
Towards Workflow Ecosystems
Through Semantic and Standard Representations

Daniel Garijo
Ontology Engineering Group

Universidad Politécnica de Madrid
dgarijo@fi.upm.es

Yolanda Gil
Information Sciences Institute

University of Southern California
gil@isi.edu

Oscar Corcho
Ontology Engineering Group

Universidad Politécnica de Madrid
ocorcho@fi.upm.es

ABSTRACT
Workflows are increasingly used to manage and share scientific
computations and methods. Workflow tools can be used to design,
validate, execute and visualize scientific workflows and their
execution results. Other tools manage workflow libraries or mine
their contents. There has been a lot of recent work on workflow
system integration as well as common workflow interlinguas, but
the interoperability among workflow systems remains a challenge.
Ideally, these tools would form a workflow ecosystem such that it
should be possible to create a workflow with a tool, execute it
with another, visualize it with another, and use yet another tool to
mine a repository of such workflows or their executions. In this
paper, we describe our approach to create a workflow ecosystem
through the use of standard models for provenance (OPM and
W3C PROV) and extensions (P-PLAN and OPMW) to represent
workflows. The ecosystem integrates different workflow tools
with diverse functions (workflow generation, execution,
browsing, mining, and visualization) created by a variety of
research groups. This is, to our knowledge, the first time that such
a variety of workflow systems and functions are integrated.

Categories and Subject Descriptors
C. Computer systems organization, D.2 Software engineering,
D.2.10 Design.

General Terms
Management, Documentation, Design, Reliability,
Standardization.

Keywords
Scientific workflows, workflow ecosystems, interoperability,
OPMW, PROV, P-Plan, WINGS.

1. INTRODUCTION
The interoperability of workflow systems is an active area of
research, including standard languages for representing workflow
executions as provenance [24] [18], integration efforts that
demonstrate the exchange of workflows across different systems

[21] [17], and architectures with modular design that can integrate
alternative systems such as diverse execution engines [13].

As workflow technologies continue to mature, new tools are being
developed with new functions that address different requirements
for workflows, including design [26] [19] [11] [30] [25],
validation [11], execution [5] [30] [25] [23], visualization [25]
[11] [26], and mining [10] [14] [29]. The interoperability of all
these different workflow tools remains an open research area.
Ideally, given some requirements for an application it would be
easy to assemble an end-to-end system out of the workflow tools
available. Another scenario for interoperability is supporting users
that have new requirements over time. For example, a user may
execute workflows with a particular a tool for many months and
then later be willing to import all the workflow runs into another
tool to browse and to query provenance traces.

This paper describes a workflow ecosystem that integrates
different workflow tools with diverse functions (workflow design,
validation, execution, visualization, browsing and mining) created
by a variety of research groups. This is, to our knowledge, the first
time that such a variety of workflow systems and functions are
integrated. In addition, we demonstrate that workflows produced
by a given tool can be used by more than one other tool. Previous
demonstrations of interoperability address some of these aspects,
but our workflow ecosystem is the first of its kind in the multiple
dimensions of heterogeneity that are addressed. Our approach is to
use workflow representation standards and semantic technologies
to enable each tool to import workflow templates and executions
in the format they need. We use and extend the Open Provenance
Model (OPM) [24], adopted by many workflow systems, and the
recent W3C PROV [15] standard.

The paper begins introducing the notion of workflow ecosystems
in Section 2. We describe relevant prior work on workflow
interoperability in Section 3, highlighting the contributions that
each interoperability demonstration makes to the design of
workflow ecosystems. Then we describe in Section 4 the
workflow ecosystem that we have developed, explaining the
different tools that it integrates and the kinds of workflow
structures that they exchange. We then show the workflow
representation standards and semantic web standards used in our
approach. Finally, we discuss the limitations of our approach in
Section 5, and the plans for future work in Section 6.

2. WORKFLOW ECOSYSTEMS
The term “workflow system” is commonly used in the literature to
refer to software that has a diversity of functions and typically
includes a workflow execution capability of some sort. We wish
to take a broader view on workflow software, and include other
software that has useful workflow capabilities, for example a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WORKS’14, November 16-21, 2014, New Orleans, Louisiana, USA
 978-1-4799-5500-8/14/$31.00 ©2014 IEEE.

Proceedings of the Ninth Workshop on Workflows in Support of Large-Scale Science (WORKS), held in conjunction with SC 2014, New
Orleans, LA, November 16, 2014.

workflow browser, a workflow editor, or a workflow mining
system. Therefore we introduce here the terms “workflow tool”,
“workflow function”, and “workflow ecosystem”.

We refer to a workflow tool as any kind of software that consumes
or generates workflows, and are typically called “workflow
systems” in the literature. Systems such as Taverna [25], Pegasus
[5], Kepler [19], Moteur [23], etc, are workflow tools in our
terminology. But in our terminology, workflow tools also include
software that is less comprehensive than a workflow system, such
as workflow browsers, workflow mining tools, etc.

A workflow function indicates a unique capability regarding
workflows, such as workflow execution, workflow browsing, or
workflow mining. A given workflow tool can have several
functions. For example, Taverna includes a workflow editor
function, a workflow execution function, and a workflow
provenance recording function. When workflow tools are
integrated, the integration may involve only a particular function
of the tool. For example, when workflow tool A sends a
provenance record to workflow tool B which stores it, the
execution engine of A would be involved but not its workflow
editor or other functions.

As workflows technologies and workflow interchange standards
mature, these kinds of integration efforts will give raise to
workflow ecosystems that scale up integration efforts by
demonstrating the integration along three important dimensions of
heterogeneity:

1. Functional heterogeneity: The diversity of workflow tools
and workflow functions involved. The workflow tools have
diverse functions, be developed by independent parties in
different organizations. The integrations demonstrated to
date involve typically one or two workflow tools
encompassing 2-3 functions developed by 2-3 parties. A
workflow ecosystem would include tools with very diverse
functions (e.g., workflow execution plus a workflow
repository plus a workflow browser plus a workflow miner),
each coming from a different development group.

