraph mining algorithms (FSM) to detect
the subgraphs with high support count (number of occur-
rences) as candidate fragments. However, frequent subgraph
mining techniques present several limitations. First, these
techniques typically involve a candidate fragment generation
process and a subgraph isomorphism test. Both present a time
complexity (combinatorial exploration of candidate fragments)

and a space complexity (large number of candidate subgraphs
are generated in memory) that are exponential in the worst
case. Second, frequent fragments may appear in different
workflows with small variations (e.g., with changes in node
labels, or with an additional node). Conventional frequent
subgraph mining techniques use exact matching for counting
fragment occurrences, and thus do not take those variations
into account. Adopting stochastic models for fragment discov-
ery can implicitly group structurally similar subgraphs together
for more robust results. In other words, we create a higher level
abstraction for grouping fragments based on their commonality
which makes the discovery of infrequent but potentially useful
fragments (e.g., similar to those frequent fragments) possible.

To address these limitations, we propose PSM-Flow (Prob-
abilistic Subgraph Mining for Reusable Workflow Fragment
Identification) a topic modeling approach that modifies the
Latent Dirichlet Allocation (LDA) algorithm so that those
latent topics to be inferred correspond to different groups
of workflow fragments. Specifically, we encode the geodesic
distance of nodes in workflows into LDA and introduce a
soft constraint into the model formulation so that closer nodes
will have a higher probability to share the same topic label.
Therefore, a topic is represented by a probability distribution
of node labels in which the node labels co-occur not only
frequently but also closely. Under our formulation, a topic
can be interpreted as a kind of abstract subgraph, or a cluster
of subgraphs in which the subgraphs are structurally similar to
each other. In other words, stochastic variations of subgraphs
are captured.

When compared to most of frequent subgraph mining
techniques, which take exponential space in the worst case,
PSM-Flow has the advantage that the required space is poly-
nomially bounded by O(N2) where N is the number of nodes
(computational steps) in the workflow corpus.

We evaluate our approach using three workflow corpora
created by scientists using the LONI Pipeline workflow system
[6] for neuroimaging analysis. We compare the quality of
fragments extracted using PSM-Flow to the three different
subgraph mining algorithms (gSpan [25] , SUBDUE [4] and
READUM[18]) by measuring whether the extracted fragments
can capture sub-workflows defined by users. Promising results
are obtained.

The remainder of the paper is organized as follows. First,



we introduce related work on workflow fragment mining
and topic modeling in Section 2. Section 3 presents the
problem formulation along with details about PSM-Flow. The
experiment setup and our evaluation results can be found in
Section 4. Section 5 concludes the paper with a discussion
future lines of work.

II. RELATED WORK

Scientific workflow reuse is common when workflows are
shared in a repository. Garijo et al.(2012) [8] report that at
least 20% of the analyzed workflows from different workflow
systems and domains were composed of other workflows.
Other efforts [23] confirm this practice in community work-
flow repositories, such as MyExperiment [22].

Frequent subgraph mining algorithms have been used to
automatically detect common workflow fragments in a corpus
of workflows. Workflows are represented as a graph where the
nodes represent computational steps and the edges correspond
to the dataflow among them. Garijo et al.(2014) [9] proposed
the FragFlow framework, which makes use of two graph-
based frequent subgraph mining algorithms, namely gSpan
[25] and SUBDUE [4]. Other work has also applied SUBDUE
to workflow corpora [5]. In general, frequent subgraph mining
aims to extract frequent substructures in a set of graphs. It
usually consists of two steps: candidate subgraph generation
and subgraph isomorphism detection. These algorithms can
be categorized into two types - exact and inexact match [13].
Exact match algorithms extract all frequent subgraphs in a data
set. Most of them perform efficiently only on sparse graphs
with a large amount of labels for nodes and edges [17]. But
there also exist some efficient exact match algorithms such as
FSG [16], GASTON [20], and gSpan [25]. In contrast, inexact
match algorithms consider similarity between subgraphs and
allow a subgraph in the corpus to match a given candidate
subgraph even though they have slight structural differences.
Examples of inexact match algorithms include SUBDUE [4],
GREW [17], gApprox [3] and REAFUM[18].

