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ABSTRACT 
Workflows are increasingly used to manage and share scientific 
computations and methods. Workflow tools can be used to design, 
validate, execute and visualize scientific workflows and their 
execution results. Other tools manage workflow libraries or mine 
their contents. There has been a lot of recent work on workflow 
system integration as well as common workflow interlinguas, but 
the interoperability among workflow systems remains a challenge. 
Ideally, these tools would form a workflow ecosystem such that it 
should be possible to create a workflow with a tool, execute it 
with another, visualize it with another, and use yet another tool to 
mine a repository of such workflows or their executions.  In this 
paper, we describe our approach to create a workflow ecosystem 
through the use of standard models for provenance (OPM and 
W3C PROV) and extensions (P-PLAN and OPMW) to represent 
workflows. The ecosystem integrates different workflow tools 
with diverse functions (workflow generation, execution, 
browsing, mining, and visualization) created by a variety of 
research groups. This is, to our knowledge, the first time that such 
a variety of workflow systems and functions are integrated. 

Categories and Subject Descriptors 
C. Computer systems organization, D.2 Software engineering, 
D.2.10 Design.  

General Terms 
Management, Documentation, Design, Reliability, 
Standardization. 

Keywords 
Scientific workflows, workflow ecosystems, interoperability, 
OPMW, PROV, P-Plan, WINGS.  

1. INTRODUCTION 
The interoperability of workflow systems is an active area of 
research, including standard languages for representing workflow 
executions as provenance [24] [18], integration efforts that 
demonstrate the exchange of workflows across different systems 

[21] [17], and architectures with modular design that can integrate 
alternative systems such as diverse execution engines [13].  

As workflow technologies continue to mature, new tools are being 
developed with new functions that address different requirements 
for workflows, including design [26] [19] [11] [30] [25], 
validation [11], execution [5] [30] [25] [23], visualization [25] 
[11] [26], and mining [10] [14] [29]. The interoperability of all 
these different workflow tools remains an open research area. 
Ideally, given some requirements for an application it would be 
easy to assemble an end-to-end system out of the workflow tools 
available. Another scenario for interoperability is supporting users 
that have new requirements over time. For example, a user may 
execute workflows with a particular a tool for many months and 
then later be willing to import all the workflow runs into another 
tool to browse and to query provenance traces. 

This paper describes a workflow ecosystem that integrates 
different workflow tools with diverse functions (workflow design, 
validation, execution, visualization, browsing and mining) created 
by a variety of research groups. This is, to our knowledge, the first 
time that such a variety of workflow systems and functions are 
integrated. In addition, we demonstrate that workflows produced 
by a given tool can be used by more than one other tool. Previous 
demonstrations of interoperability address some of these aspects, 
but our workflow ecosystem is the first of its kind in the multiple 
dimensions of heterogeneity that are addressed. Our approach is to 
use workflow representation standards and semantic technologies 
to enable each tool to import workflow templates and executions 
in the format they need. We use and extend the Open Provenance 
Model (OPM) [24], adopted by many workflow systems, and the 
recent W3C PROV [15] standard.  

The paper begins introducing the notion of workflow ecosystems 
in Section 2. We describe relevant prior work on workflow 
interoperability in Section 3, highlighting the contributions that 
each interoperability demonstration makes to the design of 
workflow ecosystems. Then we describe in Section 4 the 
workflow ecosystem that we have developed, explaining the 
different tools that it integrates and the kinds of workflow 
structures that they exchange. We then show the workflow 
representation standards and semantic web standards used in our 
approach. Finally, we discuss the limitations of our approach in 
Section 5, and the plans for future work in Section 6. 

2. WORKFLOW ECOSYSTEMS 
The term “workflow system” is commonly used in the literature to 
refer to software that has a diversity of functions and typically 
includes a workflow execution capability of some sort. We wish 
to take a broader view on workflow software, and include other 
software that has useful workflow capabilities, for example a 
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workflow browser, a workflow editor, or a workflow mining 
system. Therefore we introduce here the terms “workflow tool”, 
“workflow function”, and “workflow ecosystem”.   

We refer to a workflow tool as any kind of software that consumes 
or generates workflows, and are typically called “workflow 
systems” in the literature. Systems such as Taverna [25], Pegasus 
[5], Kepler [19], Moteur [23], etc, are workflow tools in our 
terminology. But in our terminology, workflow tools also include 
software that is less comprehensive than a workflow system, such 
as workflow browsers, workflow mining tools, etc. 

A workflow function indicates a unique capability regarding 
workflows, such as workflow execution, workflow browsing, or 
workflow mining. A given workflow tool can have several 
functions. For example, Taverna includes a workflow editor 
function, a workflow execution function, and a workflow 
provenance recording function. When workflow tools are 
integrated, the integration may involve only a particular function 
of the tool. For example, when workflow tool A sends a 
provenance record to workflow tool B which stores it, the 
execution engine of A would be involved but not its workflow 
editor or other functions. 

