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Abstract—Scientific workflows provide the means to define, 

execute and reproduce computational experiments.  However, 
reusing existing workflows still poses challenges for workflow 
designers. Workflows are often too large and too specific to reuse in 
their entirety, so reuse is more likely to happen for fragments of 
workflows. These fragments may be identified manually by users as 
sub-workflows, or detected automatically.  In this paper we present 
the FragFlow approach, which detects workflow fragments 
automatically by analyzing existing workflow corpora with graph 
mining algorithms.  FragFlow detects the most common workflow 
fragments, links them to the original workflows and visualizes 
them. We evaluate our approach by comparing FragFlow results 
against user-defined sub-workflows from three different corpora of 
the LONI Pipeline system.  Based on this evaluation, we discuss 
how automated workflow fragment detection could facilitate 
workflow reuse. 

Keywords—scientific workflow; workflow fragment; workflow 
reuse; LONI pipeline.  

I.  INTRODUCTION  
Scientific workflows are templates that define the set of steps 
and data dependencies needed to execute computational 
experiments. They are usually created for executing research 
methods and sharing them with a community of users [21] [8], 
even in cases where the community is small (e.g., a research 
lab). Scientific workflows can ease data management among 
different steps [9] [15], facilitate collaborative development 
through a common interface and simplify access to 
computational resources (e.g., clusters, grids, etc.).  

Different scientific workflows often share part of their 
functionality (common preprocessing steps, data manipulation 
for a particular visualization, reformatting, etc). A prior study 
analyzing workflows from different workflow systems and 
domains showed that almost 20% percent of the analyzed 
workflows were composed of other workflows [6]. Some 
systems even allow users to define hierarchical workflows to 
exploit these commonalities and split workflows into smaller 
reusable parts [15] [21]. However, there is not much support for 
the automatic detection of sub-workflows at the moment. 

In our work, we aim to automatically discover and expose 
common workflow fragments from a given corpus of workflows. 

Capturing common workflow fragments may bring in several 
benefits to workflows users and designers: they simplify the 
visualization of the workflow (simpler visualizations lead to 
better organization and comprehension), they make the 
workflow easier to understand, they modularize the functionality 
(by separating the different reusable parts of the workflow) and 
they save time in workflow design (designers are more likely to 
reuse fragments rather than complete workflows, which are more 
specific). 

Our approach combines exact and inexact graph mining 
techniques to find the most common workflow fragments in a 
corpus of workflows. Our implementation, FragFlow1, builds on 
previous work [5], integrating additional graph mining 
algorithms and expanding it with filters, data preparation and 
statistical analysis steps. FragFlow can be configured to find 
fragments of different sizes or frequencies, visualize them and 
link them back to the original corpus of workflows.  

We evaluate our approach by comparing automatically 
detected workflow fragments to sub-workflows (groupings) 
created by users of the LONI Pipeline, a workflow system for 
neuroimaging analysis [21].  

This paper is structured as follows. Section II introduces the 
main goals for this work. Section III describes in detail the 
workflow mining algorithms for detecting fragments, while 
Section IV explains how they are used in FragFlow. Section V 
introduces details on the experimental setup (corpora used and 
evaluation metrics); and Section VI provides the results of the 
evaluation. Finally, Section VII introduces related work and we 
finish by discussing conclusions and future work in Section VIII. 

II. GOALS  
This section defines the main objectives of our work. First we 
introduce the terminology used in the paper, and then we 
describe our main goals.  
 We define a workflow fragment as a set of connected steps 
that are part of a workflow. We define common workflow 
fragments as those fragments that occur more than once in a 
corpus of workflows. The higher the frequency they occur, the 
more useful the workflow fragment may be, as they may have 
more potential for reuse. If a workflow is reused as a whole in 
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another workflow, it becomes a workflow fragment. We refer to 
FragFlow workflow fragments as those common workflow 
fragments detected automatically by our FragFlow system. 

We define a grouping as a workflow fragment manually 
identified by a user. A grouping is likely to be included in other 
workflows, but it is not always the case. A grouping may also 
have nested sub-groupings, which may or may not be included 
in another workflow or grouping. Groupings are likely to have 
an explicit function associated to them, explaining their main 
role in the workflow.   