In this paper, we formulate the workflow fragment discovery
problem based on Latent Dirichlet Allocation (LDA) [2] which
is a widely used model for topic discovery. LDA was first pro-
posed for text where each document is modeled as a mixture
of topics. A topic is represented as a multinomial distribution
over word labels. Words that have a high probability mass in
a topic tend to co-occur frequently in different documents.
Griffiths and Steyvers (2004) applied Gibbs sampling for
learning LDA. To determine the number of topics automat-
ically, Dirichlet process(DP) is a Bayesian nonparametric tool
[21] which has been adopted in topic modeling.[24]

A related notion similar to this work is called stochastic
network motif [14]. A network motif is formed by patterns of
interactions (or subgraph patterns) which appear in different
parts of a network more frequently than those found in a
randomized network. A stochastic network motif takes the un-
certainty of edges into account, where each motif is a subgraph
in which edges in the subgraph are assigned with probability
values representing the presence of the edges. The resulting

Fig. 1: Graphical representation of the LDA model

patterns turn out to be more robust than deterministic motifs, as
rare situations are also captured. Liu, Cheung, and Liu (2015)
also generalize the work to multiple motifs detection. Our
method is different from stochastic network motif in several
aspects. First, stochastic network motif models the absence of
edges explicitly while we only encode the geodesic distance
between two nodes. In addition, stochastic network motif deals
with relational patterns where each node in graph data is a
distinct object of homogeneous type. In our workflow setting,
nodes have node labels (name of computational steps) which
repeatedly appear in the data set.

III. METHODOLOGY

This section presents our problem formulation and PSM-
Flow, our proposed algorithm for workflow fragment identi-
fication. We leverage Latent Dirichlet Allocation (LDA) [2]
which is a generative model widely used for topic modeling
in a text corpus, and extend it to model reusable fragments in
a workflow corpus.

A. Latent Dirichlet Allocation

The goal of LDA is to extract topics from a text corpus.
LDA assumes that each document is generated from a mixture
of topics called topic distribution, and each topic is represented
as a distribution of words called word distribution. The graph-
ical representation of LDA is shown in Figure 1. Let ✓

d

be
the topic distribution of document d, �

k

the word distribution
of topic k, z

n

the topic assignment of word instance n and
w

n

the word label of word instance n, and ↵ and � the
hyperparameters for the conjugate priors (Dirichlet) of the
multinomial distribution over topics and words respectively.
The generative process of LDA is as follows:

1) Draw �
k

from Dir(�) for each topic.
2) Draw ✓

d

from Dir(↵) for each document.
3) Draw topic z from Multi(✓

d

) for each word instance.
4) Draw word w from Multi(�

k

) for each word instance.
where Dir() and Multi() denote the Dirichlet distribution and
multinomial distribution respectively. We use Gibbs sampling
to infer the model parameters, which is a Markov chain Monte
Carlo algorithm for estimating the posterior probability [12].

PSM-Flow extends LDA as follows. We consider a “work-
flow” as a “document”, and the type (label) of a “workflow
step” as a “word”. Instead of assuming that generation of word



Fig. 2: A synthetic corpus with three workflows. The colors
show different topics inferred for the nodes.

instances are independent given the topic as in LDA, PSM-
Flow assumes that “nearby” node instances in a workflow
tend to have identical topic labels (as detailed in the next
section). Therefore, those node instances assigned with the
same topic are more likely to be connected as subgraphs in a
workflow. We use the word “fragment” to refer to “subgraph”
in a workflow. A topic, hence, is a distribution of node labels
in which most probability mass is concentrated on those
frequently co-occur labels. A fragment F belongs to a topic
T means that all topic assignments of node instances from F
are equal to topic T .

