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Abstract	

In	this	presidential	address,	I	would	like	to	start	with	a	personal	reflection	on	the	field	and	then	share	with	
you	the	research	directions	I	am	pursuing	and	my	excitement	about	the	future	of	AI.		In	my	personal	research	to	
advance	AI	while	advancing	scientific	discoveries,	one	question	that	I	have	been	pondering	for	some	years	now	is	
whether	AI	will	write	scientific	papers	in	the	future.	I	want	to	reflect	on	this	question,	and	look	back	at	the	many	
accomplishments	in	our	field	that	can	make	us	very	hopeful	that	the	answer	will	be	yes,	and	that	it	may	happen	
sooner	than	we	might	expect.	

A	Personal	Perspective	on	AI	

My	first	AAAI	conference	was	in	1986.	I	had	just	landed	in	Pittsburgh	from	Spain,	
where	I	am	originally	from	just	two	weeks	earlier.		I	found	AAAI	to	be	a	very	inspiring	
community.	 	 In	 my	 view,	 AI	 researchers	 have	 been	 visionary,	 broad,	 inclusive,	
interdisciplinary,	determined,	 and	successful	 at	 challenging	endeavors.	 It	 is	 a	very	
vibrant	 field,	 and	 I	 think	 the	 AAAI	 conference	 is	 where	 I	 see	 that	 breadth,	
interdisciplinarity,	and	determination	at	its	best.	And	I	am	very	proud	to	be	part	of	
this	AI	community	that	has	been	tackling	profound	challenges,	and	I	am	often	amazed	
by	what	it	has	accomplished	as	I	look	back	over	the	years.		

In	the	80s,	when	I	arrived	at	Carnegie	Mellon	University,	there	was	a	course	on	
architectures	for	intelligence,	where	I	learned	so	much	about	the	breadth	of	ideas	in	
approaching	 intelligence.	 Allen	 Newell	 was	 working	 with	 others	 on	 the	 SOAR	
architecture,	adopting	cognitive	models	of	intelligence.	Jaime	Carbonell,	who	was	my	
advisor,	 was	 doing	 research	 on	 engineering	 diverse	 intelligent	 capabilities	 for	
learning,	 reasoning,	 and	meta-reasoning,	 all	 within	 the	 same	 Prodigy	 framework.	
Tom	Mitchell	 was	working	 on	 THEO,	 which	was	 a	 sophisticated	 frame	 system	 to	
organize	general	knowledge	and	facts	about	the	world.	Geoff	Hinton,	who	was	at	CMU	
at	the	time,	was	working	on	backpropagation	as	an	alternative	basis	for	intelligent	
architectures.	 	 In	 that	 course,	 we	 also	 learned	 about	 different	 architectures	 for	
intelligence	that	were	being	explored	elsewhere.		Roger	Schank	at	Yale	emphasized	
how	intelligence	is	demonstrated	in	telling	interesting	stories	that	prompt	others	to	
respond	with	a	good	follow	up	question	or	a	related	and	equally	 interesting	story.		
Rod	 Brooks	 at	 MIT	 was	 investigating	 subsumption	 architectures,	 with	 basic	
capabilities	 controlling	 sensors	 and	 actuators,	 and	 then	 on	 those	 capabilities	 you	
build	more	elaborate	ones	that	demonstrate	higher	intelligence.		All	this	provided	a	
very	broad	view	on	the	approaches	to	study	intelligence	and	on	the	field	of	AI.		I	hope	
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that	students	today	continue	to	seek	these	kinds	of	opportunities	to	appreciate	the	
breadth	of	our	field.	