An example of a workflow with groupings is depicted in 
Figure 1, where the main steps of the Minimal Deformation 
Target workflow (a workflow for creating an “average” image 
from a group of 3D images of the brain) are shown. The 
workflow was designed in the LONI Pipeline, a workflow 
system designed to create workflows in neuroimaging research. 
Figure 1 shows three groupings with different functionality 
(align linear, reconcile and define common; KL_MI3-step 
multiscale and Composite Geometric Averaging). Each of these 
groupings contains several steps. In the figure, the top grouping 
has been expanded to show its inner steps. In this workflow, 
each of the groupings occurs once. As the LONI Pipeline allows 
users to create groupings, we define LONI Pipeline groupings as 
those groupings created by users in the LONI Pipeline 
environment. 

 
Figure 1: Snapshot of the Minimal Deformation Target workflow (MDT). Three 
groupings have been highlighted (collapsed), and one of them (on top) has been 
expanded to show three inner components. The function of the groupings is 
exposed in their labels. 

The goal of this work is to answer the following questions:  
a) Are automatically detected workflow fragments similar 

to user-defined groupings? Users are likely to group parts of 
workflows that they reuse in other workflows. By comparing 
automatically detected FragFlow workflow fragments against 
user-defined LONI Pipeline groupings, we will be able to 
determine whether FragFlow fragments may be suggested 
automatically to the user as they create new workflows.  

b) For those automatically detected workflow fragments 
that are not similar to user-defined groupings, do users find 
them useful? Users create groupings in different manners. Our 
approach may find additional or alternative groupings to those 
originally defined manually by users.  

c) How are workflows and groupings reused? In this work 
we assume that workflows will be reused, based on a previous 
study in different workflow systems [6]. By measuring the size, 
distribution and number of LONI Pipeline  groupings, we can 
assess how groupings and templates are reused, and which 
design principles are followed by workflow designers (e.g., 
small groupings for simplicity, big groupings that can be pasted 
into other workflows, etc.). 

III. WORKFLOW FRAGMENT DETECTION ALGORITHMS 
Our approach is based on the application of graph mining 
techniques to a workflow corpus. This section introduces the 
algorithms that have been integrated in our system, FragFlow, 
which expands our previous work [5] and also includes result 
filtering, visualization and statistics of the common obtained 
fragments.  

We represent workflows as labeled directed acyclic graphs 
(LDAGs). We reuse mining techniques for Frequent Graph 
Matching detection (FGM). At the moment FragFlow integrates 
three different algorithms that use two types of graph mining 
techniques: 

Inexact FGM Techniques: techniques that use approximate 
measures to calculate the similarity between two graphs [12], 
and detect the commonalities among them. In general, these 
techniques apply heuristics to detect the most common workflow 
fragments efficiently. However, the solution is not always 
complete. Therefore, these techniques do not identify all the 
possible common fragments in the corpus. FragFlow integrates 
the SUBDUE algorithm [3], which applies graph clustering on 
the input corpus, and provides two different heuristics for 
detecting common fragments: 

• Minimum description length (MDL): at each iteration, 
the best fragment is chosen according to the bytes 
necessary to encode the input graph collection. 

• Size: at each iteration, the best fragment is chosen 
according to how the overall size of graph collection is 
reduced. 

Exact FGM Techniques: techniques that deliver all the 
possible frequent sub-graphs included in a dataset. FragFlow 
integrates two different algorithms:  



• The gSpan algorithm [22], one of the most popular exact 
FGM techniques, by using a deep first search strategy 
and canonical representation for each graph.  

• FSG [13], which uses a breadth first strategy and a 
canonical	
  labeling	
  method	
  for	
  graph	
  comparison.  

Since FSG works only on undirected labeled graphs, some of 
the fragments it finds on our LDAGs are incorrect. We are 
extending FragFlow to filter FSG results, but we have not 
included this algorithm in the evaluation of this work.  

A. Exact FGM versus inexact FGM techniques 
Both exact and inexact FGM techniques have advantages and 
disadvantages. On the one hand, inexact FGM techniques tend to 
find smaller but highly frequent patterns, although they might 
not identify all potential useful workflow fragments since they 
are incomplete.  

On the other hand, exact FGM techniques identify all 
possible fragments in the input corpus. However, when the 
frequent sub-graph size in the input dataset is high, exact FGM 
techniques might return too many fragment candidates, while 
consuming significant computational resources. Adjusting the 
parameters of the search (e.g., frequency of the desired 
workflow fragments) is important in order to obtain the best 
results.  