2. Usage heterogeneity: A workflow output by a workflow
tool can be consumed by at least two other workflow tools.
In the integrations demonstrated to date, the output of a
workflow tool is consumed by at most one other tool, and
when it is consumed by several tools these tools have the
same function. In a workflow ecosystem it is possible to
import the same workflow into tools that have different
functions (e.g., a workflow execution is mined and visualized
by different tools).

3. Abstraction heterogeneity: A workflow tool can import
abstract or detailed views of workflows based on the level of
granularity that the tool is able to handle. In the integrations
to date, a workflow tool exports a workflow representation
that has to be ingested in its entirety by another workflow
tool. This feature is central to scaling up workflow
ecosystems because it allows a loose coupling between tools
that act as workflow producers and those that act as
workflow consumers.

These characteristics of workflow ecosystems have been partially
addressed by prior work, but none of the prior interoperability
efforts has addressed the heterogeneity and functional scale up
requirements of a workflow ecosystem.

Table 1. Dimensions to characterize workflow ecosystems.

Dimension of
Heterogeneity

Description

Functional Include tools with very diverse functions (e.g.,
editor, execution, provenance, browsing, mining,
etc.)

Use The same workflow output by a tool is consumed
by tools with different functions

Abstraction Each workflow tool can import abstract or
detailed views of the same workflow based on
the tool’s function.

3. PRIOR WORK ON WORKFLOW
INTEROPERABILITY
There is a lot of prior work that has addressed interoperability
across workflow systems through workflow interchange
languages, system integrations, and workflow repositories.

There have been several efforts to develop workflow interchange
languages. The Open Provenance Model [24] is the result of a
community effort to create a common representation for workflow
executions, and is used by many workflow systems as an
interchange format [21]. The recent W3C PROV standard for
provenance [15] continues this work, and several approaches
extend it to represent scientific workflow provenance [10] [2]
[22]. Another significant effort to develop a common workflow
language is the IWIR language [28]. Workflows represented in
IWIR can be partitioned so that each partition is executed in a
different workflow execution engine. WS-BPEL1 is a language for
specifying business processes using web services, and BPMN2
provides a standard graphical notation for business processes.

Workflow repositories such as myExperiment [6] and CrowdLabs
[20] can be used for sharing scientific workflows created with
different systems. These repositories store workflows in their
native languages, that is, without requiring their conversion to a
common language. Tools that interoperate with these repositories
tend to import only the workflows that are in a language that they
understand. For example [14] and [29] mined myExperiment to
find subworkflows or analyze workflow reuse, but only extracted
workflows that were implemented in Taverna’s format. Our goal
is to build on these efforts and facilitate further interoperation
across workflow systems.

Other efforts are focused on integrating workflow systems.
System integrations have been done with Pegasus [5], Taverna
[25], Vistrails [26], Kepler [19], etc. Taverna was integrated with
a workflow mining tool [14], as well as the myExperiment
workflow repository [6]. Also, Taverna was able to export
workflows to the Galaxy workflow system3 [1]. Pegasus has been
integrated with the Condor execution system, with the WINGS
workflow generation system [11], and with the PASOA
provenance store [21]. More recently, the Wf4ever project4 has
developed tools for preserving Workflow Research Objects [2],
including tools for designing, executing, visualizing and storing
scientific workflows, along with the models for accomplishing it.

1 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
2 http://www.omg.org/spec/BPMN/2.0/
3 http://www.taverna.org.uk/documentation/taverna-galaxy/
4 http://www.wf4ever-project.org/

Figure 1: The WEST workflow ecosystem. Workflow Templates (WT), Workflow Instances (WI) and Workflow Executions (WE)

are interchanged among the different components of the ecosystem. Blue lines group converters with their corresponding workflow
tools.

4. THE WEST WORKFLOW
ECOSYSTEM
WEST (Workflow Ecosystems through STandards) addresses
our three dimensions of heterogeneity: 1) functional diversity
through the integration of nine workflow functions coming from
six different research groups, 2) usage diversity through the
integration of tools that produce workflows consumed by at least
two other tools, and 3) abstraction diversity through the use of
workflow representation standards and semantic web standards
that enable query-based retrieval of workflow views.

Figure 1 shows an overview of the current incarnation of the
WEST workflow ecosystem, showing also planned future
interoperability pathways. The different tools that WEST
integrates are represented in ellipses, while the workflow
repositories are represented with rounded boxes with thick
border. The small rectangular boxes depict the converters of the
internal vocabularies used within the individual tools into the
standard representations used by WEST. Converters planned but
not yet implemented are indicated with dashed lines.
Lightweight converters adapting our vocabulary to other
extensions of the standards are shown in small rounded boxes
(their respective tools are represented as dotted ellipses). The
directionality of the arrows between the different tools indicates

what tools produce and consume the workflows exchanged
across tools in the ecosystem.
We describe first the kinds of workflow structures exchanged
across the different tools integrated in WEST, and then describe
in detail each of the tools in the WEST workflow ecosystem.

4.1 Workflow Structures
Different workflow tools produce and consume workflows with
different levels of specificity. We distinguish three major types
of workflow structures that are exchanged across tools within
our WEST workflow ecosystem:

• Workflow Instance (WI): A workflow that specifies the
application algorithms to be executed and the data to
be used. Workflow instances are sometimes called
abstract workflows because they do not specify
execution resources. A workflow instance can be
submitted to a workflow mapping and execution
system, which will identify and assign available
resources at run-time, submit it for execution, oversee
its execution, and return a workflow execution trace.
Because different resources may be available at
different times or in different execution environments,
the same workflow instance could result in very
different workflow execution traces.