Over	the	decades,	I	have	seen	tremendous	accomplishments	from	our	community	
in	all	areas	of	AI.	Figure	1	shows	some	of	these	highlights.		In	the	early	90s,	when	I	
was	finishing	my	Ph.D.	I	used	the	Sphynx	voice	recognition	system	to	actually	write	
my	thesis.	I	thought	it	was	incredible	that	it	worked	so	well.		After	graduation,	I	moved	
to	the	Information	Sciences	Institute	at	the	University	of	Southern	California,	where	
Paul	Rosenbloom	was	collaborating	with	Allen	Newell	and	 John	Laird	 in	 the	SOAR	
architecture	 that	 I	 mentioned	 earlier,	 using	 it	 to	 fly	 helicopters	 in	 teams	 that	 a	
commander	 found	 to	 be	 indistinguishable	 from	 human	 pilots.	 I	 thought	 that	 was	
remarkable.		Also	during	those	years,	the	TD-Gammon	system	was	learning	to	play	
backgammon	with	itself	and	performing	at	human	levels.	SKICAT,	built	at	NASA’s	JPL,	
was	 identifying	 new	 quasars	 using	 data	 from	 Sky	 Surveys.	 CMU’s	 Navlab	 was	 an	
autonomous	vehicle	with	a	neural	network	at	its	core	that	learned	enough	to	drive	
itself	across	the	US.		Deep	Blue	was	able	to	beat	the	World	Chess	Champion,	a	feat	that	
Kasparov	himself	has	said	was	eventually	inevitable.	In	1999,	RAX	flew	in	a	spaceship	
and	generated	plans	for	the	use	of	its	instruments	and	becoming	the	first	intelligent	
system	to	reach	outer	space.			It	was	an	amazing	decade	for	AI.	

In	the	2000s,	many	more	significant	accomplishments	would	come	from	all	areas	
of	AI.	I	was	excited	to	see	ontologies	become	very	popular,	with	the	Gene	Ontology	
starting	to	be	used	to	describe	thousands	of	gene	products	and	becoming	the	core	
connector	 for	 most	 biology	 knowledge	 sources.	 Kismet	 demonstrated	 emotions	
embodied	in	an	interactive	robot.		In	2003,	a	statistical	machine	translation	system	
beat	 the	performance	of	manually-coded	commercial-grade	systems	that	had	been	
built	 over	many	 years.	 RDF,	 a	 knowledge	 representation	 language	 that	 become	 a	
standard	for	the	Giant	Global	Graph	(the	next	generation	of	the	World	Wide	Web),	
was	the	initial	seed	for	today’s	widely-used	knowledge	graphs.		Stanley	won	a	million-
dollar	challenge	for	off-road	autonomous	driving.	 	The	first	robot	soccer	exhibition	
game	 against	 humans	 took	 place,	 demonstrating	 teamwork	 in	 a	 highly	 dynamic	
environment.		At	the	end	of	that	decade,	an	ensemble	learning	system	won	a	million	
dollars	for	predicting	user	movie	ratings.		

The	past	decade	has	also	seen	many	exciting	AI	accomplishments,	and	I	will	just	
mention	them	briefly	since	they	are	more	present	 in	our	minds.	 	 In	2010,	Siri	was	
released	as	a	smart	phone	app	and	soon	became	an	integral	part	in	the	lives	of	many	
mobile	phone	users.	Robot	soccer	teams	were	now	passing	and	intercepting	across	
ten	 robots	 coordinating	 together.	 Watson	 won	 the	 popular	 Jeopardy	 question-
answering	 contest	 against	 the	 best	 human	 players.	 	 Alexnet	 raised	 the	 bar	
tremendously	on	image	recognition	and	contributed	to	the	revival	of	neural	networks	
that	are	flourishing	today.	Cognitive	tutors	were	demonstrated	to	improve	learning	
for	thousands	and	thousands	of	students.		Knowledge	graphs	were	used	to	improve	a	
third	of	 the	hundred	billion	 searches	 conducted	 in	 a	month.	 	Wikidata	 recorded	a	
billion	triples,	or	logic	assertions,	and	became	the	largest	crowdsourced	knowledge	
base	with	more	edits	than	its	older	sister	Wikipedia.			



	

	

These	are	all	incredible	things	that	our	community	has	accomplished,	and	there	
are	many	more	that	I	have	not	covered	here.	But	they	suffice	to	illustrate	that	these	

 
 

Figure 1.  Highlights of significant AI accomplishments over the last few decades, 
spanning cognitive systems, machine learning, multi-agent systems, knowledge 

representation, search, planning, robotics, and natural language. 