B. Frequency-based versus transaction-based techniques 
Another important aspect is how each technique considers the 
graphs of the input corpus. Some approaches are frequency-
based, i.e., they consider each candidate structure based on the 
number of times they appear (frequency), while others are 
transaction-based, i.e., they only consider a candidate structure 
once per input graph (support). For example, if a three step 
sequence appears 200 times in a workflow, a frequency based 
approach would consider the sequence of steps as a candidate 
fragment that appeared 200 times, while a transaction based 
approach would count it as one. Both techniques produce 
valuable workflow fragments, and are worth considering for 
detecting workflow common fragments. 
 In FragFlow all the currently integrated inexact FGM 
techniques are frequency based, while exact FGM techniques are 
transaction based. In this work we compare inexact and exact 
FGM to determine the best one to apply on each corpus. 

IV. FRAGMENT DETECTION IN FRAGFLOW 
Figure 2 shows the major components of FragFlow. First, a data 
preparation step is necessary to filter and format the workflow 
corpus. Then the chosen graph mining algorithm is applied, and 
the results filtered. Finally the results are visualized, statistics are 
calculated, and the fragments are linked to the workflows of the 
corpus where fragments appear. The following subsections 
explain in detail the preparation, filtering and linking steps.  

A. Data Preparation 
In this step workflows are converted to LDAG format. For each 
LDAG, the label of each node in the graph corresponds to the 
type of the step in the workflow, while the edges capture the 
dependencies between different steps in the workflow. 
Duplicated workflows are removed from the input corpus. For 
example, if the source of the corpus is the monthly executions in 

a server, it is likely to have many repeated workflows. In these 
cases, the most common fragments would be the most frequently 
executed workflows, what would be wrong.  

Single step workflows are also removed, as they are not 
meaningful fragments. Single step workflows are often run to 
test the function of a component of the library, which is then 
plugged into a bigger workflow. 

  
Figure 2: An overview of FragFlow. The rectangles represent major  steps, while 
the ellipses are the inputs and results from each step. Arrows represent where an 
input is used or produced by a step. 

B. Filtering and splitting workflow fragments 
FGM algorithms might return fragments that overlap or are 
included in other fragments. Thus we filter them to present 
refined results. We distinguish two types of fragments: 

a) Multistep fragments: fragments that are composed of 
more than one step. 
b) Multistep filtered fragments: multistep fragments that 
include other smaller fragments with the same number of 
occurrences as the larger fragment. Figure 3 shows an 
example, where four fragments are represented (f1, f2, f3 
and f4). Two fragments are part of other fragments (f1 is 
included in f2 and f3 in f4). However, the frequency of f1 
is equal to f2, while f3 occurs more times than f4. 
Therefore, f2, f3 and f4 are considered multistep filtered 
fragments, while f1 is not. 

 
Figure 3: Multistep fragments versus Filtered Multistep fragments 



In this work, we use multistep filtered fragments to simplify 
the results of exact FGM techniques, as they reduce drastically 
the number of fragment candidates. Other types of fragments are 
kept for statistical reports. This includes irreducible fragments 
(i.e., fragments that do not contain other fragments), irreducible 
multistep fragments (irreducible fragments with at least two 
steps), discarded fragments (fragments not considered as 
multistep filtered fragments,) etc. 

C. Linking Fragments to Workflows 
We bind each fragment to the original workflow corpus, in order 
to be able to relate different workflows with their common 
fragments. The rest of this section describes the model we use to 
represent and bind fragments to results and how the different 
fragments are bound to the workflows. 

1) The Workflow Fragment Description Ontology 
The Workflow Fragment Description Ontology2 (Wf-fd) 

aims to represent workflow fragments and link them to their 
occurrences in a workflow dataset. As shown in Figure 4, Wf-fd 
extends the p-plan ontology3 [7], as workflow fragments are 
always part of a workflow specification (p-plan:Plan). In 
particular, a wffd:WorkflowFragment is a subclass of p-
plan:Plan. A workflow fragment has steps (reusing p-plan:Step) 
which represent the individual data manipulation steps of a 
particular fragment. The order among the steps is also captured 
with the property p-plan:isPrecededBy between fragment steps. 

In Wf-fd there are two types of wffd:WorkflowFragments. 
On the one hand, a wffd:DetectedResultWorkflowFragment is a 
type of workflow fragment candidate, found after applying graph 
mining techniques or manual analysis on a workflow dataset. It 
identifies a unique fragment that can be found in a workflow 
dataset. On the other hand, a wffd:TiedWorkflowFragment 
represents how a wffd:DetectedResultWorkflowFragment was 
found in the workflow dataset, pointing to the particular steps of 
the workflows that are part of the fragment. An example is 
represented in Figure 5, where a fragment (resultF2) is found 
one time (linked through the tiedF4 detected result fragment) in 
a workflow (Workflow 2).  