Figure 2: A Workflow Template (left), a Workflow Instance (center), and a Workflow Execution (right).

• Workflow Execution (WE): Also known as a workflow
execution trace or a provenance trace, a workflow
execution contains the details of what happened
during the execution of a workflow, including what
resources it was executed on, execution time for each
step, links to the intermediate results, and possibly
other execution details such as steps for data
movements. When workflow steps fail to execute, a
workflow execution contains annotations of what
failed and in this way its dataflow structure may be
different from the dataflow in a workflow instance.

• Workflow Template (WT): A generic reusable
workflow specification that indicates the types of steps
in the workflow and their dataflow dependencies. A
workflow instance can be created from a workflow
template when datasets are identified. A workflow
generation tool can take the types of step specified in
the workflow template (e.g., “sort”) and specialize
them to implemented algorithms and codes (e.g.,
“Quicksort in Python”) to create the workflow
instance. Since a type of step can have different
implementations, the same workflow template could
be used to generate very different workflow instances.

Figure 2 illustrates with an example the difference between
templates, instances and executions. On the left of the figure we
can see a template with two steps (Stem and Sort), an input
(Dataset) and an output (FinalResult). A workflow instance built
from this template is shown in the middle of the figure,
specifying Dataset123 as the input and specific executable codes
for each of the steps (the LovinsStemmer algorithm and
Quicksort algorithm respectively). When this workflow instance
is executed, the workflow execution engine produces the
execution trace shown on the right (each step has its start and
end time, and each intermediate result identifier, e.g.,
Id:resultaa1, has associated the path of the file it represents).

Figure 1 shows the kinds of workflow structures exchanged by
the different tools in WEST with the labels WT, WI, and WE,
along with the vocabulary representing it in brackets (PROV, P-
Plan and OPMW).

4.2 Workflow Representation Standards
We use the W3C PROV standard [15] and OPM [24] to
represent workflow executions as provenance records. In
addition, we use two extensions of these languages that are more
specific to workflows and enable us to represent workflow
templates and instances as well as further details of workflow
executions: P-plan [8], and a revised version of OPMW5 [9] .

The tools and systems in WEST have been created by different
institutions, and each of them produces and consumes different
types of information about workflow templates and executions,
and at different granularities. For example, a PROV visualizing
tool exposes a view of a workflow execution that is simpler than
the one required for a visualization tool made for a particular
workflow system. The use of semantic technologies facilitates
this kind of selective extraction of the needed information.

In this section we introduce all the previous models, and explain
how they facilitate interoperation.

4.2.1 Representing the provenance of Workflow
Executions: OPM and PROV
After the Third Provenance Challenge6, the Open Provenance
Model (OPM) [24] consolidated itself as a de facto standard for
representing provenance, and was adopted by many workflow
systems7. The interest in having a standard for provenance
interchange vocabulary led to the W3C Provenance Incubator

5 http://www.opmw.org/model/OPMW/
6 http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceChallenge
7 http://openprovenance.org/

Group8, which was followed by the Provenance Working
Group9. This effort finally materialized in the family of PROV
specifications [15], a set of W3C recommendations on how to
model and interchange provenance in the Web. In this section
we briefly describe OPM and PROV, along with their main
similarities.

4.2.1.1 The Open Provenance Model
OPM models the resources created as artifacts (immutable
pieces of state), the steps used as processes (action or series of
actions performed on artifacts), and the entities that control
those processes as agents. Their relationships are modeled in a
provenance graph with five main causal edges: used (a process
used some artifact), wasControlledBy (an agent controlled some
process), wasGeneratedBy (a process generated an artifact),
wasDerivedFrom (an artifact was derived from another artifact)
and wasTriggeredBy (a process was triggered by another
process). It also introduces the concept of roles to assign the
type of activity that artifacts, processes or agents played when
interacting with one another, and the notion of accounts and
provenance graphs. An account represents a particular view on
the provenance of an artifact based on what was executed. A
provenance graph groups sets of related OPM assertions. OPM
does not specify any concept for the modeling of plans, so it can
only be used to describe workflow executions and it cannot be
used to describe workflow instances or workflow templates.

OPM is available as two different ontologies that are built on top
of each other. The OPM Vocabulary (OPMV)10

 is a lightweight
RDF vocabulary implementation of the OPM model that only
has a subset of the concepts in OPM but facilitates modeling and
query formulation. The OPM Ontology (OPMO)11

 covers the
full functionality of the OPM model, and can be used to
represent OPM concepts that are not in OPMV, such as Account
or Role.

4.2.1.2 The W3C PROV Standard
The PROV model is heavily influenced by OPM. PROV models
resources as entities (which can be mutable or immutable), the
steps using and generating entities as activities, and the
individuals responsible for those activities as agents. The
relationships are also modeled in a provenance graph with seven
main types of edges: used (an activity used some entity),
wasAssociatedWith (an agent participated in some activity),
wasGeneratedBy (an activity generated an entity),
wasDerivedFrom (an entity was derived from another entity),
wasAttributedTo (an entity was attributed to an agent),
actedOnBehalfOf (an agent acted on behalf of another agent)
and wasInformedBy (an activity used the entity produced by
another activity).
PROV also keeps the notion of roles to describe how entities,
activities and agents behaved in a particular event (usage,
generation, etc.); and provides the means to qualify each of the
aforementioned relationships using an n-ary pattern. PROV
allows to state the plan associated to a certain activity, although
the plan definition itself is out of the scope of the model (since it
is not something that necessarily happened). PROV statements
can be grouped in named sets called bundles, which are entities

8 http://www.w3.org/2005/Incubator/prov/
9 http://www.w3.org/2011/prov/wiki/Main_Page
10 http://purl.org/net/opmv/ns
11 http://openprovenance.org/model/opmo

themselves (thus allowing for their provenance to be described).
The PROV standard is available as an ontology (PROV-O [18]).