1995: Navlab is the first trained car to drive autonomously on highways to cross the United States

1992: Soar flies helicopter teams in simulations and is indistinguishable to commanders from human-controlled aircraft

1992: TD-Gammon autonomously learns to play backgammon  at human player levels

1990: Sphynx shows speaker independent large vocabulary continuous speech recognition

1997: Deep Blue defeats human chess world champion and gets grandmaster-level rating

1999: RAX flew a spacecraft autonomously, demonstrating planning, monitoring, and fault repair

1995: SKICAT identifies five new quasars in the Second Palomar Sky Survey

2003: USC ISI’s statistical machine translation prototype beats hand-crafted commercial systems 

2000: The Gene Ontology is shown to describe over 15,000 gene products for drosophila, mouse, and yeast

2004: RDF semantic specifications become W3C recommendations for the GGG (Giant Global Graph)

2009: Pragmatic Chaos ensemble learning wins $1M competition to predict user film ratings 

2000: Kismet demonstrates and recognizes emotions

2007: Stanley wins $1M for first autonomous high-speed off-road driving

2007: First robot soccer team against human players in exhibition game at RoboCup

2013: Cognitive Tutor shows 8 percentile points average improvement in algebra in 25,000 students study

2012: AIexNet scores improved 10 percentage points in the ImageNet visual recognition challenge

2011: Watson takes first place in Jeopardy Q/A game defeating two human champions

2010: Siri voice-activated personal assistant is released as a smart phone app

2011: CMDragons team of 10 soccer robots coordinate plays for routine passing, interception, and goal scoring

2016: Knowledge Graph used as semantic backbone in one third of 100B monthly searches

1990s

2000s

2100s

2019: Wikidata records 8 billion triples and over 880 billion edits, surpassing Wikipedia as most edited Wikimedia site



accomplishments	cut	across	the	spectrum	of	all	areas	of	AI:	interaction,	collaboration,	
search,	 constraint	 reasoning,	 sensing,	 perception,	 planning,	 robotics,	 knowledge	
systems,	 learning,	 and	 so	 on.	 	 All	 across	 the	 board	 we	 have	 been	 able	 to	 make	
tremendous	progress.		

This	message	of	diversity	and	breadth	is	very	important	for	the	AI	community:	
that	we	have	accomplished	 things	 that	 the	rest	of	 the	world	may	or	may	not	have	
noticed	but	that	we	know	place	us	in	a	solid	footing	to	tackle	future	problems.		All	this	
progress	gives	us	hope	that	AI	is	at	the	core	of	new	approaches	to	tackle	humanity’s	
crucial	challenges,	from	science	to	health	to	innovation	to	education	to	policy.				

The	Imperative	for	AI	in	Science	

Accelerating	scientific	advances	is	an	important	grand	challenge	of	our	time.		In	
the	case	of	science	in	particular,	I	believe	that	it	is	not	just	useful	to	have	AI.		AI	has	
really	become	an	imperative	for	science.		

There	 is	a	 long	history	of	AI	 in	science.	Back	 in	the	1950s,	Herb	Simon	already	
started	to	look	at	cognitive	aspects	of	how	scientific	discovery	occurs,	and	over	the	
years	he	had	many	collaborators	demonstrating	and	replicating	scientific	discoveries.	
Ed	Feigenbaum,	who	was	his	student,	went	off	to	Stanford	to	collaborate	with	Joshua	
Lederberg	and	Bruce	Buchanan	on	molecular	biology	and	molecular	discovery.		There	
is	a	long	tradition	in	AI	in	science.	In	many	cases,	the	work	has	been	naturally	focused	
on	machine	learning.		But	there	is	also	a	lot	of	analysis	on	how	scientists	approach	
new	discoveries	in	terms	of	mechanism	design,	causality,	and	paradigm	shifts.	

At	the	same	time,	it	is	important	to	recognize	the	human	limitations	that	actually	
curb	scientific	progress	[Gil	2017].	So	when	we	write	papers	and	when	scientists	look	
at	the	world,	sometimes	there	are	errors	and	biases,	there	is	poor	reporting	in	papers,	
and	sometimes	the	work	is	not	systematic	or	complete.	I	will	mention,	for	example,	
work	by	Liz	Bradley	and	colleagues	on	analyzing	paleoclimate	data	where	their	AI	
system	generated	a	 range	of	hypotheses	and	some	had	not	appeared	 in	published	
papers.	 Scientists	 considered	 them	 to	 be	 valid	 hypotheses,	 but	 they	 chose	 not	 to	
mention	them.	And	so	important	hypotheses	are	often	left	not	discussed	or	explored.		
There	are	many	cases	of	errors	because	scientists	are	human	and	make	mistakes,	and	
so	we	 read	 about	published	papers	 being	 retracted	 after	 some	 scrutiny	 about	 the	
results.		I	use	the	example	of	a	graduate	student	trying	to	reproduce	the	results	of	a	
paper	by	two	influential	economists,	and	finding	out	that	they	had	made	an	error	by	
omitting	 some	 of	 the	 data	 in	 their	 tables.	 	 Another	 important	 problem	 is	 that	
reproducing	 the	 results	 of	 a	 published	 paper	 is	 often	 very	 challenging,	 because	
authors	do	not	 include	enough	information	that	 is	crucial	to	understand	how	their	
methods	actually	worked.		These	are	all	important	issues	that	illustrate	how	human	
limitations	can	curtail	scientific	progress	and	that	I	believe	AI	is	in	a	great	position	to	
address.	

