
FragFlow: Automated Fragment Detection
in Scientific Workflows

Daniel Garijo, Oscar Corcho
Ontology Engineering Group
Dpto. Inteligencia Artificial,

Facultad de Informática
Universidad Politécnica

de Madrid
{dgarijo, ocorcho}@fi.upm.es

Yolanda Gil
Information Sciences Institute
and Department of Computer

Science
University of Southern

California
gil@isi.edu

Boris A. Gutman, Ivo D. Dinov,
Paul Thompson and

Arthur W. Toga
Laboratory of Neuro Imaging

Institute for Neuroimaging and
Informatics

Keck School of Medicine
University of Southern California

Abstract—Scientific workflows provide the means to define,

execute and reproduce computational experiments. However,
reusing existing workflows still poses challenges for workflow
designers. Workflows are often too large and too specific to reuse in
their entirety, so reuse is more likely to happen for fragments of
workflows. These fragments may be identified manually by users as
sub-workflows, or detected automatically. In this paper we present
the FragFlow approach, which detects workflow fragments
automatically by analyzing existing workflow corpora with graph
mining algorithms. FragFlow detects the most common workflow
fragments, links them to the original workflows and visualizes
them. We evaluate our approach by comparing FragFlow results
against user-defined sub-workflows from three different corpora of
the LONI Pipeline system. Based on this evaluation, we discuss
how automated workflow fragment detection could facilitate
workflow reuse.

Keywords—scientific workflow; workflow fragment; workflow
reuse; LONI pipeline.

I. INTRODUCTION
Scientific workflows are templates that define the set of steps
and data dependencies needed to execute computational
experiments. They are usually created for executing research
methods and sharing them with a community of users [21] [8],
even in cases where the community is small (e.g., a research
lab). Scientific workflows can ease data management among
different steps [9] [15], facilitate collaborative development
through a common interface and simplify access to
computational resources (e.g., clusters, grids, etc.).

Different scientific workflows often share part of their
functionality (common preprocessing steps, data manipulation
for a particular visualization, reformatting, etc). A prior study
analyzing workflows from different workflow systems and
domains showed that almost 20% percent of the analyzed
workflows were composed of other workflows [6]. Some
systems even allow users to define hierarchical workflows to
exploit these commonalities and split workflows into smaller
reusable parts [15] [21]. However, there is not much support for
the automatic detection of sub-workflows at the moment.

In our work, we aim to automatically discover and expose
common workflow fragments from a given corpus of workflows.

Capturing common workflow fragments may bring in several
benefits to workflows users and designers: they simplify the
visualization of the workflow (simpler visualizations lead to
better organization and comprehension), they make the
workflow easier to understand, they modularize the functionality
(by separating the different reusable parts of the workflow) and
they save time in workflow design (designers are more likely to
reuse fragments rather than complete workflows, which are more
specific).

Our approach combines exact and inexact graph mining
techniques to find the most common workflow fragments in a
corpus of workflows. Our implementation, FragFlow1, builds on
previous work [5], integrating additional graph mining
algorithms and expanding it with filters, data preparation and
statistical analysis steps. FragFlow can be configured to find
fragments of different sizes or frequencies, visualize them and
link them back to the original corpus of workflows.

We evaluate our approach by comparing automatically
detected workflow fragments to sub-workflows (groupings)
created by users of the LONI Pipeline, a workflow system for
neuroimaging analysis [21].

This paper is structured as follows. Section II introduces the
main goals for this work. Section III describes in detail the
workflow mining algorithms for detecting fragments, while
Section IV explains how they are used in FragFlow. Section V
introduces details on the experimental setup (corpora used and
evaluation metrics); and Section VI provides the results of the
evaluation. Finally, Section VII introduces related work and we
finish by discussing conclusions and future work in Section VIII.

II. GOALS
This section defines the main objectives of our work. First we
introduce the terminology used in the paper, and then we
describe our main goals.
 We define a workflow fragment as a set of connected steps
that are part of a workflow. We define common workflow
fragments as those fragments that occur more than once in a
corpus of workflows. The higher the frequency they occur, the
more useful the workflow fragment may be, as they may have
more potential for reuse. If a workflow is reused as a whole in

1 http://dx.doi.org/10.5281/zenodo.11219

Proceedings of the Tenth IEEE Conference on e-Science, Guaruja, Brazil, October 20-24, 2014

another workflow, it becomes a workflow fragment. We refer to
FragFlow workflow fragments as those common workflow
fragments detected automatically by our FragFlow system.

We define a grouping as a workflow fragment manually
identified by a user. A grouping is likely to be included in other
workflows, but it is not always the case. A grouping may also
have nested sub-groupings, which may or may not be included
in another workflow or grouping. Groupings are likely to have
an explicit function associated to them, explaining their main
role in the workflow.