 This separation allows each fragment to point to the specific 
steps of the workflow where it was found (wffd:foundAs), 
enabling queries to retrieve additional metadata for each 
fragment (e.g., number of times that a fragment has been 
detected in a workflow, how the fragment was found, etc.). 

Workflow fragments may be included as part of other 
workflow fragments. To capture this relationship among the 
detected result workflow fragments, we use the relationship 
wffd:isPartOfWorkflowFragment. 

2) Finding fragments in workflows 
Once the final set of fragments has been obtained, we link them 
to the original workflow corpus represented in Wf-fd. To find 
where a fragment occurs in the original workflow corpus, we 
create SPARQL queries with each fragment.  

                                                             
2 http://purl.org/net/wf-fd 
3 http://purl.org/net/p-plan 

 
Figure 4: Wf-fd overview 

 
Figure 5: Wf-fd example. A fragment (resultF2) is found one time (tiedF4) in 
workflow 2. 

Workflow fragments detected by exact FGM techniques are 
trivial to transform to SPARQL queries: each node is 
transformed to a p-plan:Step, and each dependency among two 
steps is represented with the p-plan:isPreceededBy relationship. 
However, workflow fragments detected with inexact matching 
techniques are more complex to transform. For example, 
consider the fragment represented on the left of Figure 6 
(Fragment 1), where step A is followed by Fragment 2 
(composed by two steps B and C). Fragment 1 determines that 
step A is followed by Fragment 2, but it doesn’t specify if step B 
or C (due to the inexact matching approach). Therefore, we try 
both possibilities, translating the fragment to the two possible 
interpretations shown on the right of the figure (Query 1 and 
Query 2). 

The answers for each query (or set of queries in inexact 
matching) of a fragment are all the possible bindings within all 
workflows, showing how and where each fragment was found in 
each of the workflows of the original corpus.  

 
Figure 6: Transforming inexact FGM fragments to queries. The fragment of the 
left can be transformed to two different queries (inexact approach). 



V. EXPERIMENTAL SETUP 

This section describes the main features of the corpora that 
we use to evaluate our approach (Section V.A), along with the 
types of users who have developed it, and defines the metrics to 
evaluate our approach (Section V.B). All the corpora, evaluation 
and results used in this paper are available online as a Research 
Object4. 

A. Workflow Corpora 
We tested our approach on three different workflow corpora 
created with the LONI Pipeline workflow system (described in 
Section II). Two features of the LONI Pipeline are of interest for 
this work: 1) it enables users to define groupings in workflows 
and 2) it exposes a library of components identified in a unique 
way with well defined functionality5, which allows users to reuse 
popular components. We obtained two corpora from two 
different users, containing all the workflows created by them or 
in collaboration with other people. A third corpus contains the 
runs of 62 unique users submitted to the LONI Pipeline servers 
during January 2014.  

1) User Corpus 1 (WC1)  
A set of 790 workflows (475 workflows after applying our 

filtering) designed mostly by a single user. Some of the 
workflows are product of collaborations with other users, which 
produced different versions of workflows originally produced by 
this user. The domain of the workflows is in general medical 
imaging (brain image understanding, 3D skull imaging, genetic 
modeling of the face, etc.), and some are still used by the LONI 
Pipeline community. Other workflows were designed for a 
specific purpose and are not reused anymore. 

2) User Corpus 2 (WC2) 
A set of 113 well-documented workflows (96 after filtering) 

created and validated by one user, sometimes in collaboration 
with others. Most of the workflows have been made public for 
others to reuse6, and range from neuroimaging to genomics. 
Some of the workflows were developed as early as 2007, and 
many of them are being used in different institutions.  

3) Multi-user Corpus 3 (WC3) 
A set of 5859 workflows (357 after filtering), submitted to 

LONI pipeline for execution by 62 different users over the time 
lapse of a month (Jan 2014). The number of filtered workflows 
descends drastically from the input corpus as many of the 
executions are on the same workflow or are one component 
workflows designed for testing. 

TABLE 1: CORPUS OVERVIEW 
 Corpus Original 

size 
Size after 
Filtering 

Single 
user 

WC1 790 475 

WC2 113 96 
Multi 
user WC3 5859 357 

 

                                                             
4 http://purl.org/net/escience2014 
5 http://pipeline.loni.usc.edu/explore/library-navigator/ 
6 http://wiki.loni.usc.edu/twiki/bin/view/CCB/PipelineWorkflows 

In all three corpora, workflows are likely to reuse 
components from the public library, what allows groupings to be 
reused across different workflows. Table 1 provides an overview 
of the size of each corpus before and after filtering. 