At	the	same	time,	there	is	very	exciting	work	that	is	more	recent	that	I	wanted	to	
share	 with	 you	 on	 AI	 in	 science.	 The	 computational	 sustainability	 community	 is	
developing	new	approaches	 in	multi-agent	systems,	constraint	reasoning,	machine	



learning,	 and	 optimization	 to	 address	 a	 range	 of	 environmental	 problems	 (e.g.,	
[Gomes	et	al	2019]).	There	is	also	very	important	work	on	materials	discovery,	where	
from	 automated	 text	 extraction	 from	 published	 articles	 they	 are	 able	 to	 identify	
particular	molecules,	recreate	the	periodic	table,	and	actually	predict	discoveries	that	
have	 occurred	 in	 the	 past	 just	 from	 looking	 at	 the	 trends	 in	 the	 literature	 (e.g.,	
[Tshitoyan	 et	 al	 2019]).	 There	 is	 also	 increasing	 value	 for	 knowledge-based	
biomedical	data	science	on	how	knowledge	is	used	to	make	progress	in	life	sciences	
(e.g.,	[Callahan	et	al	2020]).		There	are	also	discoveries	through	machine	learning,	one	
of	note	is	on	protein	folding	prediction	which	incorporated	physical	and	geometrical	
constraints	to	outperform	any	other	algorithms	and	even	years	of	work	invested	by	
some	labs	dedicated	to	specific	proteins.		(e.g.,	[Senior	et	al	2020]).	It	is	very	exciting	
to	 see	 AI	 research	 leading	 to	 these	 advances.	 	 And	 I	want	 to	 point	 out	 that	 these	
advances	 come	 from	 a	 diversity	 of	 areas	 in	 AI.	 	 Given	 the	 formidable	 science	
challenges	 that	 our	 generation	 faces	 —	 understanding	 the	 brain,	 preserving	 our	
planet,	deciphering	the	origins	of	the	universe	—		I	believe	we	need	the	diversity	and	
breadth	of	research	areas	in	AI	to	make	strides	on	these	frontiers.			

Capturing	Scientific	Knowledge	

My	recent	research	has	focused	on	capturing	scientific	knowledge	and	the	new	AI	
approaches	that	can	use	this	knowledge	to	provide	novel	capabilities.		I	will	show	our	
work	on	how	we	use	scientific	knowledge	in	two	major	ways:	to	do	systematic	data	
analysis	and	to	enable	interdisciplinary	research.		

When	 you	 think	 of	 scientific	 knowledge,	 you	 think	 of	 physics,	 mathematics,	
biological	 processes,	 and	 so	 on.	 We	 take	 a	 step	 back	 and	 focus	 instead	 on	 the	
compositionality	 and	 modularity	 of	 scientific	 artifacts	 that	 already	 capture	 that	
knowledge.	We	 take	models	 in	 science	 as	 something	 that	 we	 can	 use	 as	 building	
blocks.	For	example,	a	hydrology	model	can	use	sophisticated	physics	equations	to	
represent	where	rain	water	goes	in	a	complex	ecosystem.		We	think	that	AI	systems	
do	 not	 necessarily	 need	 to	 understand	 exactly	 how	 a	model	works,	 but	 instead	 it	
needs	knowledge	about	how	to	use	that	model	to	make	estimates	and	predictions.		So	
we	think	of	models	and	other	scientific	artifacts	as	modular	computational	objects	—	
that	 is	a	very	 important	concept	 for	us.	We	focus	on	the	knowledge	needed	to	use	
them	as	modular	objects:	we	want	to	represent	about	the	input	data	their	require,	the	
physical	 variables	 that	 they	 model,	 the	 constraints	 for	 their	 use,	 when	 their	
assumptions	are	appropriate	for	a	particular	problem,	the	parameters	that	we	would	
like	to	adjust,	and	the	interventions	or	changes	that	we	want	to	do	on	a	situation	in	
order	to	improve	outcomes.	