4.2.1.3 Comparison Between OPM and PROV
There is a very clear correspondence between OPM and PROV,
and this facilitates the reuse of workflows represented in one
language by tools that consume the other.

Figure 3: The commonalities between PROV (left) and OPM
(right) facilitate mappings across both representations.

Figure 4: P-plan is an extension of PROV.

Figure 3 illustrates the main commonalities between OPM and
PROV that are relevant to our scenario. Both models represent
resources being used and generated by processes or activities
which are controlled by an agent responsible for its execution.
Entities (or artifacts, respectively) can be derived from other
entities. Also, in OPM processes might be triggered by other
processes, while in PROV Activities might receive an input
created by another activity (being informedBy).

4.2.2 Representing Workflow Templates and
Instances: P-PLAN
We cannot use a provenance language like OPM or PROV to
represent workflow templates and workflow instances. We need
a language that can represent process models or plans that when
executed lead to a provenance trace that can be expressed in
OPM or PROV.

P-Plan [8]12 is an extension of PROV for representing plans.
Figure 4 shows an overview of the P-PLAN vocabulary. A p-
plan:Plan is a subclass of prov:Plan. The p-plan:Steps represent
the planned execution activities. Plan steps may be bound to a
specific executable step (p-plan:correspondsToStep) or refer to a
class of steps, providing an abstraction layer over the execution.
As a result, a plan step could be carried out in different ways in
different executions of the same plan. A step may not have a
corresponding activity, (as in an execution failure). A p-
plan:Variable represents the inputs of a step and can have

Figure 5: OPMW and its relationship to the OPM, PROV,

and P-PLAN vocabularies.
properties (i.e., type, restrictions, metadata, etc.). p-plan:Steps
may be preceded by other p-plan:Steps (p-plan:isPrecededBy),
and have p-plan:Variables as input. p-plan:Variables are output
of p-plan:Steps. Both steps and variables are associated to a p-
plan: Plan (p-plan:isStepOfPlan and p-plan:isVariableOfPlan
respectively). The relation of the plan with agents is not
specified in P-PLAN, since it can be modeled with PROV.

4.2.3 Representing Workflows at Fine Granularity:
OPMW

Workflow templates, instances, and executions can be
represented with the OPMW model. The new OPMW release is
the fifth revision of the OPMW vocabulary [9], designed to
represent scientific workflows. OPMW extends P-plan, PROV
and OPM. OPMW supports the representations of workflows at
a fine granularity with a lot of details pertaining to workflows
that are not covered in those more generic languages. OPMW
also allows the representation of links between a workflow
template, a workflow instance created from it, and a workflow
execution that resulted from an instance. Finally, OPMW also
supports the representation of attribution metadata about a
workflow, which some applications consume.

Figure 5 shows the relationships between the different
vocabularies used in WEST, and how OPMW extends PROV,
OPM and P-PLAN.

OPMW separates the issue of workflow representation in two
different aspects: linkage between templates and executions and
attribution.

12 http://purl.org/net/p-plan

4.2.3.1 Linking templates and executions in OPMW
In OPMW, an opmw:WorkflowTemplate is a subclass of p-
plan:Plan (since it is a particular type of plan),
opmw:WorkflowTemplateProcess is a subclass of p-plan:Step
and opmw:WorkflowTemplateArtifact extends p-plan:Variable
respectively (since both of them refer to a particular domain).

On the execution side, each WorkflowExecutionProcess
(subclass of prov:Activity and opmo:Process) is bound to a
WorkflowTemplateProces via the
correspondsToTemplateProcess relationship (subproperty of p-
plan:correspondsToStep). Similarly, each
WorkflowExecutionArtifact (subclass of prov:Entity and
opmo:Artifact respectively) is linked to its abstract
WorkflowTemplateArtifact with the
correspondsToTemplateArtifact relationship (subproperty of p-
plan:correspondsToVariable). Finally, the
WorkflowExecutionAccount containing all the provenance
statements of the execution is linked to the WorkflowTemplate
that contains all the assertions of the template with the
correspondsToTemplate relationship.

Figure 6 shows an example of the OPMW vocabulary extending
OPM, PROV and P-PLAN. A workflow template with one
sorting step, an input and an output (on the left of the figure,
represented using P-Plan) is linked to its provenance trace on the
right of the figure (depicted with PROV and OPM). Each
activity and artifact is linked to its respective step and variable.
Additional metadata of the variables (e.g., constraints), steps
(e.g., conditions for execution), activities (e.g., used code),
artifacts (e.g., size, encoding), accounts (e.g., status) and
templates (e.g., associated diagram) is modeled with OPMW,
but has been omitted from the figure for simplicity.

4.2.3.2 Workflow Attribution in OPMW
Attribution is crucial for scientists who create and publish
workflows, and OPMW can be used to represent such metadata
in workflow templates, instances, and executions. For this,
OPMW reuses terms from the Dublin Core (DC) Metadata
Vocabulary13, namely author, contributor, rights and license.
OPMW also defines additional terms for referring to the start
and end of the whole execution of the workflow, the size of the
produced files, the status of the final execution, the tool used to
design the workflow, the tool used to execute the workflow, etc.

4.3 Functional Heterogeneity in WEST
Figure 1 indicated all the workflow tools that we have integrated
in the WEST ecosystem to date. They represent a wide variety
of functions:

• Workflow Generation: WEST integrates the WINGS
workflow generation tool [11]. Users create workflow
templates, which WINGS can specialize to generate
workflow instances. WINGS can submit the
workflow instances for execution by different
workflow mapping and execution engines.