B. Encoding Geodesic Distance in PSM-Flow

The fundamental idea of PSM-Flow is adding a soft con-
straint to LDA so that if the distance of the shortest (undi-
rected) path (i.e., geodesic distance) between two nodes in a
workflow is smaller, there will be a higher probability that
the two nodes share the same topic label. Therefore, nodes
sharing a topic will tend to be grouped together as a cluster
which corresponds to a fragment.

As an illustration, Figure 2 shows a simple example with
three workflows in the corpus where nodes with the same
labels (indicated by colors) inferred using PSM-Flow do
co-occur in all three workflows and are connected in each
workflow. We can then extract all the connected nodes with
the same topic labels as the workflow fragments for reuse.
Notice that a topic may end up with multiple fragments as
shown in Figure 3. Fragments under the same topic vary with
each other by having some different labels or some topological
differences.

In our problem formulation, we incorporate the geodesic
distance between nodes only and ignore other topological
information of the workflow for simplicity reasons. We argue
that this simplification suffices for scientific workflows. For
example, let’s assume that D1 is a data filtering component
and D2 is a data analysis component. It will be natural for D1
to be followed by D2, and it is less likely to have D2 to be
followed by D1. At least, it is less likely for the output format
of D2 to be consistent with the input format required by D1. In
other words, even if the order of the workflow steps is ignored
in our model, the effectiveness of the fragment extraction will
not be significantly affected.

Fig. 3: Fragments extracted from Figure 2. Each color repre-
sents a different topic.

Symbol Description
D # of workflows in a corpus.
W # of distinct node labels or words in the vocabulary.
N Total number of nodes in the corpus.
T Total number of topics.
Md # of Gaussian clusters in the workflow d.
G Global topic distribution
H Base distribution of Dirichlet process
wi i-th observed node label.
di Workflow that contains the i-th observed node.
zi Topic label of wi.
xi Embedding of node i.
ci Index of Gaussian cluster that generates node i
µi Mean of Gaussian cluster i
CWT

wk Count of node label w assigned to topic k.

CDT
dik

Count of topic label k in a workflow di.
�k Distribution of node labels for topic k.
✓di Distribution of topics for document di.
Dab Geodesic distance between nodes a and b.

TABLE I: A summary of notations.

In the following sections we present PSM-Flow, which
makes use of the embedding method to modify the LDA model
where the corresponding Gibbs sampling procedure is derived.
The notations we use in the paper are shown in Table I.

C. PSM-Flow

The graphical model of PSM-Flow can be seen in Figure 4.
To encode the constraint defined in Section III-B, we assume
that each node in the workflow has a corresponding node
embedding which preserves the geodesic distance of nodes.
We introduce the notion of Gaussian clusters for modeling
clustered node embeddings to indicate that they often co-occur
as neighbors in the workflow corpus. A Gaussian cluster is
a multivariate Gaussian distribution with an associated topic
label ✓. The cluster generates embeddings for nodes and all
nodes in the same Gaussian cluster share the same topic
label as the cluster’s associated topic label ✓. To determine
the number of topics needed for the PSM-Flow model, we
make use of Dirichlet Process (DP) to automatically learn the
optimal number of topics. The use of DP for learning the
optimal number of topics has been shown effective for LDA.

The generative process of PSM-Flow is :
1) Choose �

i

⇠ Dir(�), where i 2 {1, ....,1} to get node
label distribution.

2) Choose G ⇠ DP (⌧H).
3) For each workflow d, generate parameters for M

d

Gaus-
sian clusters. For Gaussian cluster i where i 2 {1...M

d

},
µ
i

is drawn from the Gaussian distribution N(0, I)



Fig. 4: PSM-Flow Model

where I is the identity matrix and the topic label ✓
i

is drawn from G.
4) Generate a set of N

d

nodes in workflow d. For each
node j where j 2 {1...N

d

}, we first draw a Gaussian
cluster label (c

j

), and then draw an embedding of (x
j

)
from N(µ

cj , I).1 We then set topic label z
j

to be the
same as the topic label of c

j

(✓
cj ), and draw node label

w
i

from Multi(�
zj ). The distance variable for nodes i

and j D
ij

is drawn from N(||x
i

� x
j

||, 1) where ||.|| is
the euclidean distance function.