We	have	worked	on	 a	 range	of	 projects	 over	 the	 years	 that	 touch	on	different	
aspects	of	capturing	or	representing	knowledge.	I	will	discuss	here	a	few	of	them.	

The	first	one	I	will	describe	is	on	crowdsourcing	vocabularies	to	describe	scientific	
data	and	create	metadata	annotation	standards	[Gil	et	al	2017b].	 	We	collaborated	
with	Julien	Emile-Geay	and	Deborah	Khider	of	the	University	of	Southern	California,	
and	with	Nick	McKay	of	Northern	Arizona	University.		This	is	very	interesting	work,	



because	in	a	lot	of	disciplines	it	takes	a	lot	of	effort	to	agree	to	standard	vocabularies	
that	can	be	used	to	describe	scientific	data.	This	is	the	case	with	paleoclimate,	where	
scientists	study	past	climates	in	the	last	few	hundred	or	thousand	years	by	studying	
very	diverse	data.	 	They	drill	cores	in	different	locations	on	Earth,	 just	to	see	what	
happened	many	years	ago	through	what	is	buried	in	the	ground.	Some	scientists	drill	
in	the	ice,	and	study	the	size	of	the	trapped	air	bubbles.		Others	look	at	marine	cores,	
and	study	the	remains	of	coral	that	appear	and	how	it	grew	based	on	the	climate	at	
that	time.	Others	drill	on	lakes	to	study	sediments.		So	it	is	very	challenging	to	come	
up	with	a	standard	way	to	represent	all	this	data.		And	as	a	result,	it	takes	them	years	
to	analyze	all	this	diverse	data	in	a	consistent	way	to	create	a	model	of	past	climate	at	
planetary	scale.	

We	developed	a	new	approach	that	we	call	controlled	crowdsourcing.	Scientists	
describe	 the	datasets	 that	 they	are	using	as	 they	do	 their	work,	and	they	are	each	
asked	to	propose	terms	that	they	would	like	use	for	their	own	data.		They	can	choose	
to	adopt	the	terms	proposed	by	others,	and	pretty	soon	you	have	convergence	at	least	
for	some	of	the	terms.	And	we	place	an	editorial	process	on	top,	very	much	following	
the	footsteps	of	Wikipedia,	but	focused	on	deciding	on	terms	that	are	worthy	of	more	
general	adoption	by	the	community	and	eventually	turning	them	into	ontologies.	So	
users	will	 describe	 their	data	 as	 they	 go,	 continuously	 adding	what	we	 call	crowd	
properties	 to	 extend	 a	 very	 solid	 set	 of	 core	 ontologies	 that	 we	 either	 reused	 or	
created.			

We	had	to	address	the	challenges	of	living	with	an	evolving	ontology.	We	would	
start	with	an	ontology,	scientists	would	start	annotating	the	data	and	proposing	new	
properties,	and	eventually	we	had	a	new	version	of	the	ontology.		But	we	could	not	
just	adopt	the	new	ontology,	because	we	had	many	datasets	already	annotated	using	
the	prior	version.	We	were	able	 to	address	 this	with	AI	 techniques	 from	ontology	
development,	and	principles	for	non-monotonic	and	monotonic	reasoning.	

The	resulting	standard	for	describing	paleoclimate	data	emerged	over	a	period	of	
two	years,	and	there	was	great	convergence	on	how	to	describe	the	different	datasets	
as	well	as	a	few	basic	terms	that	were	adopted	by	all	[Khider	et	al	2019].		And	I	should	
mention	it	was	accomplished	with	zero	face	to	face	meetings,	 just	a	single	meeting	
was	held	at	the	very	beginning	to	agree	to	the	overall	process.		Thanks	to	AI	we	were	
able	to	enable	this	standard.			

It	is	important	to	realize	that	this	is,	in	effect,	an	approach	that	uses	AI	techniques	
to	 synthesize	new	scientific	 knowledge	 in	 the	 form	of	 those	vocabulary	 standards	
which	did	not	exist	before.	