• Workflow Mapping and Execution: WEST includes
three workflow execution engines: Pegasus [5],
Apache OODT14, and the LONI Pipeline [30]. These
systems map the workflow tasks to available
execution resources, and then manage their execution.

13 http://dublincore.org/documents/dcmi-terms/
14 http://oodt.apache.org/

Figure 6: Example of OPMW as an extension of PROV, OPM and P-Plan. A workflow execution (right) is linked with its workflow
template (left). Other details like attribution metadata have been omitted to simplify the figure.

Figure 7: PROV-O-viz visualization of part of a workflow execution trace.

It would be easy to include other workflow execution
engines, since many of them use OPM and are
beginning to use PROV.

• Workflow Mining: WEST includes the FragFlow
system for workflow mining [10], which integrates
several algorithms for extracting common workflow
fragments from repositories of workflow templates
and workflow executions. Including other workflow
mining tools would not be hard, as they are typically
based on graph mining or process mining algorithms
that operate on data structures that are similar to those
used in PROV and OPM.

• Workflow Visualization: WEST uses the Prov-o-viz
tool [16] for visualizing provenance structures
expressed in the W3C PROV standard. A screenshot is
shown in Figure 7. Many tools for browsing, storing,
visualizing and validating provenance have been
developed for PROV. A workflow ecosystem that uses
PROV can benefit from these applications, in order to
check the consistency of an execution trace or to
gather a general insight on how the inputs influence
the final results.

• Workflow Browsing: WEST uses a Workflow Explorer
tool, WExp15, which allows for exploring different
workflow templates, their metadata and their
workflow execution results. A snapshot is shown in
Figure 8. WExp loads dynamically the workflow
information stored in a repository, and allows the user
to search it on demand.

15 http://purl.org/net/wexp

• Workflow Documentation: WEST includes the
Organic Data Science Wiki16, an extension of
semantic wikis designed to develop meta-workflows
that result in many workflow explorations and runs. A
snapshot of the interface is shown in Figure 9.
Workflow templates and workflow executions can be
imported into this framework to generate
documentation pages that link to data and algorithm
descriptions in the wiki, and users can augment this
documentation as they relate to the overall meta-
workflow.

• Workflow Storage and Sharing: WEST has a
workflow repository that includes workflow templates,
workflow instances, and workflow executions. This is
a public repository17, implemented using Virtuoso, and
populated by WINGS. All workflows are Web objects
that are openly accessible to any application that
queries the repository. We illustrate this further in
Section 4.5.

Therefore, WEST includes nine different tools that provide
seven distinct functions. Many of these tools were developed by
other research groups: Pegasus by the USC/ISI Collaborative
Science group, LONI Pipeline by the USC Laboratory of
Neuroimaging, Prov-o-viz by the VUE in Amsterdam, and
Apache OODT was originally developed at NASA/JPL.

16 http://www.organicdatascience.org/index.php/Main_Page
17 http://www.opmw.org/sparql

Figure 8: Snapshot of the WExp browser showing some

metadata of a water metabolism workflow.

Figure 9: Snapshot of an Organic Data Science Wiki page
created from the OPMW representation of the water
metabolism workflow mentioned in Figure 8.

Workflow output Consumed by

Workflow Instance (from
WINGS)

Pegasus, Apache OODT

Workflow Execution (from
Apache OODT)

WINGS, Repository, Organic Data
Science Wiki

Workflow Instance (from
Pegasus/Condor)

WINGS, Repository, Organic Data
Science Wiki

Workflow Execution (from
WINGS)

Repository, Organic Data Science
Wiki, FragFlow, WExp, Prov-o-viz

Workflow Template (from
WINGS)

Repository, Organic Data Science
Wiki, FragFlow, WExp, Prov-o-viz

Workflow Template (from
LONI)

Repository, Organic Data Science
Wiki, FragFlow, WExp, Prov-o-viz

Table 1: Workflow use and consumption in WEST

4.4 Usage Heterogeneity in WEST
Every workflow output in the WEST workflow ecosystem is
either consumed by at least two different applications or stored
in the repository where it is later consumed by one or more
applications.

Table 1 summarizes the tools in the WEST workflow ecosystem
consuming and producing workflow templates, instances and
executions. For example, the workflow instances generated by
WINGS are used by both Pegasus and Apache OODT.

Since the output of a workflow tool is consumed by several
others, it is more likely that the representation used to exchange
the workflows is not dependent of the specifics of two tools
doing a pair wise exchange.

4.5 Abstraction Heterogeneity in WEST
The applications of the workflow environment have different
needs. For example, mining and presentation applications
typically care for workflow templates or workflow executions
and their provenance, while execution engines need the
workflow instances for their execution. In this Section we
illustrate with an example how to access the contents of the
same workflow by retrieving different artifacts at different
granularities, showing the output after being consumed by
different tools. All the workflow contents being referenced are
publicly available online18.
To illustrate our approach, we have selected one of the
workflows stored in the WINGS repository for water
metabolism estimation19. This workflow performs an analysis
over sensor data collected in a river over a period of time as
input, and plots the results. In order to illustrate our queries over
the workflow, we will use the following namespace prefixes
through the section:

@prefix	
 prov:	
 <http://www.w3.org/ns/prov#>.	

@prefix	
 opmv:	
 <http://purl.org/net/opmv/ns#>.	

@prefix	
 opmo:	
 <http://openprovenance.org/model/opmo#>.	

@prefix	
 p-­‐plan:	
 <http://purl.org/net/p-­‐plan#>.	

@prefix	
 opmw:	
 <http://www.opmw.org/ontology/>.	

@prefix	
 wfprov:	
 <http://purl.org/wf4ever/wfprov#/>.	