To learn the model using Gibbs sampling, the following
posterior probabilities of the latent variables µ,✓,z,c,x are to
be used for the sampling.

P (µi|x, c) ⇠ N(µbase,�base)

µbase =

X

j

xjI{node j belongs to cluster i}
n
i

�base = I ⇤ (n
i

+ 1)

�1

where n
i

is the number of points in cluster i.

P (c
j

= i|w
j

,xj,✓, µ) / P (w
j

|✓
i

) · P (xj |µi) · P (d
j

, d
i

)

P (w
j

|✓
i

) /
CWT

wj ,✓i
+ �

P
W

w=1 C
WT

wj ,✓i
+W�

P (xj |µi) /
exp(� 1

2 (xj � µi)
T

(xj � µi))p
2⇡

P (d
j

, d
i

) / I{d
j

= d
i

}

P (✓
i

= t|w) /

8
>><

>>:

⌧

n+⌧

, if t is a new topic

PW
w=1 C

WT
w,t

n+⌧

Q
8j2 cluster i

C

WT
wj,t

+�

PW
w=1 C

WT
w,t +W�

z
j

= ✓
cj

n is total number word tokens in corpus.
The embedding x is sampled according to

P (xi|x�i, ci, µci ,D, ..)

/ P (xi|µci)P (x�i,D|xi)

/ P (xi|µci)

Y

j 6=i^dj=di

N(|x
j

� x
i

|, 1)

1We adopt the identity matrix to make it computationally more efficient.

In our experiment, we set the number of Gaussian clusters
for each workflow as the number of nodes in each workflow.
We consider this to be enough, as eventually only some of the
clusters will be sampled. Also, we need to set the dimension
for our node embedding. In general, the higher the dimension,
the better the distance information can be preserved but at the
expense of the computational complexity. In our experiments,
we empirically selected 10 as the dimension which is enough
for preserving distance.

D. Extracting Frequent Fragments After Topic Assignment

The output of Gibbs sampling is the assignments of different
latent topic labels to all the nodes in all the workflows of a
given corpus. To obtain the reusable fragments, we partition
the workflow corpus by topic labels as shown in Algorithm
1. The algorithm removes all edges which link up nodes with
different topic labels in a workflow corpus. The final output
produces a set of connected components where all nodes in
each connected component have the same topic. Thus they
form the set of reusable workflow fragments.

In some cases, there are outlier nodes which have topics
different from the topic shared by all their neighbors, which
in turn will break a fragment into multiple pieces. In order to
handle this situation, before applying Algorithm 1, we detect
such outliers and replace the topic of the outlier nodes to have
the same topic as their neighbors’.

After extracting the candidate fragments, we filter them to
obtain the more meaningful ones. For example, we remove
all the repeated or one-step fragments in the extracted set of
candidate fragments, as we are interested in fragments with at
least two steps.

Algorithm 1 Extracting fragments from a workflow corpus
with topic labels
function PartitionCorpus(G,Topic)
Input: G, the workflow corpus
Output: Topic, topic labels of nodes

for (inNode, outNode) 2 edges in G do
if Topic(inNode) 6= Topic(outNode) then

remove edge (inNode,outNode) in G
end if

end for
return Partition of G

A prototype implementation of PSM-FLow is available
online [15].