Another	project	 that	 I	would	 like	 to	discuss	 is	capturing	knowledge	about	data	
analysis	processes	as	semantic	workflows	in	our	WINGS	workflow	framework	[Gil	et	
al	2011].	Workflows	represent	multi-step	computational	methods	in	science	that	are	
repeated	 and	 are	 re-used	 often.	We	 view	 them	 as	 plans	 and	 study	 them	with	 AI	
techniques	to	reason	about	goals	and	effects,	execution	monitoring	and	replanning,	
failure	 detection	 and	 recovery,	 and	 abstractions.	 	 This	 provides	 a	 very	 powerful	



framework	for	many	science	processes	and	data	analysis	methods	described	in	the	
methods	sections	of	scientific	papers.	

We	do	not	just	treat	workflows	as	computations,	instead	we	treat	them	as	objects	
of	 science	 that	 have	 meaning	 and	 purpose	 and	 we	 attach	 to	 them	 semantic	
annotations	 and	 constraints.	 Every	 constituent	 of	 the	 workflow,	 whether	 data	 or	
computational	 step,	 has	 an	 identifier	 and	 we	 can	 make	 assertions	 and	 express	
constraints	about	them.	We	can	assert	that	a	certain	type	of	input	data	has	a	property,	
and	that	having	that	property	makes	it	compatible	with	some	analysis	step	being	done	
downstream	 in	 the	 workflow.	 And	 we	 can	 attach	 to	 a	 workflow	 a	 lot	 of	 such	
constraints.	 These	 constraints	 allow	us	 to	 reason	 about	 how	 to	 set	 parameters	 of	
specific	method	steps	so	they	are	customized	to	the	data,	to	reason	about	generating	
metadata	 for	 the	 workflow	 outputs,	 to	 reason	 about	 how	 to	 choose	 an	
implementation	among	many	available	for	a	given	workflow	step,	and	how	to	validate	
that	the	overall	workflow	is	appropriate	for	the	data	at	hand.	

Figure	2	shows	an	example	workflow	constraint.		The	left	side	shows	the	metadata	
that	we	have	for	any	data	set,	and	the	right	shows	the	step	using	that	type	of	data	and	
other	data,	and	then	a	constraint	that	indicates	that	 if	two	different	steps	are	used	
together,	in	this	case	alignment	and	assembly,	they	have	to	use	the	same	reference	
genome.	

Semantic	workflows	also	use	abstraction,	so	a	given	step	could	be	executed	with	
different	algorithms	and	implementations.		We	can	very	easily	reason	about	abstract	
methods	in	science	versus	specific	implementations.	Through	AI,	we	are	able	to	do	
very	powerful	reasoning	for	composition	and	exploration	of	these	workflows.	We	can	
take	a	very	simple	high-level	workflow	and	elaborate	it	to	add	many	sub-steps.	It	is	
basically	what	some	of	us	in	AI	would	recognize	as	skeletal	planning.	Starting	with	a	
skeletal	plan	with	high-level	steps,	we	can	specialize	each	step	to	the	current	input	
data	based	on	the	constraints	that	we	have	about	each	option	for	implementing	the	
step.		

 
 

Figure 2.  Semantic workflows in WINGS capture constraints about science 
methods and datasets, enabling the automatic elaboration of high-level methods to 

customize them to the characteristics of the given data. 
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We	 capture	many	 scientific	methods	 as	 semantic	workflows.	 For	 example,	 we	
created	 a	 library	 of	 workflows	 for	 population	 genomics,	 and	 we	 were	 able	 to	
reproduce	papers	where	we	could	get	a	hold	of	the	original	data.	We	got	the	same	
significant	results	that	the	papers	did,	 just	by	reusing	workflows	from	that	 library.	
Our	workflows	used	open	source	software,	while	some	of	the	papers	used	proprietary	
software.	Our	workflows	 could	use	more	modern	algorithms,	while	 some	of	 these	
papers	used	very	old	algorithms	that	were	known	at	the	time.	But	we	were	able	to	get	
the	same	results	so	we	are	using	very	powerful	AI	techniques	to	capture	sophisticated	
scientific	methods.	