Since we are interested in showing how the template and
execution traces are linked at the different levels of granularity,
we first retrieve the available executions with the following
query (urls and namespaces have been omitted for simplicity,
the complete queries are available online20):

SELECT	
 DISTINCT	
 ?execution	
 WHERE	
 {	

?execution	
 	
 opmw:correspondsToTemplate	
 	
 <url	
 Aquaflow>.	

}	

This query returns two results, which correspond to the different
executions of the workflow. Each execution corresponds to an
OPM Account or a PROV Bundle (stored as a named graph), so
we are able to retrieve the contents of the workflow in any of
those vocabularies. For example, if we want to retrieve all the

18 http://opmw.org/sparql
19 http://www.opmw.org/export/resource/WorkflowTemplate/

AQUAFLOW_NTM
20 http://purl.org/net/works2014materials

prov:Activities contained in the template, we might issue the
following query:

SELECT	
 DISTINCT	
 ?activity	
 	

FROM	
 <executionAccountURI>	
 #Named	
 graph	
 for	
 the	
 Bundle	

WHERE	
 {	

	
 	
 	
 ?activity	
 a	
 prov:Activity.	

}	

Similarly, if we want to retrieve all the OPM Processes within
the workflow execution (which are the same as the
prov:Activities), the query would be as follows:

SELECT	
 DISTINCT	
 ?activity	
 WHERE	
 {	

	
 	
 ?activity	
 a	
 	
 opmv:Process.	

	
 	
 ?activity	
 opmo:account	
 <executionAccountURI>.	
 	

}	

This facilitates retrieving the contents of the workflow in a
flexible way, as applications consuming PROV or OPM are
capable of consuming the contents of the workflow without
additional transformations. An example can be seen in Figure 7,
where the Prov-o-viz tool (developed by another institution) has
been used to show part of one of the water metabolism
workflow executions. The tool consumes PROV, and accepts
SPARQL endpoints as input. No additional format conversions
are necessary for producing the diagram.

Other applications consume the fine grained representation of
the workflow, expressed in OPMW. Figure 8 and Figure 9 show
an example of two different applications (Workflow Explorer
(WExp) and the Organic Data Science wiki respectively)
showing details of the template metadata (Figure 8) and the
template steps and variables (Figure 9). In each case, different
metadata considered of value to the user is shown, but the
representation and queries used to obtain the metadata are the
same.
The repositories of the workflow environment may not always
contain all the different levels of granularity for all workflows,
as some of the information is redundant. For example, if the
workflow is represented in OPMW, having the OPM, PROV
and P-PLAN representation is good for flexibility and
facilitating querying the repository, but when the number of
workflows stored is high (e.g., several thousands of workflows
and their executions), it might introduce scalability issues. In our
case, we have decided to include the OPM and PROV
representations because many applications are designed to work
with them already, but we haven’t done the same for P-plan.
However, obtaining a P-PLAN representation is trivial with
SPARQL construct queries and the documentation of the
ontology. For example, the following query provides the P-Plan
step dependency graph of the water metabolism workflow by
querying the workflow ecosystem repository:

CONSTRUCT{	

	
 	
 	
 ?activity2	
 p-­‐plan:isPrecededBy	
 ?activity.	

}	

WHERE{	

	
 	
 ?activity	
 a	
 opmw:WorkflowTemplateProcess.	

	
 	
 ?activity2	
 a	
 opmw:WorkflowTemplateProcess.	

	
 	
 ?activity	
 opmw:isStepOfTemplate	
 <url	
 AQUAFLOW_NTM>.	

	
 	
 ?activity2	
 opmw:isStepOfTemplate	
 <url	
 AQUAFLOW_NTM>	
 	
 	
 	
 	
 .	

	
 	
 ?activity2	
 opmw:uses	
 ?u1.	

	
 	
 ?u1	
 opmw:isGeneratedBy	
 ?activity.	

}	

The results show the dependency between the activities of the
workflow, which is simpler than the usage/generation
visualization adopted by the model.
As we introduced in the Related Work section, there are other
vocabularies that use or extend PROV for scientific workflow
execution and template representation (e.g., D-PROV [22] and
the RO model [2]). In a workflow ecosystem each tool or
application might have its own inner representation, and we find
crucial for it to be able to interchange it with other systems. The
advantage of the vocabularies extending PROV is that although
the PROV serialization is often not exposed (only
representations with the extended classes and properties are
normally available) it is trivial to transform it to the standard
representation. For example, the following construct query
transforms Wfprov (RO model) to PROV:

CONSTRUCT{	

	
 	
 ?activity	
 a	
 prov:Activity.	

	
 	
 ?entity	
 a	
 prov:Entity.	

	
 	
 ?entity2	
 a	
 prov:Entity.	

	
 	
 ?entity2	
 prov:wasGeneratedBy	
 ?activity.	
 	

	
 ?activity	
 prov:used	
 ?entity.	

}	

WHERE{	

	
 	
 ?activity	
 wfprov:usedInput	
 ?entity.	

	
 	
 ?entity	
 wfprov:wasOutputFrom	
 ?activity.	

}	

With this PROV representation, the serialization would be
compatible with the majority of the applications in WEST.
Furthermore, with a similar query we could transform OPMW to
Wfprov, and benefit from the applications exploiting it.

The template level transformation is a bit more complex, as
different systems have different capabilities. For instance, some
workflow systems like Kepler allow for loops and conditionals
in their templates, while others do not. However, most of the
scientific workflows are modeled as Directed Acyclic Graphs
(DAGs) and thus can be easily represented in P-PLAN with
construct queries as we have shown in the previous examples.