As workflows technologies and workflow interchange standards 
mature, these kinds of integration efforts will give raise to 
workflow ecosystems that scale up integration efforts by 
demonstrating the integration along three important dimensions of 
heterogeneity: 

1. Functional heterogeneity: The diversity of workflow tools 
and workflow functions involved. The workflow tools have 
diverse functions, be developed by independent parties in 
different organizations. The integrations demonstrated to 
date involve typically one or two workflow tools 
encompassing 2-3 functions developed by 2-3 parties. A 
workflow ecosystem would include tools with very diverse 
functions (e.g., workflow execution plus a workflow 
repository plus a workflow browser plus a workflow miner), 
each coming from a different development group. 

2. Usage heterogeneity: A workflow output by a workflow 
tool can be consumed by at least two other workflow tools. 
In the integrations demonstrated to date, the output of a 
workflow tool is consumed by at most one other tool, and 
when it is consumed by several tools these tools have the 
same function. In a workflow ecosystem it is possible to 
import the same workflow into tools that have different 
functions (e.g., a workflow execution is mined and visualized 
by different tools). 

3. Abstraction heterogeneity: A workflow tool can import 
abstract or detailed views of workflows based on the level of 
granularity that the tool is able to handle. In the integrations 
to date, a workflow tool exports a workflow representation 
that has to be ingested in its entirety by another workflow 
tool. This feature is central to scaling up workflow 
ecosystems because it allows a loose coupling between tools 
that act as workflow producers and those that act as 
workflow consumers. 

These characteristics of workflow ecosystems have been partially 
addressed by prior work, but none of the prior interoperability 
efforts has addressed the heterogeneity and functional scale up 
requirements of a workflow ecosystem. 

Table 1. Dimensions to characterize workflow ecosystems. 

Dimension of  
Heterogeneity 

Description 

Functional Include tools with very diverse functions (e.g., 
editor, execution, provenance, browsing, mining, 
etc.) 

Use The same workflow output by a tool is consumed 
by tools with different functions 

Abstraction Each workflow tool can import abstract or 
detailed views of the same workflow based on 
the tool’s function. 

3. PRIOR WORK ON WORKFLOW 
INTEROPERABILITY 
There is a lot of prior work that has addressed interoperability 
across workflow systems through workflow interchange 
languages, system integrations, and workflow repositories.  

There have been several efforts to develop workflow interchange 
languages. The Open Provenance Model [24] is the result of a 
community effort to create a common representation for workflow 
executions, and is used by many workflow systems as an 
interchange format [21]. The recent W3C PROV standard for 
provenance [15] continues this work, and several approaches 
extend it to represent scientific workflow provenance [10] [2] 
[22]. Another significant effort to develop a common workflow 
language is the IWIR language [28]. Workflows represented in 
IWIR can be partitioned so that each partition is executed in a 
different workflow execution engine. WS-BPEL1 is a language for 
specifying business processes using web services, and BPMN2 
provides a standard graphical notation for business processes. 

Workflow repositories such as myExperiment [6] and CrowdLabs 
[20] can be used for sharing scientific workflows created with 
different systems. These repositories store workflows in their 
native languages, that is, without requiring their conversion to a 
common language. Tools that interoperate with these repositories 
tend to import only the workflows that are in a language that they 
understand.  For example [14] and [29] mined myExperiment to 
find subworkflows or analyze workflow reuse, but only extracted 
workflows that were implemented in Taverna’s format. Our goal 
is to build on these efforts and facilitate further interoperation 
across workflow systems. 

Other efforts are focused on integrating workflow systems. 
System integrations have been done with Pegasus [5], Taverna 
[25], Vistrails [26], Kepler [19], etc. Taverna was integrated with 
a workflow mining tool [14], as well as the myExperiment 
workflow repository [6]. Also, Taverna was able to export 
workflows to the Galaxy workflow system3 [1]. Pegasus has been 
integrated with the Condor execution system, with the WINGS 
workflow generation system [11], and with the PASOA 
provenance store [21]. More recently, the Wf4ever project4 has 
developed tools for preserving Workflow Research Objects [2], 
including tools for designing, executing, visualizing and storing 
scientific workflows, along with the models for accomplishing it. 
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Figure 1: The WEST workflow ecosystem. Workflow Templates (WT), Workflow Instances (WI) and Workflow Executions (WE) 

are interchanged among the different components of the ecosystem. Blue lines group converters with their corresponding workflow 
tools.

4. THE WEST WORKFLOW 
ECOSYSTEM  
WEST (Workflow Ecosystems through STandards) addresses 
our three dimensions of heterogeneity: 1) functional diversity 
through the integration of nine workflow functions coming from 
six different research groups, 2) usage diversity through the 
integration of tools that produce workflows consumed by at least 
two other tools, and 3) abstraction diversity through the use of 
workflow representation standards and semantic web standards 
that enable query-based retrieval of workflow views.  