An example of a workflow with groupings is depicted in
Figure 1, where the main steps of the Minimal Deformation
Target workflow (a workflow for creating an “average” image
from a group of 3D images of the brain) are shown. The
workflow was designed in the LONI Pipeline, a workflow
system designed to create workflows in neuroimaging research.
Figure 1 shows three groupings with different functionality
(align linear, reconcile and define common; KL_MI3-step
multiscale and Composite Geometric Averaging). Each of these
groupings contains several steps. In the figure, the top grouping
has been expanded to show its inner steps. In this workflow,
each of the groupings occurs once. As the LONI Pipeline allows
users to create groupings, we define LONI Pipeline groupings as
those groupings created by users in the LONI Pipeline
environment.

Figure 1: Snapshot of the Minimal Deformation Target workflow (MDT). Three
groupings have been highlighted (collapsed), and one of them (on top) has been
expanded to show three inner components. The function of the groupings is
exposed in their labels.

The goal of this work is to answer the following questions:
a) Are automatically detected workflow fragments similar

to user-defined groupings? Users are likely to group parts of
workflows that they reuse in other workflows. By comparing
automatically detected FragFlow workflow fragments against
user-defined LONI Pipeline groupings, we will be able to
determine whether FragFlow fragments may be suggested
automatically to the user as they create new workflows.

b) For those automatically detected workflow fragments
that are not similar to user-defined groupings, do users find
them useful? Users create groupings in different manners. Our
approach may find additional or alternative groupings to those
originally defined manually by users.

c) How are workflows and groupings reused? In this work
we assume that workflows will be reused, based on a previous
study in different workflow systems [6]. By measuring the size,
distribution and number of LONI Pipeline groupings, we can
assess how groupings and templates are reused, and which
design principles are followed by workflow designers (e.g.,
small groupings for simplicity, big groupings that can be pasted
into other workflows, etc.).

III. WORKFLOW FRAGMENT DETECTION ALGORITHMS
Our approach is based on the application of graph mining
techniques to a workflow corpus. This section introduces the
algorithms that have been integrated in our system, FragFlow,
which expands our previous work [5] and also includes result
filtering, visualization and statistics of the common obtained
fragments.

We represent workflows as labeled directed acyclic graphs
(LDAGs). We reuse mining techniques for Frequent Graph
Matching detection (FGM). At the moment FragFlow integrates
three different algorithms that use two types of graph mining
techniques:

Inexact FGM Techniques: techniques that use approximate
measures to calculate the similarity between two graphs [12],
and detect the commonalities among them. In general, these
techniques apply heuristics to detect the most common workflow
fragments efficiently. However, the solution is not always
complete. Therefore, these techniques do not identify all the
possible common fragments in the corpus. FragFlow integrates
the SUBDUE algorithm [3], which applies graph clustering on
the input corpus, and provides two different heuristics for
detecting common fragments:

• Minimum description length (MDL): at each iteration,
the best fragment is chosen according to the bytes
necessary to encode the input graph collection.

• Size: at each iteration, the best fragment is chosen
according to how the overall size of graph collection is
reduced.

Exact FGM Techniques: techniques that deliver all the
possible frequent sub-graphs included in a dataset. FragFlow
integrates two different algorithms:

• The gSpan algorithm [22], one of the most popular exact
FGM techniques, by using a deep first search strategy
and canonical representation for each graph.

• FSG [13], which uses a breadth first strategy and a
canonical	
 labeling	
 method	
 for	
 graph	
 comparison.

Since FSG works only on undirected labeled graphs, some of
the fragments it finds on our LDAGs are incorrect. We are
extending FragFlow to filter FSG results, but we have not
included this algorithm in the evaluation of this work.

A. Exact FGM versus inexact FGM techniques
Both exact and inexact FGM techniques have advantages and
disadvantages. On the one hand, inexact FGM techniques tend to
find smaller but highly frequent patterns, although they might
not identify all potential useful workflow fragments since they
are incomplete.

On the other hand, exact FGM techniques identify all
possible fragments in the input corpus. However, when the
frequent sub-graph size in the input dataset is high, exact FGM
techniques might return too many fragment candidates, while
consuming significant computational resources. Adjusting the
parameters of the search (e.g., frequency of the desired
workflow fragments) is important in order to obtain the best
results.

B. Frequency-based versus transaction-based techniques
Another important aspect is how each technique considers the
graphs of the input corpus. Some approaches are frequency-
based, i.e., they consider each candidate structure based on the
number of times they appear (frequency), while others are
transaction-based, i.e., they only consider a candidate structure
once per input graph (support). For example, if a three step
sequence appears 200 times in a workflow, a frequency based
approach would consider the sequence of steps as a candidate
fragment that appeared 200 times, while a transaction based
approach would count it as one. Both techniques produce
valuable workflow fragments, and are worth considering for
detecting workflow common fragments.
 In FragFlow all the currently integrated inexact FGM
techniques are frequency based, while exact FGM techniques are
transaction based. In this work we compare inexact and exact
FGM to determine the best one to apply on each corpus.