5. DISCUSSION
Standard models for the representation of workflow executions
as provenance (OPM, PROV) have been proposed by the
community, but there are currently no standards for representing
scientific workflow templates or instances. Several languages
have been proposed. The IWIR syntax defines a representation
language for workflows to be interoperable across different
tools. The aim is to be able to take workflows designed in a tool
and execute them in another one. IWIR has a similar function to
P-Plan and OPMW, but IWIR is much more expressive than
those languages because it has to cope with all the requirements
of the different execution engines. In our work, we use P-Plan
and OPMW, which have a less expressive but simpler
interchange format. This is a feature but also a limitation, as it
means that our approach is able to represent all scientific

workflows modeled as DAGs, but cannot represent loops and
conditionals, which are typical in business workflow languages
such as WS-BPEL. The RO model [2] and D-PROV [22] are
other workflow models for representing workflow templates and
executions, and they also extend PROV. We use P-PLAN and
OPMW because of their simplicity. OPMW and P-PLAN are
sufficient for representing the workflow templates, instances and
executions consumed by the workflow tools integrated in our
ecosystem. In spite of this diversity, all these vocabularies
extend PROV. Because P-PLAN and OPMW are effectively a
subset of the constructs of IWIR, D-PROV, and the RO model,
extracting workflows in those languages from our P-PLAN and
OPMW representations amounts to making queries that return
the representations desired, as we showed in Section 4.5.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have shown our approach towards creating an
ecosystem of interoperable applications for scientific workflows.
In order to achieve this purpose, we have extended OPM and the
PROV standard with the P-plan model for representing
workflow templates and the OPMW vocabulary to represent
workflow templates and executions. We have also shown how to
access and retrieve different information about workflows
depending on what is needed by the different workflow tools.

In our choice for standard vocabularies, we have been driven by
simplicity in the design rather than completeness. Other
complex solutions (WS-BPEL, BPMN, D-PROV, etc.) can be
adopted or extended for this purpose and easily mapped or
combined with our model, as we have discussed in Section 4.5.

The main benefits of our approach are the interoperability
among the applications in the ecosystem, the flexibility to
interchange data and facilitating the integration of contents
modeled in other vocabularies.

We have tested our approach by developing an ecosystem with
applications created by different organizations and showing how
the output produced by some of these tools can be consumed by
others by means of SPARQL queries, which are also provided
together with this paper. Our approach does not require that the
applications in the ecosystem change their internal format
representations. The used models are an interchange format for
interoperability.

Regarding future work, we plan to continue developing
converters for tools that are already integrated in the WEST
workflow ecosystem but do not yet use the proposed models
(depicted in dashed lines in Figure 1). This will greatly facilitate
the addition of new workflow tools to the ecosystem. Another
area of future work is to explore further converters for
interoperability with other architectures and other models for
representing workflows. Finally, an important aspect of future
work is to address the scalability of workflow ecosystems
through the development of common functions and APIs that
will facilitate the rapid integration of new workflow systems and
capabilities.

7. ACKNOWLEDGEMENTS
This work has been supported in part by the Spanish Science
and Innovation Ministry (MICINN) with an FPU grant
(Formación de Profesorado Universitario), and in part by the by
Ministerio de Economía y Competitividad (Spain) under the
project "4V: Volumen, Velocidad, Variedad y Validez en la
Gestión Innovadora de Datos" (TIN2013-46238-C4-2-R) and

the US Air Force Office of Scientific Research (AFOSR) with
grant number FA9550-11-1-0104.

8. REFERENCES
[1] Abouelhoda, M.; Issa, SA. and Ghanem M. Tavaxy:

Integrating Taverna and Galaxy workflows with cloud
computing support. BMC bioinformatics 13: 77. 2012.

[2] Belhajjame, K.; Corcho,O.; Garijo, D.; Zhao, J.; et al.
Workflow-Centric Research Objects: First Class Citizens in
Scholarly Discourse. In SePublica2012 workshop at
ESWC2012, 2012.

[3] Callahan, S. P.; Freire, J.; Santos, E.; Scheidegger, C. E.;
Silva, C. T. & Vo, H. T. Vistrails: Visualization meets data
management In ACM SIGMOD, ACM Press, 2006, 745-
747

[4] Couvares, P.; Kosar, T.; Roy, A.; Weber, J.; Wenger, K.
Workflows for e-Science. Springer, New York (2007) Ch.
Workflow Management in Condor, pp. 357–375

[5] Deelman, E.; Singh, G.; Su, M.; Blythe, J.; Gil, Y.;
Kesselman, C.; Kim, J.; Mehta, G.; Vahi, K.; Berriman, G.
B.; Good, J.; Laity, A.; Jacob, J. C. & Katz, D. S.
Pegasus: A Framework for Mapping Complex Scientific
Workflows onto Distributed Systems
Scientific Programming, 2005, 13.

[6] De Roure, D.; Goble, C.; Stevens, R, The design and
realization of the myexperiment virtual research
environment for social sharing of workflows, Future
Generation Computer Systems 25 (5) (2009) 561–567.

[7] Dong Huynh, T.; Groth, P.; Zednik, S. PROV
implementation report. W3C Working Group Note. 30
April 2013.

[8] Garijo, D. and Gil, Y. Augmenting PROV with Plans in P-
PLAN: Scientific Processes as Linked Data. In Proceedings
of the 2nd International Workshop on Linked Science
2012, Boston, 2012

[9] Garijo, D. and Gil, Y. A new approach for publishing
workflows: abstractions, standards, and linked data.
Proceedings of the 6th workshop on Workflows in support
of large-scale science. 2011. 47-56.

[10] Garijo, D.; Corcho, O. and Gil, Y. Detecting common
scientific workflows using templates and executing
provenance. In Proceedings of the seventh international
conference on Knowledge capture (K-CAP), 33-40. 2013.

[11] Gil, Y.; Ratnakar, V.; Kim, J.; González-Calero, P.; Groth,
P.; Moody, J.; Deelman, E. Wings: intelligent workflow-
based design of computational experiments, IEEE
Intelligent Systems 26 (1) (2011) 62–72.