Figure 1 shows an overview of the current incarnation of the 
WEST workflow ecosystem, showing also planned future 
interoperability pathways. The different tools that WEST 
integrates are represented in ellipses, while the workflow 
repositories are represented with rounded boxes with thick 
border. The small rectangular boxes depict the converters of the 
internal vocabularies used within the individual tools into the 
standard representations used by WEST. Converters planned but 
not yet implemented are indicated with dashed lines. 
Lightweight converters adapting our vocabulary to other 
extensions of the standards are shown in small rounded boxes 
(their respective tools are represented as dotted ellipses). The 
directionality of the arrows between the different tools indicates 

what tools produce and consume the workflows exchanged 
across tools in the ecosystem.  
We describe first the kinds of workflow structures exchanged 
across the different tools integrated in WEST, and then describe 
in detail each of the tools in the WEST workflow ecosystem. 

4.1 Workflow Structures 
Different workflow tools produce and consume workflows with 
different levels of specificity. We distinguish three major types 
of workflow structures that are exchanged across tools within 
our WEST workflow ecosystem: 

• Workflow Instance (WI): A workflow that specifies the 
application algorithms to be executed and the data to 
be used. Workflow instances are sometimes called 
abstract workflows because they do not specify 
execution resources. A workflow instance can be 
submitted to a workflow mapping and execution 
system, which will identify and assign available 
resources at run-time, submit it for execution, oversee 
its execution, and return a workflow execution trace. 
Because different resources may be available at 
different times or in different execution environments, 
the same workflow instance could result in very 
different workflow execution traces. 



 
Figure 2: A Workflow Template (left), a Workflow Instance (center), and a Workflow Execution (right).

• Workflow Execution (WE): Also known as a workflow 
execution trace or a provenance trace, a workflow 
execution contains the details of what happened 
during the execution of a workflow, including what 
resources it was executed on, execution time for each 
step, links to the intermediate results, and possibly 
other execution details such as steps for data 
movements. When workflow steps fail to execute, a 
workflow execution contains annotations of what 
failed and in this way its dataflow structure may be 
different from the dataflow in a workflow instance.  

• Workflow Template (WT): A generic reusable 
workflow specification that indicates the types of steps 
in the workflow and their dataflow dependencies. A 
workflow instance can be created from a workflow 
template when datasets are identified. A workflow 
generation tool can take the types of step specified in 
the workflow template (e.g., “sort”) and specialize 
them to implemented algorithms and codes (e.g., 
“Quicksort in Python”) to create the workflow 
instance. Since a type of step can have different 
implementations, the same workflow template could 
be used to generate very different workflow instances. 

Figure 2 illustrates with an example the difference between 
templates, instances and executions. On the left of the figure we 
can see a template with two steps (Stem and Sort), an input 
(Dataset) and an output (FinalResult). A workflow instance built 
from this template is shown in the middle of the figure, 
specifying Dataset123 as the input and specific executable codes 
for each of the steps (the LovinsStemmer algorithm and 
Quicksort algorithm respectively). When this workflow instance 
is executed, the workflow execution engine produces the 
execution trace shown on the right (each step has its start and 
end time, and each intermediate result identifier, e.g., 
Id:resultaa1, has associated the path of the file it represents). 

Figure 1 shows the kinds of workflow structures exchanged by 
the different tools in WEST with the labels WT, WI, and WE, 
along with the vocabulary representing it in brackets (PROV, P-
Plan and OPMW).  

4.2 Workflow Representation Standards 
We use the W3C PROV standard [15] and OPM [24] to 
represent workflow executions as provenance records. In 
addition, we use two extensions of these languages that are more 
specific to workflows and enable us to represent workflow 
templates and instances as well as further details of workflow 
executions: P-plan [8], and a revised version of OPMW5 [9] .  

The tools and systems in WEST have been created by different 
institutions, and each of them produces and consumes different 
types of information about workflow templates and executions, 
and at different granularities. For example, a PROV visualizing 
tool exposes a view of a workflow execution that is simpler than 
the one required for a visualization tool made for a particular 
workflow system. The use of semantic technologies facilitates 
this kind of selective extraction of the needed information. 

In this section we introduce all the previous models, and explain 
how they facilitate interoperation. 

4.2.1 Representing the provenance of Workflow 
Executions: OPM and PROV 
After the Third Provenance Challenge6, the Open Provenance 
Model (OPM) [24] consolidated itself as a de facto standard for 
representing provenance, and was adopted by many workflow 
systems7. The interest in having a standard for provenance 
interchange vocabulary led to the W3C Provenance Incubator 
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Group8, which was followed by the Provenance Working 
Group9. This effort finally materialized in the family of PROV 
specifications [15], a set of W3C recommendations on how to 
model and interchange provenance in the Web. In this section 
we briefly describe OPM and PROV, along with their main 
similarities.  