Semantic	workflows	also	enable	us	 to	use	machine	 learning	 to	detect	 common	
workflow	fragments	that	scientists	use	with	different	data,	and	we	demonstrated	this	
with	a	large	collection	of	neuroimaging	workflows	[Garijo	et	al	2014].			This	is	work	
with	Daniel	Garijo	and	Oscar	Corcho	of	the	Polytechnic	University	of	Madrid.		We	were	
able	 to	 access	 hundreds	 of	 workflows	 created	 manually	 by	 scientists	 and	 found	
common	workflow	 fragments	 that	 scientists	 use	 about	 how	 the	warping	 of	 brain	
images	is	done,	and	general	ways	in	which	they	approach	neuroimaging	analysis.		To	
do	this,	we	extended	process	mining	techniques	to	exploit	the	semantic	annotations	
in	the	workflows,	essentially	treating	them	like	labeled	graphs	where	we	could	then	
map	steps	across	them	and	create	generalizations	of	any	specific	workflow	fragment.		
We	are	using	AI	to	synthesize	a	new	form	of	scientific	knowledge	as	commonly	used	
abstract	 workflow	 fragments	 that	 had	 not	 been	 detected	 before	 and	 can	 now	 be	
reused	for	future	neuroimaging	analyses.		

The	last	project	that	I	will	mention	in	terms	of	capturing	scientific	knowledge	is	
recording	provenance.		Provenance	represents	how	scientific	workflows,	as	any	plans	
do,	once	executed	leave	a	trail	of	the	steps	that	were	carried	out	and	the	results	that	
they	generate.	If	you	have	a	new	dataset	that	results	from	an	analysis,	its	provenance	
record	 has	 a	 very	 similar	 underlying	 structure	 to	 the	 provenance	 of	 a	 dataset	
collected	through	a	sensor.	You	can	also	see	that	all	of	the	steps	that	were	followed	to	
collect	or	to	prepare	data	has	a	lot	of	similarities	to	the	way	that	humans	actually	put	
together	any	other	digital	resource.	It	is	also	similar	to	the	way	that	we	describe	how	
a	piece	of	art	is	generated	by	a	painter	or	an	artist,	then	years	later	may	go	to	a	curator	
that	 cleans	 it	 up,	 and	 then	 eventually	 appear	 for	 sale	 at	 a	 gallery.	 	 So	 there	 is	 a	
provenance	trail	for	datasets	just	like	there	is	for	pieces	of	art.		A	provenance	record	
refers	to	agents,	plans,	objects,	actions,	successful	and	failed	executions,	and	many	
other	 abstractions	 that	 we	 have	 been	 studying	 in	 AI	 for	 decades	 and	 designing	
sophisticated	 representations	and	abstractions	 for	 them.	 	We	worked	closely	with	
dozens	of	people	representing	diverse	disciplines	to	create	a	general	representation	
and	ontology	for	provenance,	which	became	a	World	Wide	Web	Consortium	standard	
in	2013,	and	we	are	very	proud	that	it	has	been	widely	adopted	[Moreau	et	al	2013].	

Let	us	look	at	scientific	papers	for	a	moment	and	the	question	that	I	posed	earlier:	
Will	AI	write	scientific	papers	in	the	future?	When	we	look	at	scientific	papers,	we	
realize	that	they	can	be	written	better.		I	would	like	to	convince	all	of	us	scientists	to	
write	better	papers,	because	if	we	do	that	then	the	AI	systems	for	machine	reading	
and	text	extraction	will	work	better.	If	we	do	that,	AI	systems	(and	other	scientists)	



can	 actually	 be	 in	 a	 better	 position	 to	 understand	 our	 papers	 and	 reproduce	 the	
results.	

What	would	a	scientific	paper	of	the	future	look	like?		How	would	we	describe	best	
the	science	findings	and	their	provenance?		We	started	with	a	group	of	visionary	early	
career	researchers	to	define	the	geoscience	paper	of	the	future	[Gil	et	al	2016],	other	
groups	 defined	 the	 geophysics	 paper	 of	 the	 future	 [Broggini	 et	 al	 2017]	 and	 the	
neuroscience	paper	of	the	future	[Poldrack	et	al	2017].		More	recently,	with	Odd	Erik	
Gundersen	of	Norwegian	University	of	Science	and	Technology	and	David	Aha	of	the	
Naval	Research	Laboratory,	we	looked	at	what	the	AI	paper	of	the	future	would	look	
like	and	proposed	core	principles	for	reproducibility	of	AI	publications	[Gundersen	et	
al	2018].	I	believe	it	is	very	important	that	as	a	field	we	formalize	more	how	to	capture	
knowledge	properly	in	our	publications.		For	the	benefit	of	other	researchers,	and	for	
the	benefit	of	AI	systems	that	will	read	them	and	eventually	build	on	our	work	and	
extend	our	ideas.	