IV. FRAGMENT DETECTION IN FRAGFLOW
Figure 2 shows the major components of FragFlow. First, a data
preparation step is necessary to filter and format the workflow
corpus. Then the chosen graph mining algorithm is applied, and
the results filtered. Finally the results are visualized, statistics are
calculated, and the fragments are linked to the workflows of the
corpus where fragments appear. The following subsections
explain in detail the preparation, filtering and linking steps.

A. Data Preparation
In this step workflows are converted to LDAG format. For each
LDAG, the label of each node in the graph corresponds to the
type of the step in the workflow, while the edges capture the
dependencies between different steps in the workflow.
Duplicated workflows are removed from the input corpus. For
example, if the source of the corpus is the monthly executions in

a server, it is likely to have many repeated workflows. In these
cases, the most common fragments would be the most frequently
executed workflows, what would be wrong.

Single step workflows are also removed, as they are not
meaningful fragments. Single step workflows are often run to
test the function of a component of the library, which is then
plugged into a bigger workflow.

Figure 2: An overview of FragFlow. The rectangles represent major steps, while
the ellipses are the inputs and results from each step. Arrows represent where an
input is used or produced by a step.

B. Filtering and splitting workflow fragments
FGM algorithms might return fragments that overlap or are
included in other fragments. Thus we filter them to present
refined results. We distinguish two types of fragments:

a) Multistep fragments: fragments that are composed of
more than one step.
b) Multistep filtered fragments: multistep fragments that
include other smaller fragments with the same number of
occurrences as the larger fragment. Figure 3 shows an
example, where four fragments are represented (f1, f2, f3
and f4). Two fragments are part of other fragments (f1 is
included in f2 and f3 in f4). However, the frequency of f1
is equal to f2, while f3 occurs more times than f4.
Therefore, f2, f3 and f4 are considered multistep filtered
fragments, while f1 is not.

Figure 3: Multistep fragments versus Filtered Multistep fragments

In this work, we use multistep filtered fragments to simplify
the results of exact FGM techniques, as they reduce drastically
the number of fragment candidates. Other types of fragments are
kept for statistical reports. This includes irreducible fragments
(i.e., fragments that do not contain other fragments), irreducible
multistep fragments (irreducible fragments with at least two
steps), discarded fragments (fragments not considered as
multistep filtered fragments,) etc.

C. Linking Fragments to Workflows
We bind each fragment to the original workflow corpus, in order
to be able to relate different workflows with their common
fragments. The rest of this section describes the model we use to
represent and bind fragments to results and how the different
fragments are bound to the workflows.

1) The Workflow Fragment Description Ontology
The Workflow Fragment Description Ontology2 (Wf-fd)

aims to represent workflow fragments and link them to their
occurrences in a workflow dataset. As shown in Figure 4, Wf-fd
extends the p-plan ontology3 [7], as workflow fragments are
always part of a workflow specification (p-plan:Plan). In
particular, a wffd:WorkflowFragment is a subclass of p-
plan:Plan. A workflow fragment has steps (reusing p-plan:Step)
which represent the individual data manipulation steps of a
particular fragment. The order among the steps is also captured
with the property p-plan:isPrecededBy between fragment steps.

In Wf-fd there are two types of wffd:WorkflowFragments.
On the one hand, a wffd:DetectedResultWorkflowFragment is a
type of workflow fragment candidate, found after applying graph
mining techniques or manual analysis on a workflow dataset. It
identifies a unique fragment that can be found in a workflow
dataset. On the other hand, a wffd:TiedWorkflowFragment
represents how a wffd:DetectedResultWorkflowFragment was
found in the workflow dataset, pointing to the particular steps of
the workflows that are part of the fragment. An example is
represented in Figure 5, where a fragment (resultF2) is found
one time (linked through the tiedF4 detected result fragment) in
a workflow (Workflow 2).

 This separation allows each fragment to point to the specific
steps of the workflow where it was found (wffd:foundAs),
enabling queries to retrieve additional metadata for each
fragment (e.g., number of times that a fragment has been
detected in a workflow, how the fragment was found, etc.).

Workflow fragments may be included as part of other
workflow fragments. To capture this relationship among the
detected result workflow fragments, we use the relationship
wffd:isPartOfWorkflowFragment.

2) Finding fragments in workflows
Once the final set of fragments has been obtained, we link them
to the original workflow corpus represented in Wf-fd. To find
where a fragment occurs in the original workflow corpus, we
create SPARQL queries with each fragment.

2 http://purl.org/net/wf-fd
3 http://purl.org/net/p-plan

Figure 4: Wf-fd overview

Figure 5: Wf-fd example. A fragment (resultF2) is found one time (tiedF4) in
workflow 2.

Workflow fragments detected by exact FGM techniques are
trivial to transform to SPARQL queries: each node is
transformed to a p-plan:Step, and each dependency among two
steps is represented with the p-plan:isPreceededBy relationship.
However, workflow fragments detected with inexact matching
techniques are more complex to transform. For example,
consider the fragment represented on the left of Figure 6
(Fragment 1), where step A is followed by Fragment 2
(composed by two steps B and C). Fragment 1 determines that
step A is followed by Fragment 2, but it doesn’t specify if step B
or C (due to the inexact matching approach). Therefore, we try
both possibilities, translating the fragment to the two possible
interpretations shown on the right of the figure (Query 1 and
Query 2).