4.2.1.1 The Open Provenance Model 
OPM models the resources created as artifacts (immutable 
pieces of state), the steps used as processes (action or series of 
actions performed on artifacts), and the entities that control 
those processes as agents. Their relationships are modeled in a 
provenance graph with five main causal edges: used (a process 
used some artifact), wasControlledBy (an agent controlled some 
process), wasGeneratedBy (a process generated an artifact), 
wasDerivedFrom (an artifact was derived from another artifact) 
and wasTriggeredBy (a process was triggered by another 
process). It also introduces the concept of roles to assign the 
type of activity that artifacts, processes or agents played when 
interacting with one another, and the notion of accounts and 
provenance graphs. An account represents a particular view on 
the provenance of an artifact based on what was executed. A 
provenance graph groups sets of related OPM assertions. OPM 
does not specify any concept for the modeling of plans, so it can 
only be used to describe workflow executions and it cannot be 
used to describe workflow instances or workflow templates. 

OPM is available as two different ontologies that are built on top 
of each other. The OPM Vocabulary (OPMV)10

 is a lightweight 
RDF vocabulary implementation of the OPM model that only 
has a subset of the concepts in OPM but facilitates modeling and 
query formulation. The OPM Ontology (OPMO)11

 covers the 
full functionality of the OPM model, and can be used to 
represent OPM concepts that are not in OPMV, such as Account 
or Role. 

4.2.1.2 The W3C PROV Standard 
The PROV model is heavily influenced by OPM. PROV models 
resources as entities (which can be mutable or immutable), the 
steps using and generating entities as activities, and the 
individuals responsible for those activities as agents. The 
relationships are also modeled in a provenance graph with seven 
main types of edges: used (an activity used some entity), 
wasAssociatedWith (an agent participated in some activity), 
wasGeneratedBy (an activity generated an entity), 
wasDerivedFrom (an entity was derived from another entity), 
wasAttributedTo (an entity was attributed to an agent), 
actedOnBehalfOf (an agent acted on behalf of another agent) 
and wasInformedBy (an activity used the entity produced by 
another activity). 
PROV also keeps the notion of roles to describe how entities, 
activities and agents behaved in a particular event (usage, 
generation, etc.); and provides the means to qualify each of the 
aforementioned relationships using an n-ary pattern. PROV 
allows to state the plan associated to a certain activity, although 
the plan definition itself is out of the scope of the model (since it 
is not something that necessarily happened). PROV statements 
can be grouped in named sets called bundles, which are entities 
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themselves (thus allowing for their provenance to be described). 
The PROV standard is available as an ontology (PROV-O [18]). 

4.2.1.3 Comparison Between OPM and PROV 
There is a very clear correspondence between OPM and PROV, 
and this facilitates the reuse of workflows represented in one 
language by tools that consume the other.  

 
Figure 3: The commonalities between PROV (left) and OPM 
(right) facilitate mappings across both representations.  

 
Figure 4: P-plan is an extension of PROV. 

Figure 3 illustrates the main commonalities between OPM and 
PROV that are relevant to our scenario. Both models represent 
resources being used and generated by processes or activities 
which are controlled by an agent responsible for its execution. 
Entities (or artifacts, respectively) can be derived from other 
entities. Also, in OPM processes might be triggered by other 
processes, while in PROV Activities might receive an input 
created by another activity (being informedBy). 

4.2.2 Representing Workflow Templates and 
Instances: P-PLAN  
We cannot use a provenance language like OPM or PROV to 
represent workflow templates and workflow instances.  We need 
a language that can represent process models or plans that when 
executed lead to a provenance trace that can be expressed in 
OPM or PROV. 



P-Plan [8]12 is an extension of PROV for representing plans. 
Figure 4 shows an overview of the P-PLAN vocabulary. A p-
plan:Plan is a subclass of prov:Plan. The p-plan:Steps represent 
the planned execution activities. Plan steps may be bound to a 
specific executable step (p-plan:correspondsToStep) or refer to a 
class of steps, providing an abstraction layer over the execution. 
As a result, a plan step could be carried out in different ways in 
different executions of the same plan. A step may not have a 
corresponding activity, (as in an execution failure). A p-
plan:Variable represents the inputs of a step and can have  

 
Figure 5: OPMW and its relationship to the OPM, PROV, 

and P-PLAN vocabularies.   
properties (i.e., type, restrictions, metadata, etc.). p-plan:Steps 
may be preceded by other p-plan:Steps (p-plan:isPrecededBy), 
and have p-plan:Variables as input. p-plan:Variables are output 
of p-plan:Steps. Both steps and variables are associated to a p-
plan: Plan (p-plan:isStepOfPlan and p-plan:isVariableOfPlan 
respectively). The relation of the plan with agents is not 
specified in P-PLAN, since it can be modeled with PROV.  