IV. EXPERIMENT SETUP

We use three workflow corpora from LONI Pipeline [6],
a widely-used workflow system for neuroimaging analysis.
These corpora were used to evaluate gSpan and SUBDUE in
[9]:

1) Workflow corpus 1 (WC1): A set of 441 workflows
designed mostly by a single user. Some of the workflows
are products of collaboration with other users. The
domain of the workflows is in general medical imaging



Corpus Approach Frequency Frag num Precision Recall F score
WC1 SUBDUE MDL 2 occur 264 0.506 0.704 0.589

SUBDUE SIZE 2 occur 381 0.471 0.749 0.578
gSpan 2.00% 637 0.677 0.645 0.661

10.00% 110 0.714 0.385 0.5
15.00% 33 0.689 0.213 0.325

REAFUM 5.00% 208 0.606 0.462 0.525
10.00% 44 0.648 0.25 0.36

PSM-Flow 1 occur 708(37.7) 0.533(0.012) 0.797(0.019) 0.639(0.014)
2 occur 481(25.8) 0.585(0.015) 0.773(0.016) 0.666(0.011)

WC2 SUBDUE MDL 2 occur 95 0.366 0.435 0.398
SUBDUE SIZE 2 occur 88 0.383 0.469 0.422
gSpan 2.00% 127 0.545 0.44 0.487

5.00% 14 0.559 0.151 0.238
10.00% 2 0.389 0.062 0.107

REAFUM 5.00% 227 0.485 0.376 0.423
10.00% 123 0.607 0.163 0.257

PSM-Flow 1 occur 150(12.4) 0.382(0.019) 0.536(0.03) 0.446(0.02)
2 occur 46(8) 0.569(0.026) 0.418(0.042) 0.481(0.033)

WC3 SUBDUE MDL 2 occur 186 0.237 0.487 0.319
SUBDUE SIZE 2 occur 178 0.217 0.456 0.294
gSpan 2.00% 108 0.391 0.444 0.416

5.00% 29 0.255 0.052 0.086
10.00% 9 0.226 0.016 0.029

REAFUM 2.00% 76 0.332 0.314 0.323
5.00% 45 0.269 0.047 0.08
10.00% 4 0.5 0.016 0.03

PSM-Flow 1 occur 318(9.66) 0.307(0.008) 0.586(0.014) 0.403(0.009)
2 occur 150(10.9) 0.374(0.018) 0.514(0.022) 0.433(0.019)

TABLE II: Comparison results between PSM-Flow, SUBDUE and gSpan on three workflow corpora

(brain image understanding, 3D skull imaging, genetic
modeling of the face, etc.).

2) Workflow corpus 2 (WC2): A set of 94 workflows from
one user, sometimes done in collaboration with others.
Most of the workflows have been made public.

3) Workflow corpus 3 (WC3): A set of 269 workflows,
submitted to the LONI pipeline for execution by 62
different users.

The data is available at [7].

A. Workflow Data
When designing workflows, users tend to consider several

related computational steps as a unit. Here we refer to this
unit as a user grouping. User groupings occur frequently in
workflow corpora as users reuse them. In order to assess PSM-
Flow, we compare the groupings created by users of the LONI
Pipeline for the workflows in the evaluation corpora to the
fragments automatically extracted by PSM-Flow, following a
similar approach in [9].

We compare PSM-FLow to three popular frequent graph
mining techniques, namely, gSpan, SUBDUE and REAFUM.
GSpan uses an exact match and depth first search strategy
to discover all possible frequent fragments, while SUBDUE
and REAFUM use inexact match approximation to discover
a set of frequent fragments. For SUBDUE, two heuristics,
Minimum Description Length (MDL) and size are used for
hierarchically reducing the search space when mining for
fragments [4].

For a fair comparison, we filter the candidate fragment set
by removing single-step fragments and non-closed fragments

(i.e., all those fragments that are included in another fragment
with the same number of occurrences).

B. Evaluation Metrics

Since our extracted fragments are in many cases highly
similar to user groupings but not exactly the same, we define
soft version of precision and recall metrics for the measuring
the performance. Let F denote the extracted fragments set, U
the user grouping set, and |X| the cardinality of the set X .