The answers for each query (or set of queries in inexact
matching) of a fragment are all the possible bindings within all
workflows, showing how and where each fragment was found in
each of the workflows of the original corpus.

Figure 6: Transforming inexact FGM fragments to queries. The fragment of the
left can be transformed to two different queries (inexact approach).

V. EXPERIMENTAL SETUP

This section describes the main features of the corpora that
we use to evaluate our approach (Section V.A), along with the
types of users who have developed it, and defines the metrics to
evaluate our approach (Section V.B). All the corpora, evaluation
and results used in this paper are available online as a Research
Object4.

A. Workflow Corpora
We tested our approach on three different workflow corpora
created with the LONI Pipeline workflow system (described in
Section II). Two features of the LONI Pipeline are of interest for
this work: 1) it enables users to define groupings in workflows
and 2) it exposes a library of components identified in a unique
way with well defined functionality5, which allows users to reuse
popular components. We obtained two corpora from two
different users, containing all the workflows created by them or
in collaboration with other people. A third corpus contains the
runs of 62 unique users submitted to the LONI Pipeline servers
during January 2014.

1) User Corpus 1 (WC1)
A set of 790 workflows (475 workflows after applying our

filtering) designed mostly by a single user. Some of the
workflows are product of collaborations with other users, which
produced different versions of workflows originally produced by
this user. The domain of the workflows is in general medical
imaging (brain image understanding, 3D skull imaging, genetic
modeling of the face, etc.), and some are still used by the LONI
Pipeline community. Other workflows were designed for a
specific purpose and are not reused anymore.

2) User Corpus 2 (WC2)
A set of 113 well-documented workflows (96 after filtering)

created and validated by one user, sometimes in collaboration
with others. Most of the workflows have been made public for
others to reuse6, and range from neuroimaging to genomics.
Some of the workflows were developed as early as 2007, and
many of them are being used in different institutions.

3) Multi-user Corpus 3 (WC3)
A set of 5859 workflows (357 after filtering), submitted to

LONI pipeline for execution by 62 different users over the time
lapse of a month (Jan 2014). The number of filtered workflows
descends drastically from the input corpus as many of the
executions are on the same workflow or are one component
workflows designed for testing.

TABLE 1: CORPUS OVERVIEW
 Corpus Original

size
Size after
Filtering

Single
user

WC1 790 475

WC2 113 96
Multi
user WC3 5859 357

4 http://purl.org/net/escience2014
5 http://pipeline.loni.usc.edu/explore/library-navigator/
6 http://wiki.loni.usc.edu/twiki/bin/view/CCB/PipelineWorkflows

In all three corpora, workflows are likely to reuse
components from the public library, what allows groupings to be
reused across different workflows. Table 1 provides an overview
of the size of each corpus before and after filtering.

B. Evaluation metrics
This subsection introduces the metrics to evaluate our approach
with respect to our first two goals defined in Section II. The third
goal has been assessed by analyzing the distribution of the
groupings in the corpora, so no additional metrics have been
defined.

1) Are automatically detected workflow fragments similar to
user-defined groupings?

We use precision and recall to measure how FragFlow
fragments correspond to LONI Pipeline groupings and
workflows. We also consider LONI Pipeline workflows because
some of the FragFlow fragments correspond to workflows
defined by users. We use precision and recall metrics, defined
as:

P(Exact) =
|FragFlow Frag ∩ LONI Gr. ∪ LONI wfs |

|FragFlow Frag|

R(Exact) =
|FragFlow Frag ∩ LONI Gr. ∪ LONI wfs |

|(LONI Gr. ∪ LONI wfs)|

In the formula, the intersection between FragFlow fragments
and the union of all LONI Pipeline groupings and workflows is
calculated by measuring which FragFlow fragments are equal to
a grouping or a workflow.

We also relaxed the previous measure to look for those
fragments that have a significant overlap (more than 80 %) of
their steps with a grouping or workflow defined by the user
(P(overlap) and R(Overlap) respectively). This additional
measure determines how similar our fragments are with respect
to a user defined grouping.

The recall includes all groupings and workflows of the
dataset on the denominator and those are not necessarily reused,
thus we expect the recall to be very low. Also, as we do not
know a priori how many of these groupings or workflows are
commonly reused, we cannot remove them from the metric.

2) For those automatically detected workflow fragments
that are not similar to user defined groupings, do users find
them useful?

To assess this goal, we perform a user evaluation, asking
users to assess whether candidate FragFlow fragments are
acceptable as groupings or not. We measured:

Accuracy =
|FragFlow Frag accepable groupings by user|

|FragFlow Frag|

Similar to what happened for the previous goal, we also
assess if the users would have first modified small parts of the
fragment before adopting it or not.