4.2.3 Representing Workflows at Fine Granularity: 
OPMW 

Workflow templates, instances, and executions can be 
represented with the OPMW model. The new OPMW release is 
the fifth revision of the OPMW vocabulary [9], designed to 
represent scientific workflows. OPMW extends P-plan, PROV 
and OPM. OPMW supports the representations of workflows at 
a fine granularity with a lot of details pertaining to workflows 
that are not covered in those more generic languages. OPMW 
also allows the representation of links between a workflow 
template, a workflow instance created from it, and a workflow 
execution that resulted from an instance. Finally, OPMW also 
supports the representation of attribution metadata about a 
workflow, which some applications consume.  

Figure 5 shows the relationships between the different 
vocabularies used in WEST, and how OPMW extends PROV, 
OPM and P-PLAN. 

OPMW separates the issue of workflow representation in two 
different aspects: linkage between templates and executions and 
attribution. 

                                                                    
12 http://purl.org/net/p-plan 

4.2.3.1 Linking templates and executions in OPMW 
In OPMW, an opmw:WorkflowTemplate is a subclass of p-
plan:Plan (since it is a particular type of plan), 
opmw:WorkflowTemplateProcess is a subclass of p-plan:Step 
and opmw:WorkflowTemplateArtifact extends p-plan:Variable 
respectively (since both of them refer to a particular domain).  

On the execution side, each WorkflowExecutionProcess 
(subclass of prov:Activity and opmo:Process) is bound to a 
WorkflowTemplateProces via the 
correspondsToTemplateProcess  relationship (subproperty of p-
plan:correspondsToStep). Similarly, each 
WorkflowExecutionArtifact (subclass of prov:Entity and 
opmo:Artifact respectively) is linked to its abstract 
WorkflowTemplateArtifact with the 
correspondsToTemplateArtifact relationship (subproperty of p-
plan:correspondsToVariable). Finally, the 
WorkflowExecutionAccount containing all the provenance 
statements of the execution is linked to the WorkflowTemplate 
that contains all the assertions of the template with the 
correspondsToTemplate relationship. 

Figure 6 shows an example of the OPMW vocabulary extending 
OPM, PROV and P-PLAN. A workflow template with one 
sorting step, an input and an output (on the left of the figure, 
represented using P-Plan) is linked to its provenance trace on the 
right of the figure (depicted with PROV and OPM). Each 
activity and artifact is linked to its respective step and variable. 
Additional metadata of the variables (e.g., constraints), steps 
(e.g., conditions for execution), activities (e.g., used code), 
artifacts (e.g., size, encoding), accounts (e.g., status) and 
templates (e.g., associated diagram) is modeled with OPMW, 
but has been omitted from the figure for simplicity. 

4.2.3.2 Workflow Attribution in OPMW 
Attribution is crucial for scientists who create and publish 
workflows, and OPMW can be used to represent such metadata 
in workflow templates, instances, and executions. For this, 
OPMW   reuses   terms  from  the  Dublin  Core  (DC)  Metadata 
Vocabulary13, namely author, contributor, rights and license. 
OPMW also defines additional terms for referring to the start 
and end of the whole execution of the workflow, the size of the 
produced files, the status of the final execution, the tool used to 
design the workflow, the tool used to execute the workflow, etc. 

4.3 Functional Heterogeneity in WEST 
Figure 1 indicated all the workflow tools that we have integrated 
in the WEST ecosystem to date. They represent a wide variety 
of functions: 

• Workflow Generation: WEST integrates the WINGS 
workflow generation tool [11]. Users create workflow 
templates, which WINGS can specialize to generate 
workflow instances.  WINGS can submit the 
workflow instances for execution by different 
workflow mapping and execution engines. 

• Workflow Mapping and Execution: WEST includes 
three workflow execution engines: Pegasus [5], 
Apache OODT14, and the LONI Pipeline [30]. These 
systems map the workflow tasks to available 
execution resources, and then manage their execution. 

                                                                    
13 http://dublincore.org/documents/dcmi-terms/ 
14 http://oodt.apache.org/ 



 

 
Figure 6: Example of OPMW as an extension of PROV, OPM and P-Plan. A workflow execution (right) is linked with its workflow 
template (left). Other details like attribution metadata have been omitted to simplify the figure. 

 
Figure 7: PROV-O-viz visualization of part of a workflow execution trace. 

It would be easy to include other workflow execution 
engines, since many of them use OPM and are 
beginning to use PROV. 