B. Evaluation metrics  
This subsection introduces the metrics to evaluate our approach 
with respect to our first two goals defined in Section II. The third 
goal has been assessed by analyzing the distribution of the 
groupings in the corpora, so no additional metrics have been 
defined.  

1) Are automatically detected workflow fragments similar to 
user-defined groupings? 

We use precision and recall to measure how FragFlow 
fragments correspond to LONI Pipeline groupings and 
workflows.  We also consider LONI Pipeline workflows because 
some of the FragFlow fragments correspond to workflows 
defined by users. We use precision and recall metrics, defined 
as: 

P(Exact) =
|FragFlow  Frag   ∩    LONI  Gr.     ∪   LONI  wfs |

|FragFlow  Frag|
 

R(Exact) =
|FragFlow  Frag   ∩    LONI  Gr.     ∪   LONI  wfs |

|(LONI  Gr.     ∪   LONI  wfs)|
 

In the formula, the intersection between FragFlow fragments 
and the union of all LONI Pipeline groupings and workflows is 
calculated by measuring which FragFlow fragments are equal to 
a grouping or a workflow. 

We also relaxed the previous measure to look for those 
fragments that have a significant overlap (more than 80 %) of 
their steps with a grouping or workflow defined by the user 
(P(overlap) and R(Overlap) respectively). This additional 
measure determines how similar our fragments are with respect 
to a user defined grouping. 

The recall includes all groupings and workflows of the 
dataset on the denominator and those are not necessarily reused, 
thus we expect the recall to be very low. Also, as we do not 
know a priori how many of these groupings or workflows are 
commonly reused, we cannot remove them from the metric.  

2)  For those automatically detected workflow fragments 
that are not similar to user defined groupings, do users find 
them useful? 

To assess this goal, we perform a user evaluation, asking 
users to assess whether candidate FragFlow fragments are 
acceptable as groupings or not. We measured: 

Accuracy =
|FragFlow  Frag  accepable  groupings  by  user|

|FragFlow  Frag|
 

Similar to what happened for the previous goal, we also 
assess if the users would have first modified small parts of the 
fragment before adopting it or not. 

VI. EVALUATION 
This section presents the results of the evaluation of FragFlow, 
based on the metrics defined in subsection V.B. First, a 
quantitative evaluation of the inexact and exact FGM techniques 
is introduced in subsection VI.A. Then a preliminary user 
evaluation is described in subsection VI.B; while subsection 



VI.C discusses some observations about the usage of workflow 
groupings in the dataset. A summary of our findings can be seen 
in subsection VI.D. 

A. Quantitative evaluation 
We applied both inexact techniques (MDL, Size) and exact 

FGM techniques (gSpan) to test our approach. We decided to 
leave FSG (exact FGM) out of the evaluation, as it is designed to 
work with undirected graphs and may return incorrect fragments. 
The results of the evaluation are described below. 

1) Inexact FGM  
Table 2 shows the details of the results obtained by applying the 
MDL and Size heuristics of the SUBDUE algorithm to the 
different corpora. Both of these techniques are frequency-based 
approaches, that is, the frequency represents the number of times 
a fragment is found in the corpus (counting several times if the 
fragment appears several times in one workflow). The fragment 
frequencies are normalized according to the size of the dataset, 
in order to show how different frequencies affect the precision 
and recall of the found FragFlow fragments. The “min” row 
stands for the minimum frequency for a fragment to be detected, 
i.e., it appears at least two times in the corpus. 

For all three corpora many workflow fragments are found to 
be commonly reused. However, there are more common 
fragments with high frequency in the first two corpora than in 
the third (where there are no fragments with frequency higher 
than 10% of the size of the dataset). This can be attributed to the 
high number of users contributing to the corpus, while the first 
two corpora had a reduced set of contributors. 

In general, the maximum precision obtained ranges from 
40% to 75% in the corpora (approx), increasing to 72% to 80% 
(approx) when we consider the overlap approach. For the first 
two corpora the higher the frequency of a fragment is, the higher 
it is likely to be similar to a user defined grouping (with an 
overlap in their steps higher than 80%). In the third corpus this 
doesn’t hold (10% of precision loss), which can be due to the 
heterogeneity of the users designing the corpus. 

As expected, in all three corpora the recall is very low (32% 
for the best case, and usually under 20%), as all LONI groupings 
and workflows defined by users (whether reused or not) are 
included in the metric. When the frequency increases the recall 
decreases (down to 0,1% in some cases), according to the 
number of fragments found. 