Soft precision =

P
f2F

max

u2U

overlap(f, u)

|F |

Soft recall =

P
u2U

max

f2F

overlap(f, u)

|U |
where the overlap between a fragment and a grouping is
defined as the number of common node labels between them.
Thus, the overlap value will be one if the fragment and the
grouping are the same. Notice that the overlap value will be
high as far as the node labels are the same, even though they
may have different topologies. The validity of the proposed
metric relies on the assumption that in a workflow corpus
node labels in a fragment imply a certain topology (due to the
compatibility between workflow steps) To take both precision
and recall into account, we also calculate the F-score for
comparison where F-score = 2 · precision·recall

precision+recall

.

C. Evaluation Results

Table II shows our evaluation results. We run PSM-Flow for
ten times for each data set and report the average and standard



deviation (shown in parenthesis) of performance measures
including precision, recall and the number of fragments for all
corpora. In addition, the frequency of gSpan and REAFUM
(i.e., the minimum number of times a common fragment has to
appear to be detected) is normalized to the size of the corpus
(2% meaning that any fragments appearing in more than 2%
of the workflows of a corpus will be detected).

It should be noticed that looking merely on precision and
recall could be misleading because different methods with dif-
ferent parameter settings give different number of fragments.
For example, it is normal that the more number of fragments,
the higher the recall, although not necessarily higher precision.
Because of that, we cannot declare one method is better than
the others based on either recall or precision, as they are highly
affected by the number of detected fragments which can be
adjusted by the minimum support.

F-score is a commonly used as performance metric to
address the bias as it balances the precision and recall. In terms
of F-score, PSM-Flow performs best in WC1 and WC3 when
removing all candidate fragments with a single occurrence
while only slightly worse than gSpan in WC2.

In addition, we also plot the precision-recall graph for each
method as indicated in Figure 8. To compute that, we first sort
the fragments by their support values so that we can get top-k
fragments. Then we plot precision/recall/F score with different
values of k for all methods.

PSM-Flow outperforms all methods for WC2 and WC3, and
all except SUBDUE (SIZE) for WC1. The result implies that
PSM-Flow can achieve better precision and recall trade-off.
In other words, given same precision, PSM-Flow can have a
higher recall and vice versa.

Sometimes, precision could be more preferable over recall
in our task due to the fact that what we are interested in
is in getting useful fragments, i.e., those that are similar to
what users have identified, rather than high recall, which is
subjective to the way users design. Figure 7 compares the
precision and demonstrates that PSM-Flow tends to obtain
higher precision for those most frequent fragments in all
corpora.

Two extracted workflow fragments from WC2 under the
same topic are shown in figure 5. These two fragments are used
for graphical model based multivariate analysis (GAMMA) in
neuroimaging data analysis. Compared to the first fragment,
the second fragment replaces GAMMAlgorithm component
with GAMMAEl (GAMMA with ensemble learning). This is
a case where two fragments share similar functionality but
using different versions of a algorithm. PSM-Flow can extract
both fragments and put them into the same topic showing that
variations of fragments are captured.

In terms of scalability, we have executed PSM-Flow with
synthetic workflow data using a procedure similar to [1]. We
tested PSM-Flow with different number of workflows (D) and
fixed parameters, with the number of node label types(N) equal
to 100, with the number of fragments contained in a workflow
(S) equal to 5, with the size of generated fragments (I) equal to

Fig. 5: Two fragments extracted fragments by PSM-Flow on
WC2

Fig. 6: Scalability on the number of workflows

15 and with the number of frequent fragment types (L) equal
to 20.

The number of transactions (workflows) versus runtime is
plotted in Figure 6, which shows that the runtime of PSM-
Flow grows linearly with the size of workflow corpus.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced PSM-Flow, a probabilistic
subgraph mining algorithm which is a novel way to adopt
the topic modeling approach for robust reusable fragment
discovery in scientific workflows. The method tends to im-
prove the robustness of discovered fragments by capturing
their variations in a probabilistic framework. Promising results
have been obtained using workflow data.

For future work, we may make use of other types of
information like author information for mining workflows. It
is also possible to further extend the evaluation of PSM-Flow
in other graph mining tasks such as social networks.
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