VI. EVALUATION
This section presents the results of the evaluation of FragFlow,
based on the metrics defined in subsection V.B. First, a
quantitative evaluation of the inexact and exact FGM techniques
is introduced in subsection VI.A. Then a preliminary user
evaluation is described in subsection VI.B; while subsection

VI.C discusses some observations about the usage of workflow
groupings in the dataset. A summary of our findings can be seen
in subsection VI.D.

A. Quantitative evaluation
We applied both inexact techniques (MDL, Size) and exact

FGM techniques (gSpan) to test our approach. We decided to
leave FSG (exact FGM) out of the evaluation, as it is designed to
work with undirected graphs and may return incorrect fragments.
The results of the evaluation are described below.

1) Inexact FGM
Table 2 shows the details of the results obtained by applying the
MDL and Size heuristics of the SUBDUE algorithm to the
different corpora. Both of these techniques are frequency-based
approaches, that is, the frequency represents the number of times
a fragment is found in the corpus (counting several times if the
fragment appears several times in one workflow). The fragment
frequencies are normalized according to the size of the dataset,
in order to show how different frequencies affect the precision
and recall of the found FragFlow fragments. The “min” row
stands for the minimum frequency for a fragment to be detected,
i.e., it appears at least two times in the corpus.

For all three corpora many workflow fragments are found to
be commonly reused. However, there are more common
fragments with high frequency in the first two corpora than in
the third (where there are no fragments with frequency higher
than 10% of the size of the dataset). This can be attributed to the
high number of users contributing to the corpus, while the first
two corpora had a reduced set of contributors.

In general, the maximum precision obtained ranges from
40% to 75% in the corpora (approx), increasing to 72% to 80%
(approx) when we consider the overlap approach. For the first
two corpora the higher the frequency of a fragment is, the higher
it is likely to be similar to a user defined grouping (with an
overlap in their steps higher than 80%). In the third corpus this
doesn’t hold (10% of precision loss), which can be due to the
heterogeneity of the users designing the corpus.

As expected, in all three corpora the recall is very low (32%
for the best case, and usually under 20%), as all LONI groupings
and workflows defined by users (whether reused or not) are
included in the metric. When the frequency increases the recall
decreases (down to 0,1% in some cases), according to the
number of fragments found.

2) Exact FGM
Table 3 shows the results of applying the exact FGM techniques
(gSpan algorithm) to the three corpora. In this case the
techniques applied are transaction based, which means that the
frequency percentage shown on each row represents the
percentage of workflows in the corpora where a FragFlow
fragment was found.

As we described in Section III.A, exact FGM techniques aim
to find all the possible workflow fragments in the corpus. Thus,
when looking for fragments with support less than 5% for
corpora 1 and 2, the number of fragments aimed to be returned
by the algorithm is so high that the system runs out of memory.

For the third corpus, the number of common fragments is lower,
so the system manages to return results.

When the fragments appear at least in 10% of the workflows
in the dataset, the number of fragments found is still very high
compared to inexact FGM techniques. However, after applying
our filtering techniques, the FragFlow fragments are drastically
reduced. This is because most of the fragment candidates
detected by the exact FGM algorithm are not multistep filtered
fragments.

A surprising result is that the precision is worse than the
fragments found by inexact FGM techniques. This could happen
for two main reasons: a) Some of the FragFlow filtered
fragments are very small (with two or three steps), and even
though they are present in many different workflows, users may
not consider them for groupings, and b) Some of the FragFlow
filtered fragments have too many steps, which include the main
smaller LONI Pipeline groupings designed by users with equal
frequency. An example of b) can be seen in Figure 7. On the left
of the figure a grouping is defined with a sub-grouping included
in it (sub-grouping with steps B and C). Assuming that both the
grouping and the sub-grouping are found the same number of
times in the corpus, the fragment detected will be the one seen
on the right of the figure, thus ignoring the sub-grouping.

B. User evaluation
To evaluate whether the FragFlow fragments that do not

overlap with LONI groupings would be useful to users or not,
we performed a preliminary evaluation by contacting the main
contributors to corpus WC1 and WC2. Both users were provided
with a set of 16 to 18 randomly selected FragFlow fragments
produced for corpus WC1 and WC2 respectively, and were
asked if they would use the fragment as it is, they would use it
with major or minor changes (i.e., changing more or less than
30% of the fragment), or they would not use it.

The responses are summarized in Table 4. On the one hand,
user 1 would select 66% of the proposed fragments (66%
accuracy), using 11% as proposed, changing slightly 16% of
them and doing major changes to 38% of them. When asked
about the reasons to not use 33% of the FragFlow fragments, the
user answered that they were too simple (two or three steps).

Figure 7: Groupings defined by user versus fragments found. If a user defines
sub-groupings that occur with the same frequency as the bigger fragments, then
only the outmost fragment will be found by FragFlow.