• Workflow Mining: WEST includes the FragFlow 
system for workflow mining [10], which integrates 
several algorithms for extracting common workflow 
fragments from repositories of workflow templates 
and workflow executions. Including other workflow 
mining tools would not be hard, as they are typically 
based on graph mining or process mining algorithms 
that operate on data structures that are similar to those 
used in PROV and OPM. 

• Workflow Visualization:  WEST uses the Prov-o-viz 
tool [16] for visualizing provenance structures 
expressed in the W3C PROV standard. A screenshot is 
shown in Figure 7. Many tools for browsing, storing, 
visualizing and validating provenance have been 
developed for PROV. A workflow ecosystem that uses 
PROV can benefit from these applications, in order to 
check the consistency of an execution trace or to 
gather a general insight on how the inputs influence 
the final results. 

• Workflow Browsing: WEST uses a Workflow Explorer 
tool, WExp15, which allows for exploring different 
workflow templates, their metadata and their 
workflow execution results. A snapshot is shown in 
Figure 8. WExp loads dynamically the workflow 
information stored in a repository, and allows the user 
to search it on demand.   

                                                                    
15 http://purl.org/net/wexp 

• Workflow Documentation: WEST includes the 
Organic Data Science Wiki16, an extension of 
semantic wikis designed to develop meta-workflows 
that result in many workflow explorations and runs. A 
snapshot of the interface is shown in Figure 9. 
Workflow templates and workflow executions can be 
imported into this framework to generate 
documentation pages that link to data and algorithm 
descriptions in the wiki, and users can augment this 
documentation as they relate to the overall meta-
workflow.  

• Workflow Storage and Sharing: WEST has a 
workflow repository that includes workflow templates, 
workflow instances, and workflow executions. This is 
a public repository17, implemented using Virtuoso, and 
populated by WINGS. All workflows are Web objects 
that are openly accessible to any application that 
queries the repository. We illustrate this further in 
Section 4.5. 

Therefore, WEST includes nine different tools that provide 
seven distinct functions. Many of these tools were developed by 
other research groups: Pegasus by the USC/ISI Collaborative 
Science group, LONI Pipeline by the USC Laboratory of 
Neuroimaging, Prov-o-viz by the VUE in Amsterdam, and 
Apache OODT was originally developed at NASA/JPL.  

                                                                    
16 http://www.organicdatascience.org/index.php/Main_Page 
17 http://www.opmw.org/sparql 



 
Figure 8: Snapshot of the WExp browser showing some 

metadata of a water metabolism workflow. 

 
Figure 9: Snapshot of an Organic Data Science Wiki page 
created from the OPMW representation of the water 
metabolism workflow mentioned in Figure 8. 

 

Workflow output Consumed by 

Workflow Instance (from 
WINGS) 

Pegasus, Apache OODT 

Workflow Execution (from 
Apache OODT) 

WINGS, Repository, Organic Data 
Science Wiki 

Workflow Instance (from 
Pegasus/Condor) 

WINGS, Repository, Organic Data 
Science Wiki 

Workflow Execution (from 
WINGS) 

Repository, Organic Data Science 
Wiki, FragFlow, WExp, Prov-o-viz 

Workflow Template (from 
WINGS) 

Repository, Organic Data Science 
Wiki, FragFlow, WExp, Prov-o-viz 

Workflow Template (from 
LONI) 

Repository, Organic Data Science 
Wiki, FragFlow, WExp, Prov-o-viz 

Table 1: Workflow use and consumption in WEST 

4.4 Usage Heterogeneity in WEST 
Every workflow output in the WEST workflow ecosystem is 
either consumed by at least two different applications or stored 
in the repository where it is later consumed by one or more 
applications. 

Table 1 summarizes the tools in the WEST workflow ecosystem 
consuming and producing workflow templates, instances and 
executions. For example, the workflow instances generated by 
WINGS are used by both Pegasus and Apache OODT. 

Since the output of a workflow tool is consumed by several 
others, it is more likely that the representation used to exchange 
the workflows is not dependent of the specifics of two tools 
doing a pair wise exchange. 

4.5 Abstraction Heterogeneity in WEST 
The applications of the workflow environment have different 
needs. For example, mining and presentation applications 
typically care for workflow templates or workflow executions 
and their provenance, while execution engines need the 
workflow instances for their execution. In this Section we 
illustrate with an example how to access the contents of the 
same workflow by retrieving different artifacts at different 
granularities, showing the output after being consumed by 
different tools. All the workflow contents being referenced are 
publicly available online18. 
To illustrate our approach, we have selected one of the 
workflows stored in the WINGS repository for water 
metabolism estimation19. This workflow performs an analysis 
over sensor data collected in a river over a period of time as 
input, and plots the results. In order to illustrate our queries over 
the workflow, we will use the following namespace prefixes 
through the section: 

@prefix	
  prov:	
  <http://www.w3.org/ns/prov#>.	
  

@prefix	
  opmv:	
  <http://purl.org/net/opmv/ns#>.	
  