[12] Gil, Y.; Gonzalez-Calero, P. A.; Kim, J.; Moody, J.; and
Ratnakar, V. A Semantic Framework for Automatic
Generation of Computational Workflows Using Distributed
Data and Component Catalogs. Journal of Experimental
and Theoretical Artificial Intelligence, 23 (4), 389-467
2011.

[13] Gil, Y. Mapping Semantic Workflows to Alternative
Workflow Execution Engines. Proceedings of the Seventh
IEEE International Conference on Semantic Computing
(ICSC), Irvine, CA, 2013.

[14] Goderis, A.; Fisher, P; Gibson, A.; Tanoh, F.; Wolstencroft,
K.; De Roure, D.; Goble, C. Benchmarking workflow

discovery: a case study from bioinformatics. Concurrency
and Computation: Practice and Experience 21(16): 2052-
2069 (2009).

[15] Groth, P. and Moreau, L. PROV-Overview. W3C Working
Group Note. April, 2013

[16] Hoekstra, R. and Groth, P. PROV-O-Viz - Understanding
the Role of Activities in Provenance. To Appear in the
Proceedings of the International Provenance and
Annotation Workshop, Cologne (2014)

[17] Krefting, D.; Glatard, T.; Korkhov,V.; Montagnat, J; and
Olabarriaga, S. Enabling grid interoperability at workflow
level. Grid Workflow Workshop 2011, 2011.

[18] Lebo, T.; Sahoo,S.; McGuinness, D.; Belhajjame, K.;
Cheney, J.; Corsar, D.; Garijo, D.; Soiland-Reyes, S.;
Zednik, S.; Zhao, J. Prov-o: The prov ontology, W3C
Recommendation, 30th April 2013.

[19] Ludäscher, B.; Altintas, I.; Berkley, C.; Higgins, D.; Jaeger,
E.; Jones, M.; Lee, E. A.; Tao, J. & Zhao, Y. Scientific
workflow management and the Kepler system Concurrency
and Computation: Practice and Experience, 2006, 18, 1039-
1065

[20] Mates, P.; Santos, E.; Freire, J. & Silva, C. T. CrowdLabs:
Social Analysis and Visualization for the Sciences 23rd
International Conference on Scientific and Statistical
Database Management (SSDBM), Springer, 2011, 555-564

[21] Miles, S.; Deelman, E.; Groth, P.; Vahi, K.; Mehta, G.;
Moreau, L. Connecting Scientific Data to Scientific
Experiments with Provenance. Proceedings of IEEE
International Conference on eScience 2007: 179-186

[22] Missier, P.; Dey,S.; Belhajjame, K.; Cuevas-Vicentín, V.
and Ludäscher, B. D-PROV: extending the PROV
provenance model with workflow structure. Computing
Science, Newcastle University, 2013.

[23] Montagnat, J.; Isnard, B.; Glatard, T.; Maheshwari, K. and
Fornarino, M. B. A data-driven workflow language for
grids based on array programming principles. In
Proceedings of the 4th Workshop on Workflows in Support
of Large-Scale Science (WORKS '09). ACM, New York,
NY, USA. Article 7, p 1-10. 2009.

[24] Moreau, L.; Clifford, B.; Freire, J.; Futrelle, J.; Gil, Y.;
Groth, P.; Kwasnikowska, N.; Miles, S.; Missier, P.;
Myers, J.; Plale, B.; Simmhan, Y.; Stephan, E.; and
denBussche, J. V. The Open Provenance Model Core
Specification (v1.1). Future Generation Computer Systems,
27(6). 2011.

[25] Wolstencroft, K.; Haines, R.; Fellows, D.; Williams, A.;
Withers, D.; Owen, S.; Soiland-Reyes, S.; Dunlop, I.;
Nenadic, A.; Fisher, P.; Bhagat, J.; Belhajjame, K.; Bacall,
F.; Hardisty, A.; Nieva de la Hidalga,A.; Balcazar Vargas,
M.; Sufi, S.; Goble, C. The Taverna workflow suite:
designing and executing workflows of web services on the
desktop, web or in the cloud, Nucleic Acids Research
(2013).

[26] Scheidegger, C.E.; Vo, H. T.; Koop, D.; Freire, J.; Silva,
C.T. Querying and re-using workflows with vistrails, in:
Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD’08, ACM,
New York, NY, USA, 2008, pp. 1251–1254

[27] Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y.;
Groth, P.; Kwasnikowska, N.; Miles, S.; Missier, P.;
Myers, J.; Plale, B.; Simmhan, Y.; Stephan, E.; Van den
Bussche, J.;, The Open Provenance Model core
specification (v1.1), Future Generation Computer Systems,
Volume 27, Issue 6, June 2011, Pages 743-756, ISSN
0167-739X.

[28] Plankensteiner, P.; Montagnat, J. and Prodan, R. IWIR: a
language enabling portability across grid workflow
systems. In Proceedings of the 6th workshop on Workflows
in support of large-scale science (WORKS '11). ACM,
New York, NY, USA, 97-106. 2011.

[29] Starlinger, J., S. Cohen-Boulakia and U. Leser. (Re)Use in
Public Scientific Workflow Repositories. Proceedings of
the 24th international conference on Scientific and
Statistical Database Management, p 361-378. 2012.

[30] Torri, F. ; Clark, A.P.; Dinov, I.D.; Zamanyan, A.; Hobel,
S.; Genco, A.; Petrosyan, P.; Liu, Z; Vawter, M.P.; Eggert,
P.; Pierce, J.; Knowles, J.A.; Ames, J.; Kesselman, C.;
Toga, A.W.; Potkin, S.G. and Macciardi F. 2012 Next
generation sequence analysis and computational genomics
using graphical pipeline workflows. Genes, 3:545-575