2) Exact FGM  
Table 3 shows the results of applying the exact FGM techniques 
(gSpan algorithm) to the three corpora. In this case the 
techniques applied are transaction based, which means that the 
frequency percentage shown on each row represents the 
percentage of workflows in the corpora where a FragFlow 
fragment was found.  

As we described in Section III.A, exact FGM techniques aim 
to find all the possible workflow fragments in the corpus. Thus, 
when looking for fragments with support less than 5% for 
corpora 1 and 2, the number of fragments aimed to be returned 
by the algorithm is so high that the system runs out of memory. 

For the third corpus, the number of common fragments is lower, 
so the system manages to return results. 

When the fragments appear at least in 10% of the workflows 
in the dataset, the number of fragments found is still very high 
compared to inexact FGM techniques. However, after applying 
our filtering techniques, the FragFlow fragments are drastically 
reduced. This is because most of the fragment candidates 
detected by the exact FGM algorithm are not multistep filtered 
fragments. 

A surprising result is that the precision is worse than the 
fragments found by inexact FGM techniques. This could happen 
for two main reasons: a) Some of the FragFlow filtered 
fragments are very small (with two or three steps), and even 
though they are present in many different workflows, users may 
not consider them for groupings, and b) Some of the FragFlow 
filtered fragments have too many steps, which include the main 
smaller LONI Pipeline groupings designed by users with equal 
frequency. An example of b) can be seen in Figure 7. On the left 
of the figure a grouping is defined with a sub-grouping included 
in it (sub-grouping with steps B and C). Assuming that both the 
grouping and the sub-grouping are found the same number of 
times in the corpus, the fragment detected will be the one seen 
on the right of the figure, thus ignoring the sub-grouping. 

B. User evaluation 
To evaluate whether the FragFlow fragments that do not 

overlap with LONI groupings would be useful to users or not, 
we performed a preliminary evaluation by contacting the main 
contributors to corpus WC1 and WC2. Both users were provided 
with a set of 16 to 18 randomly selected FragFlow fragments 
produced for corpus WC1 and WC2 respectively, and were 
asked if they would use the fragment as it is, they would use it 
with major or minor changes (i.e., changing more or less than 
30% of the fragment), or they would not use it. 

The responses are summarized in Table 4. On the one hand, 
user 1 would select 66% of the proposed fragments (66% 
accuracy), using 11% as proposed, changing slightly 16% of 
them and doing major changes to 38% of them. When asked 
about the reasons to not use 33% of the FragFlow fragments, the 
user answered that they were too simple (two or three steps). 

 
Figure 7: Groupings defined by user versus fragments found. If a user defines 
sub-groupings that occur with the same frequency as the bigger fragments, then 
only the outmost fragment will be found by FragFlow. 

 



TABLE 2: INEXACT FGM RESULTS. THE RESULTS ARE NORMALIZED ACCORDING TO THE SIZE OF THE DATASET.  
     Exact Overlap (>80%) 

Corpus Workflows (w) 
+ groupings(g) 

Inexact 
FGM Frequency MultiStep 

Frag. Fragment Precision Recall Fragment  Precision Recall 

WC1 
475(w)+ 
209(g) 

MDL 

min 264 76 29% 11% 113 42% 16% 

2% 64 21 32% 3% 27 42% 3% 

5% 26 9 34% 1% 11 42% 1% 

10% 19 8 42% 1% 10 52% 1% 

Size 

min 381 136 35% 19% 223 58% 32% 

2% 52 20 38% 2% 32 61% 4% 

5% 22 8 36% 1% 14 63% 3% 

10% 10 3 30% 0,4% 8 80% 1% 

WC2 96 (w)+108(g) 

MDL 

min 95 15 15% 7% 21 22% 10% 

2% 95 15 15% 7% 21 22% 10% 

5% 12 3 25% 1% 3 25% 1% 

10% 5 2 40% 1% 2 40% 1% 

Size 

min 88 17 19% 8% 34 38% 16% 

2% 88 17 19% 8% 34 38% 16% 

5% 14 4 28% 2% 9 64% 4% 

10% 4 3 75% 1% 3 75% 1% 

WC3 375(w)+ 
175(g) 

MDL 

min 186 100 50% 18% 117 62% 21% 

2% 23 7 30% 1% 11 47% 2% 

5% 4 1 25% 0,1% 2 50% 0,3% 

10% 0 0 0% 0% 0 0% 0% 

Size 

min 178 101 56% 18% 119 66% 22% 

2% 22 12 54% 2% 16 72% 3% 

5% 8 3 37% 0,5% 4 50% 0,7% 

10% 0 0 0% 0% 0 0% 0% 
 

 
TABLE 3: EXACT FGM  RESULTS (GSPAN). THE RESULTS ARE NORMALIZED ACCORDING TO THE SIZE OF THE DATASET.  