@prefix	
  opmo:	
  <http://openprovenance.org/model/opmo#>.	
  

@prefix	
  p-­‐plan:	
  <http://purl.org/net/p-­‐plan#>.	
  

@prefix	
  opmw:	
  <http://www.opmw.org/ontology/>.	
  

@prefix	
  wfprov:	
  <http://purl.org/wf4ever/wfprov#/>.	
  

Since we are interested in showing how the template and 
execution traces are linked at the different levels of granularity, 
we first retrieve the available executions with the following 
query (urls and namespaces have been omitted for simplicity, 
the complete queries are available online20): 

SELECT	
  DISTINCT	
  ?execution	
  WHERE	
  {	
  
?execution	
  	
  opmw:correspondsToTemplate	
  	
  <url	
  Aquaflow>.	
  

}	
  
This query returns two results, which correspond to the different 
executions of the workflow. Each execution corresponds to an 
OPM Account or a PROV Bundle (stored as a named graph), so 
we are able to retrieve the contents of the workflow in any of 
those vocabularies. For example, if we want to retrieve all the 

                                                                    
18 http://opmw.org/sparql 
19 http://www.opmw.org/export/resource/WorkflowTemplate/ 

AQUAFLOW_NTM 
20 http://purl.org/net/works2014materials 



prov:Activities contained in the template, we might issue the 
following query: 

SELECT	
  DISTINCT	
  ?activity	
  	
  

FROM	
  <executionAccountURI>	
  #Named	
  graph	
  for	
  the	
  Bundle	
  

WHERE	
  {	
  

	
  	
  	
  ?activity	
  a	
  prov:Activity.	
  

}	
  

Similarly, if we want to retrieve all the OPM Processes within 
the workflow execution (which are the same as the 
prov:Activities), the query would be as follows: 

SELECT	
  DISTINCT	
  ?activity	
  WHERE	
  {	
  

	
  	
  ?activity	
  a	
  	
  opmv:Process.	
  

	
  	
  ?activity	
  opmo:account	
  <executionAccountURI>.	
  	
  

}	
  

This facilitates retrieving the contents of the workflow in a 
flexible way, as applications consuming PROV or OPM are 
capable of consuming the contents of the workflow without 
additional transformations. An example can be seen in Figure 7, 
where the Prov-o-viz tool (developed by another institution) has 
been used to show part of one of the water metabolism 
workflow executions. The tool consumes PROV, and accepts 
SPARQL endpoints as input. No additional format conversions 
are necessary for producing the diagram. 

Other applications consume the fine grained representation of 
the workflow, expressed in OPMW. Figure 8 and Figure 9 show 
an example of two different applications (Workflow Explorer 
(WExp) and the Organic Data Science wiki respectively) 
showing details of the template metadata (Figure 8) and the 
template steps and variables (Figure 9). In each case, different 
metadata considered of value to the user is shown, but the 
representation and queries used to obtain the metadata are the 
same. 
The repositories of the workflow environment may not always 
contain all the different levels of granularity for all workflows, 
as some of the information is redundant. For example, if the 
workflow is represented in OPMW, having the OPM, PROV 
and P-PLAN representation is good for flexibility and 
facilitating querying the repository, but when the number of 
workflows stored is high (e.g., several thousands of workflows 
and their executions), it might introduce scalability issues. In our 
case, we have decided to include the OPM and PROV 
representations because many applications are designed to work 
with them already, but we haven’t done the same for P-plan. 
However, obtaining a P-PLAN representation is trivial with 
SPARQL construct queries and the documentation of the 
ontology. For example, the following query provides the P-Plan 
step dependency graph of the water metabolism workflow by 
querying the workflow ecosystem repository: 

CONSTRUCT{	
  

	
  	
  	
  ?activity2	
  p-­‐plan:isPrecededBy	
  ?activity.	
  

}	
  

WHERE{	
  

	
  	
  ?activity	
  a	
  opmw:WorkflowTemplateProcess.	
  

	
  	
  ?activity2	
  a	
  opmw:WorkflowTemplateProcess.	
  

	
  	
  ?activity	
  opmw:isStepOfTemplate	
  <url	
  AQUAFLOW_NTM>.	
  

	
  	
  ?activity2	
  opmw:isStepOfTemplate	
  <url	
  AQUAFLOW_NTM>	
  	
  	
  	
  	
  .	
  

	
  	
  ?activity2	
  opmw:uses	
  ?u1.	
  

	
  	
  ?u1	
  opmw:isGeneratedBy	
  ?activity.	
  