TABLE 2: INEXACT FGM RESULTS. THE RESULTS ARE NORMALIZED ACCORDING TO THE SIZE OF THE DATASET.
 Exact Overlap (>80%)

Corpus Workflows (w)
+ groupings(g)

Inexact
FGM Frequency MultiStep

Frag. Fragment Precision Recall Fragment Precision Recall

WC1
475(w)+
209(g)

MDL

min 264 76 29% 11% 113 42% 16%

2% 64 21 32% 3% 27 42% 3%

5% 26 9 34% 1% 11 42% 1%

10% 19 8 42% 1% 10 52% 1%

Size

min 381 136 35% 19% 223 58% 32%

2% 52 20 38% 2% 32 61% 4%

5% 22 8 36% 1% 14 63% 3%

10% 10 3 30% 0,4% 8 80% 1%

WC2 96 (w)+108(g)

MDL

min 95 15 15% 7% 21 22% 10%

2% 95 15 15% 7% 21 22% 10%

5% 12 3 25% 1% 3 25% 1%

10% 5 2 40% 1% 2 40% 1%

Size

min 88 17 19% 8% 34 38% 16%

2% 88 17 19% 8% 34 38% 16%

5% 14 4 28% 2% 9 64% 4%

10% 4 3 75% 1% 3 75% 1%

WC3 375(w)+
175(g)

MDL

min 186 100 50% 18% 117 62% 21%

2% 23 7 30% 1% 11 47% 2%

5% 4 1 25% 0,1% 2 50% 0,3%

10% 0 0 0% 0% 0 0% 0%

Size

min 178 101 56% 18% 119 66% 22%

2% 22 12 54% 2% 16 72% 3%

5% 8 3 37% 0,5% 4 50% 0,7%

10% 0 0 0% 0% 0 0% 0%

TABLE 3: EXACT FGM RESULTS (GSPAN). THE RESULTS ARE NORMALIZED ACCORDING TO THE SIZE OF THE DATASET.

 Exact Overlap (>80%)

Corpus Wf (w) +
groups. (g) Support MultiStep

Fragments

MultiStep
Filtered
Fragments

Fragments Precision Recall Fragments Precision Recall

WC1
475(w) +

209(g)

5% Out of
memory - - - - - - -

10% 51613 16 1 6,2% 0,1% 11 69% 1%

15% 2264 8 6 75% 0,8% 6 75% 0,8%

20% 3 1 0 0% 0% 0 0% 0%

WC2 96 (w) +
108(g)

5% Out of
Memory - - - - - - -

10% 33236 4 0 0% 0% 1 25% 0,4%

15% 25 2 0 0% 0% 0 0% 0%

20% 0 0 0 - - 0 - -

WC3 375(w) +
175(g)

5% 5701 3 1 33% 0,1% 1 33% 0,1%

10% 1074 1 1 100% 0,1% 1 100% 0,1%

15% 1 1 0 0% 0% 0 0% 0%

20% 0 0 0 - - 0 - -

On the other hand, user 2 would reuse 100% of the fragments
detected (100% accuracy), 43% of those as FragFlow detected
them, 50% by changing more than one third of the
components, and 6% with minor changes. When asked about the
complexity of the fragments, user 2 argued that sometimes
additional groupings would be necessary, since they help
clarifying and organizing the workflow.

TABLE 4: PRELIMINARY EVALUATION OF FRAGFLOW FRAGMENTS

User Use as
proposed

Use with
minor

changes

Use with
major

changes
Not use

User1 (WC1) 11% 16,6% 38% 33,3%
User 2 (WC2) 44% 6% 50% 0%

C. Analysis of user-created groupings
Table 5 shows the statistics and distribution of user-defined
groupings per corpus. The total number of groupings is more
than twice the number of unique groupings, indicating that
groupings are reused. Also, groupings are not found alone in
corpora workflow. It is common to find more than four
groupings in a workflow (when a workflow uses groupings).

The number of workflows with groupings is higher when a
single user created the corpus (327 out of 475 and 42 out of 96
from Corpus 1 and 2 versus 89 out of 357 of Corpus 3). In WC1
and WC2 the creators of the workflows are experienced users
who know their previous workflows and are likely to reuse them,
while the high number of users contributing to WC3 makes it
difficult for all of them to be aware of the workflows from other
colleagues.

Another interesting fact is the size of the groupings size,
being up to 60 in Corpus 3 and down to 0 in Corpus 2. After
exploring several workflows showing this practice, we have
realized that the high number of steps for some groupings is
because users sometimes declare a whole workflow as a
grouping. A possible explanation is that this would either
facilitate copying and pasting the grouping into other templates,
or either help organizing the workflow for the creator: when
workflows are too complex, users often separate their
functionality in several smaller workflows. Then, each smaller
workflow is declared a grouping and copied and linked in a
bigger workflow.

Regarding the minimum size of groupings, we have
discovered that sometimes workflow creators group unused
inputs or outputs in workflows, leading to groupings of 0 steps.
A possible explanation to groupings of size 1 is that the
workflow creators annotate extra instructions when using a
specific component in a workflow (in our analysis only
groupings of size >1 are considered, shown in the unique
multistep grouping column of Table 5).

TABLE 5: STATISTICS AND DISTRIBUTION OF GROUPINGS IN THE CORPORA

Corpus Total
qroup.

Unique
multistep

qroup.