     Exact Overlap (>80%) 

Corpus Wf (w) + 
groups. (g) Support MultiStep 

Fragments 

MultiStep  
Filtered 
Fragments 

Fragments Precision  Recall  Fragments  Precision  Recall  

WC1 
475(w) + 

209(g) 

5% Out of 
memory - - - - - - - 

10% 51613 16 1 6,2% 0,1% 11 69% 1% 

15% 2264 8 6 75% 0,8% 6 75% 0,8% 

20% 3 1 0 0% 0% 0 0% 0% 

WC2 96 (w) + 
108(g) 

5% Out of 
Memory - - - - - - - 

10% 33236 4 0 0% 0% 1 25% 0,4% 

15% 25 2 0 0% 0% 0 0% 0% 

20% 0 0 0 - - 0 - - 

WC3 375(w) + 
175(g) 

5% 5701 3 1 33% 0,1% 1 33% 0,1% 

10% 1074 1 1 100% 0,1% 1 100% 0,1% 

15% 1 1 0 0% 0% 0 0% 0% 

20% 0 0 0 - - 0 - - 

  



On the other hand, user 2 would reuse 100% of the fragments 
detected (100% accuracy), 43% of those as FragFlow  detected  
them,  50%  by  changing  more  than  one third of the 
components, and 6% with minor changes. When asked about the 
complexity of the fragments, user 2 argued that sometimes 
additional groupings would be necessary, since they help 
clarifying and organizing the workflow. 

TABLE 4: PRELIMINARY EVALUATION OF FRAGFLOW FRAGMENTS 

User Use as 
proposed 

Use with 
minor 

changes 

Use with 
major 

changes 
Not use 

User1 (WC1) 11% 16,6% 38% 33,3% 
User 2 (WC2) 44% 6% 50% 0% 

C. Analysis of user-created groupings 
Table 5 shows the statistics and distribution of user-defined 
groupings per corpus. The total number of groupings is more 
than twice the number of unique groupings, indicating that 
groupings are reused. Also, groupings are not found alone in 
corpora workflow. It is common to find more than four 
groupings in a workflow (when a workflow uses groupings). 

The number of workflows with groupings is higher when a 
single user created the corpus (327 out of 475 and 42 out of 96 
from Corpus 1 and 2 versus 89 out of 357 of Corpus 3). In WC1 
and WC2 the creators of the workflows are experienced users 
who know their previous workflows and are likely to reuse them, 
while the high number of users contributing to WC3 makes it 
difficult for all of them to be aware of the workflows from other 
colleagues. 

Another interesting fact is the size of the groupings size, 
being up to 60 in Corpus 3 and down to 0 in Corpus 2. After 
exploring several workflows showing this practice, we have 
realized that the high number of steps for some groupings is 
because users sometimes declare a whole workflow as a 
grouping. A possible explanation is that this would either 
facilitate copying and pasting the grouping into other templates, 
or either help organizing the workflow for the creator: when 
workflows are too complex, users often separate their 
functionality in several smaller workflows. Then, each smaller 
workflow is declared a grouping and copied and linked in a 
bigger workflow. 

Regarding the minimum size of groupings, we have 
discovered that sometimes workflow creators group unused 
inputs or outputs in workflows, leading to groupings of 0 steps. 
A possible explanation to groupings of size 1 is that the 
workflow creators annotate extra instructions when using a 
specific component in a workflow (in our analysis only 
groupings of size >1 are considered, shown in the unique 
multistep grouping column of Table 5). 

TABLE 5: STATISTICS AND DISTRIBUTION OF GROUPINGS IN THE CORPORA 

Corpus Total 
qroup. 

Unique 
multistep 

qroup. 

Wf with 
qroup. 

Avg. 
group. per 

wf 

Max nºof 
steps in 
qroup. 

Min nº of 
steps in 
qroup. 

WC1 1463 209 327 4 56 1 
WC2 302 108 42 7 39 0 
WC3 456 175 89 5 60 1 

In general, groupings defined by users depend on the 
granularity that the user is interested in. Some users may not 
want to see many workflow steps at the same time, and therefore 

some groupings may contain other sub-groupings, (which may 
simplify visualization of the workflow), while other users define 
groupings just according to the functionality of their inner steps.  