}	
  

The results show the dependency between the activities of the 
workflow, which is simpler than the usage/generation 
visualization adopted by the model. 
As we introduced in the Related Work section, there are other 
vocabularies that use or extend PROV for scientific workflow 
execution and template representation (e.g., D-PROV [22] and 
the RO model [2]). In a workflow ecosystem each tool or 
application might have its own inner representation, and we find 
crucial for it to be able to interchange it with other systems. The 
advantage of the vocabularies extending PROV is that although 
the PROV serialization is often not exposed (only 
representations with the extended classes and properties are 
normally available) it is trivial to transform it to the standard 
representation. For example, the following construct query 
transforms Wfprov (RO model) to PROV: 

CONSTRUCT{	
  

	
  	
  ?activity	
  a	
  prov:Activity.	
  

	
  	
  ?entity	
  a	
  prov:Entity.	
  

	
  	
  ?entity2	
  a	
  prov:Entity.	
  

	
  	
  ?entity2	
  prov:wasGeneratedBy	
  ?activity.	
  	
  

	
  ?activity	
  prov:used	
  ?entity.	
  

}	
  

WHERE{	
  

	
  	
  ?activity	
  wfprov:usedInput	
  ?entity.	
  

	
  	
  ?entity	
  wfprov:wasOutputFrom	
  ?activity.	
  

}	
  

With this PROV representation, the serialization would be 
compatible with the majority of the applications in WEST. 
Furthermore, with a similar query we could transform OPMW to 
Wfprov, and benefit from the applications exploiting it.  

The template level transformation is a bit more complex, as 
different systems have different capabilities. For instance, some 
workflow systems like Kepler allow for loops and conditionals 
in their templates, while others do not. However, most of the 
scientific workflows are modeled as Directed Acyclic Graphs 
(DAGs) and thus can be easily represented in P-PLAN with 
construct queries as we have shown in the previous examples. 

5. DISCUSSION 
Standard models for the representation of workflow executions 
as provenance (OPM, PROV) have been proposed by the 
community, but there are currently no standards for representing 
scientific workflow templates or instances. Several languages 
have been proposed. The IWIR syntax defines a representation 
language for workflows to be interoperable across different 
tools. The aim is to be able to take workflows designed in a tool 
and execute them in another one. IWIR has a similar function to 
P-Plan and OPMW, but IWIR is much more expressive than 
those languages because it has to cope with all the requirements 
of the different execution engines. In our work, we use P-Plan 
and OPMW, which have a less expressive but simpler 
interchange format. This is a feature but also a limitation, as it 
means that our approach is able to represent all scientific 



workflows modeled as DAGs, but cannot represent loops and 
conditionals, which are typical in business workflow languages 
such as WS-BPEL. The RO model [2] and D-PROV [22] are 
other workflow models for representing workflow templates and 
executions, and they also extend PROV. We use P-PLAN and 
OPMW because of their simplicity. OPMW and P-PLAN are 
sufficient for representing the workflow templates, instances and 
executions consumed by the workflow tools integrated in our 
ecosystem. In spite of this diversity, all these vocabularies 
extend PROV. Because P-PLAN and OPMW are effectively a 
subset of the constructs of IWIR, D-PROV, and the RO model, 
extracting workflows in those languages from our P-PLAN and 
OPMW representations amounts to making queries that return 
the representations desired, as we showed in Section 4.5.   

6. CONCLUSIONS AND FUTURE WORK 
In this paper we have shown our approach towards creating an 
ecosystem of interoperable applications for scientific workflows. 
In order to achieve this purpose, we have extended OPM and the 
PROV standard with the P-plan model for representing 
workflow templates and the OPMW vocabulary to represent 
workflow templates and executions. We have also shown how to 
access and retrieve different information about workflows 
depending on what is needed by the different workflow tools. 

In our choice for standard vocabularies, we have been driven by 
simplicity in the design rather than completeness. Other 
complex solutions (WS-BPEL, BPMN, D-PROV, etc.) can be 
adopted or extended for this purpose and easily mapped or 
combined with our model, as we have discussed in Section 4.5. 

The main benefits of our approach are the interoperability 
among the applications in the ecosystem, the flexibility to 
interchange data and facilitating the integration of contents 
modeled in other vocabularies.  

We have tested our approach by developing an ecosystem with 
applications created by different organizations and showing how 
the output produced by some of these tools can be consumed by 
others by means of SPARQL queries, which are also provided 
together with this paper. Our approach does not require that the 
applications in the ecosystem change their internal format 
representations. The used models are an interchange format for 
interoperability. 

Regarding future work, we plan to continue developing 
converters for tools that are already integrated in the WEST 
workflow ecosystem but do not yet use the proposed models 
(depicted in dashed lines in Figure 1). This will greatly facilitate 
the addition of new workflow tools to the ecosystem. Another 
area of future work is to explore further converters for 
interoperability with other architectures and other models for 
representing workflows.  Finally, an important aspect of future 
work is to address the scalability of workflow ecosystems 
through the development of common functions and APIs that 
will facilitate the rapid integration of new workflow systems and 
capabilities.   
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