Wf with
qroup.

Avg.
group. per

wf

Max nºof
steps in
qroup.

Min nº of
steps in
qroup.

WC1 1463 209 327 4 56 1
WC2 302 108 42 7 39 0
WC3 456 175 89 5 60 1

In general, groupings defined by users depend on the
granularity that the user is interested in. Some users may not
want to see many workflow steps at the same time, and therefore

some groupings may contain other sub-groupings, (which may
simplify visualization of the workflow), while other users define
groupings just according to the functionality of their inner steps.

D. Findings
Our findings are related to the goals presented in Section II. Our
first main finding (goal II.a) is that when the fragment frequency
is set to 10% of the size of the corpus, 30% to 75% of the total
FragFlow fragments found correspond directly to user-defined
groupings in the single user corpora. In the multi user corpus,
the best results are 50% to 56% with minimum frequency. If we
consider the overlap of 80% of the steps, the precision is 40% to
80%. However, there is no common configuration in FragFlow
to obtain the best fragment results, as the fragments found
depend on how users define the groupings on each corpus.

Our second main finding is that users find FragFlow
fragments proposed as useful candidates for groupings, and
therefore useful for reuse in their workflows (goal II.b). For one
user 66% of the proposed fragments were useful, for another
100% were useful. Even though this preliminary user-based
evaluation cannot be considered definitive (an evaluation with
more participants is needed), it indicates that FragFlow can be
useful to users. In this regard, in our case it is better to be
accurate with the fragments suggested to the user rather than
trying to find all the possible desired groupings, as that could
overwhelm the user with suggestions.

Lastly, we studied the distribution and size of the groupings
in the corpora, which gives an insight into how workflows and
groupings are reused (goal II.c). We showed how likely they are
to be reused, and found that there is a minimum of 4 groupings
per workflow in those workflows using groupings. We also
showed how much they are reused, with 209 groupings reused
1463 times in WC1. Although the analysis in Table 5 gives an
idea on how groupings are reused in the corpora, a further
analysis studying where each grouping and workflow is reused is
necessary (similar to the approach in [20]). This will also help to
refine the recall metric for the evaluation of FragFlow.

VII. RELATED WORK
Workflow discovery for reuse has been addressed in prior work.
Goderis and colleagues [11] apply sub-graph isomorphism
techniques for finding the most similar workflows to a given
one, and perform benchmarks for workflow discovery on that
basis [10]. Bergman and Gil [2] go a step further, enabling users
to find workflows according to different criteria (e.g., having a
specific input or output type). While these approaches aim to
discover workflows based on certain parameters provided by the
user, in our work we aim to expose the most common fragments
already in use in a workflow corpus.

Other approaches are based on data mining techniques.
Process mining approaches have been used to extract Petri nets
and decision trees from event logs [1] [19], in order to know
which decision to take at a certain point. The LONI Pipeline has
a Workflow Miner7 module, which follows a statistical approach
by measuring the components that most likely precede or are
followed by a given component. Leake and Kendall-Morwick
[14] rely on CBR approaches to mine provenance traces in order

7 http://pipeline.loni.usc.edu/products-services/workflow-miner/

to suggest components when users edit new workflows. The
difference with our approach in these cases is that we propose
the most reused fragments as new workflows/groupings, instead
of deriving the whole process network to choose the next most
probable component when designing a workflow.

Other approaches also use graph mining techniques to derive
the most common usage patterns in a repository of workflows
[4], including our previous work [5]. However, they are either
limited to a single type of algorithm (SUBDUE MDL [4]), or
they provide limited means to refine and link fragments to the
input workflow catalogue. In this work we have shown up to
three different graph mining algorithms to detect fragments, and
we have introduced methods to filter and link them to the
original workflows.

Finally, other work [18] explores the application of topic
modeling analysis to workflow repositories in order to cluster
components and explore them easily. That approach could be
combined with our work to allow users to explore proposed
FragFlow fragments.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper we introduced an approach to find the most
common fragments in a corpus of workflows. We described an
implementation of our approach, FragFlow, which integrates
several graph mining techniques, and we evaluated the results
against user defined groupings of three corpora belonging to the
LONI Pipeline system.

FragFlow can be used with different settings, varying the
minimum or maximum frequency of the fragments to find, their
minimum and maximum size and the type of the graph mining
algorithm to be applied. By combining different configurations,
we believe we will be able to improve the outcome of our
system, according to user-defined preferences.

FragFlow also allows integrating new algorithms as part of
its catalog. We are exploring Sigma [16] (inexact FGM) and
Gaston [17] (exact FGM) as alternative algorithms.

Future work includes testing FragFlow with other workflow
systems (Galaxy [8], Taverna [15], etc.), domains, and further
user evaluations. Ultimately, we would like to evaluate how
workflows and workflow fragment reuse improve when users
are proposed automatically mined workflow fragments.