D. Findings 
Our findings are related to the goals presented in Section II. Our 
first main finding (goal II.a) is that when the fragment frequency 
is set to 10% of the size of the corpus, 30% to 75% of the total 
FragFlow fragments found correspond directly to user-defined 
groupings in the single user corpora. In the multi user corpus, 
the best results are 50% to 56% with minimum frequency. If we 
consider the overlap of 80% of the steps, the precision is 40% to 
80%. However, there is no common configuration in FragFlow 
to obtain the best fragment results, as the fragments found 
depend on how users define the groupings on each corpus. 

Our second main finding is that users find FragFlow 
fragments proposed as useful candidates for groupings, and 
therefore useful for reuse in their workflows (goal II.b). For one 
user 66% of the proposed fragments were useful, for another 
100% were useful. Even though this preliminary user-based 
evaluation cannot be considered definitive (an evaluation with 
more participants is needed), it indicates that FragFlow can be 
useful to users. In this regard, in our case it is better to be 
accurate with the fragments suggested to the user rather than 
trying to find all the possible desired groupings, as that could 
overwhelm the user with suggestions. 

Lastly, we studied the distribution and size of the groupings 
in the corpora, which gives an insight into how workflows and 
groupings are reused (goal II.c). We showed how likely they are 
to be reused, and found that there is a minimum of 4 groupings 
per workflow in those workflows using groupings. We also 
showed how much they are reused, with 209 groupings reused 
1463 times in WC1. Although the analysis in Table 5 gives an 
idea on how groupings are reused in the corpora, a further 
analysis studying where each grouping and workflow is reused is 
necessary (similar to the approach in [20]). This will also help to 
refine the recall metric for the evaluation of FragFlow.  

VII. RELATED WORK 
Workflow discovery for reuse has been addressed in prior work. 
Goderis and colleagues [11] apply sub-graph isomorphism 
techniques for finding the most similar workflows to a given 
one, and perform benchmarks for workflow discovery on that 
basis [10]. Bergman and Gil [2] go a step further, enabling users 
to find workflows according to different criteria (e.g., having a 
specific input or output type). While these approaches aim to 
discover workflows based on certain parameters provided by the 
user, in our work we aim to expose the most common fragments 
already in use in a workflow corpus.  

Other approaches are based on data mining techniques. 
Process mining approaches have been used to extract Petri nets 
and decision trees from event logs [1] [19], in order to know 
which decision to take at a certain point. The LONI Pipeline has 
a Workflow Miner7 module, which follows a statistical approach 
by measuring the components that most likely precede or are 
followed by a given component. Leake and Kendall-Morwick 
[14] rely on CBR approaches to mine provenance traces in order 

                                                             
7 http://pipeline.loni.usc.edu/products-services/workflow-miner/ 



to suggest components when users edit new workflows. The 
difference with our approach in these cases is that we propose 
the most reused fragments as new workflows/groupings, instead 
of deriving the whole process network to choose the next most 
probable component when designing a workflow. 

Other approaches also use graph mining techniques to derive 
the most common usage patterns in a repository of workflows 
[4], including our previous work [5]. However, they are either 
limited to a single type of algorithm (SUBDUE MDL [4]), or 
they provide limited means to refine and link fragments to the 
input workflow catalogue. In this work we have shown up to 
three different graph mining algorithms to detect fragments, and 
we have introduced methods to filter and link them to the 
original workflows.  

Finally, other work [18] explores the application of topic 
modeling analysis to workflow repositories in order to cluster 
components and explore them easily. That approach could be 
combined with our work to allow users to explore proposed 
FragFlow fragments.  

VIII. CONCLUSIONS AND FUTURE WORK 
In this paper we introduced an approach to find the most 
common fragments in a corpus of workflows. We described an 
implementation of our approach, FragFlow, which integrates 
several graph mining techniques, and we evaluated the results 
against user defined groupings of three corpora belonging to the 
LONI Pipeline system.  

FragFlow can be used with different settings, varying the 
minimum or maximum frequency of the fragments to find, their 
minimum and maximum size and the type of the graph mining 
algorithm to be applied. By combining different configurations, 
we believe we will be able to improve the outcome of our 
system, according to user-defined preferences. 

FragFlow also allows integrating new algorithms as part of 
its catalog. We are exploring Sigma [16] (inexact FGM) and 
Gaston [17] (exact FGM) as alternative algorithms. 

Future work includes testing FragFlow with other workflow 
systems (Galaxy [8], Taverna [15], etc.), domains, and further 
user evaluations. Ultimately, we would like to evaluate how 
workflows and workflow fragment reuse improve when users 
are proposed automatically mined workflow fragments.  
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