ACKNOWLEDGMENTS	
 	

The authors would like to thank Zhizhong Liu, for the help

retrieving the workflows, Varun Ratnakar for his technical
support and Idafen Santana for his feedback. This research was
supported in part by the US National Science Foundation with
awards IIS-1344272 and ICER-1343800, by the Spanish Science
and Innovation Ministry (MICINN) with an FPU grant
(Formación de Profesorado Universitario), by the MEC grant
TIN2013-46238-C4-2-R and by NIH grants R01AG040060, R01
NS080655, R01 EB008432, R01MH097268 (to PT) and P41
EB015922 (to AWT).

REFERENCES
[1] W. M. P. van der Aalst, H. T. de Beer and B. F. van Dongen. Process

mining and verification of properties: An approach based on temporall
logic. Proceedings of the 2005 Confederated international conference on
On the Move to Meaningful Internet Systems. P 130-147. 2005

[2] R. Bergmann and Y. Gil. Similarity assessment and efficient retrieval of
semantic workflows. Information Systems Journal, v40 p115-127. 2014

[3] D. J. Cook and L. B. Holder. Substructure discovery using minimum
description length and background knowledge. Journal of Artifcial
Intelligence Research, 1:231-255, 1994.

[4] C. Diamantini, D. Potena and E. Storti. Mining usage patterns from a
repository of scientific workflows. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC '12). ACM, New York, NY,
USA, 152-157. 2012.

[5] D.Garijo, O.Corcho and Y.Gil. Detecting common scientific workflows
using templates and executing provenance. In Proceedings of the seventh
international conference on Knowledge capture (K-CAP), 33-40. 2013.

[6] D. Garijo, P. Alper, K. Belhajjame, O. Corcho, et al. Common motifs in
scientific workflows: An empirical analysis, Future Generation Computer
Systems, Volume 36, Pages 338-351. July 2014.

[7] D. Garijo and Y. Gil Augmenting PROV with Plans in P-PLAN: Scientific
Processes as Linked Data. In Proceedings of the 2nd International
Workshop on Linked Science 2012, Boston, 2012.

[8] B. Giardine et al. Galaxy: A platform for interactive large-scale genome
analysis. Genome Research, 15(10):1451-1455, Oct 2005.

[9] Y. Gil, V. Ratnakar, J. Kim, P. A. González-Calero, et al. Wings:
Intelligent workflow-based design of computational experiments. IEEE
Intelligent Systems, 26(1):62-72, 2011.

[10] A. Goderis, P. Fisher, A. Gibson, F. Tanoh, et al. Benchmarking Workflow
Discovery: A Case Study From Bioinformatics. Concurrency and
Computation: Practice and Experience. 00:1-7. 2000.

[11] A. Goderis, P. Li, and C. A. Goble. Workflow discovery: the problem, a
case study from e-science and a graph-based solution. In ICWS, pages 312-
319, 2006.

[12] C. Jiang, F. Coenen and M Zito. A Survey of Frequent Subgraph Mining
Algorithms. The Knowledge Engineering Review, Vol. 28:1, 75–105,
2012.

[13] M. Kuramochi and G. Karypis. An Efficient Algorithm for Discovering
Frequent Subgraphs IEEE Trans. Knowl. Data Eng. 16(9): 1038-1051,
2004.

[14] D. Leake and J. Kendall-Morwick. Towards case-based support for e-
science workflow generation by mining provenance. In Proceedings of the
9th European conference on Advances in Case-Based Reasoning, ECCBR
'08, pages 269-283, Berlin, Heidelberg, 2008.

[15] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, et al. Taverna, reloaded. In
22nd International Conference on Scientific and Statistical Database
Management (SSDBM), Heidelberg, Germany, 2010.

[16] M. Mongiovì, R. D Natale, R. Giugno, A. Pulvirenti and A. Ferro,
R.Sharan. SIGMA: a set-cover-based inexact graph matching algorithm.
Journal of Bioinformatics and Computational Biology; 8(2):199-218. 2010.

[17] S. Nijssen and J.N. Kok. A Quickstart in Frequent Structure Mining can
Make a Difference, In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 647–652. 2004

[18] J. Stoyanovich, B. Taskar and S. Davidson. Exploring repositories of
scientific workflows. In Proceedings of the 1st International Workshop on
Workflow Approaches to New Data-centric Science (Wands '10). ACM,
New York, USA, Article 7. 2010.

[19] A. Rozinat and W.M. P. van der Aalst. Decision Mining in ProM. Business
Process Management. Lecture Notes in Computer Science Volume 4102,
pp 420-425. 2006.

[20] J. Starlinger, S. Cohen-Boulakia and U. Leser. (Re)Use in public scientific
workflow repositories. In Proceedings of the 24th international conference
on Scientific and Statistical Database Management (SSDBM'12), p361-
378. 2012.

[21] F. Torri, A.P. Clark, I.D. Dinov, A. Zamanyan, et al. Next generation
sequence analysis and computational genomics using graphical pipeline
workflows. Genes, 3:545-575. 2012.

[22] Yan, X. and Han, J.W. gSpan: Graph-based Substructure pattern mining, In
Proceedings of International Conference on Data Mining, 721–724. 2002.