That	is	kind	of	a	quick	tour	over	our	work	on	capturing	scientific	knowledge,	and	
I	want	 to	remark	 that	a	 lot	of	what	we	capture	does	not	 really	exist	beforehand.	 I	
described	our	use	of	AI	to	synthesize	new	forms	of	scientific	knowledge	as	metadata	
standards	 for	 paleoclimate.	 I	 described	 how	 we	 represent	 scientific	 methods	 as	
semantic	 workflows,	 using	 AI	 techniques	 to	 synthesize	 new	 forms	 of	 scientific	
knowledge	 as	 reusable	 workflow	 fragments.	 	 I	 mentioned	 how	 we	 use	 general	
concepts	 from	 AI	 to	 create	 generalized	 representations	 of	 provenance	 for	 very	
diverse	 types	of	 results,	 so	our	publications	 really	 capture	 the	provenance	of	new	
findings	which	AI	systems	can	read	and	eventually	extend.	

Once	we	capture	all	this	knowledge,	how	do	we	use	it	for	science?		I	will	describe	
two	 key	 aspects	 of	 how	 we	 use	 this	 knowledge:	 systematic	 analyses	 and	
interdisciplinary	research.	

AI	for	Systematic	Scientific	Data	Analysis	

Our	 first	major	 use	 of	 the	 scientific	 knowledge	we	 capture	 is	 to	 do	 systematic	
scientific	data	analysis.			

We	are	developing	a	framework,	called	DISK,	to	make	hypothesis	testing	and	data	
analysis	more	systematic	[Gil	et	al	2017a].	We	look	at	the	discovery	cycle,	starting	
with	formulating	new	hypotheses,	figuring	out	what	type	of	data	and	method	can	be	
used	 to	 test	 it	 (we	 call	 this	 a	 line	 of	 inquiry),	 retrieving	 the	 data	 from	 a	 shared	
repository,	analyzing	the	data,	and	then	revising	the	hypothesis.		We	have	automated	
this	hypothesis-driven	discovery	cycle	in	our	DISK	project,	a	collaboration	with	Parag	
Mallick	and	his	group	at	Stanford.		We	work	in	particular	in	cancer	omics,	and	there	
is	extensive	data	 in	shared	repositories	 that	 is	continuously	growing	so	we	do	not	
need	to	collect	data	ourselves.			



	

	

Figure	 3	 illustrates	 how	 our	 approach	 works.	 	 A	 scientist	 has	 a	 hypothesis	 such	 as	
whether	 a	 protein	 is	 expressed	 in	 a	 certain	 type	 of	 cancer.	 	 The	 line	 of	 inquiry	
indicates	 that	 both	 proteomic	 and	 genomic	 data	 would	 be	 useful	 for	 this	 kind	 of	
hypothesis,	so	DISK	executes	a	query	to	TCGA	(The	Cancer	Genome	Atlas)	and	to	the	
CPTAC	(Clinical	Proteomics	Tumor	Analysis	Consortium)	data	repositories	to	get	data	
from	patients	who	have	that	type	of	cancer.		The	line	of	inquiry	then	indicates	that	a	
proteomics	workflow	should	be	run	with	the	proteomics	data,	a	genomics	workflow	
with	 the	 genomics	 data,	 and	 a	 proteogenomic	 workflow	 with	 both	 types	 of	 data	
together.		Then	the	line	of	inquiry	suggests	a	meta-workflow	to	combine	the	results.		
After	executing	the	query,	the	workflows,	and	the	meta-workflow,	DISK	notifies	the	
scientist	that	it	found	evidence	that	the	gene	was	expressed	–	but	suggested	a	revised	
hypothesis	 that	 the	 gene	 that	 was	 expressed	 was	 a	 mutant	 form	 of	 the	 original	
hypothesized	protein.	

 

 
 

Figure 3.  Overview of DISK, an autonomous system for hypothesis-driven 
discovery that relies on lines of inquiry specified by scientists about the datasets and 

methods they seek when they pursue specific kinds of hypotheses or questions. 
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These	workflows	actually	 integrate	knowledge	across	disciplines.	 For	example,	
we	use	workflows	that	combine	transcriptomics,	genomics,	proteomics.	Typically	this	
knowledge	is	spread	across	different	labs	and	often	different	institutions.		In	addition,	
there	is	some	analysis	needed	make	sure	that	the	combination	of	all	of	these	methods	
is	coherent.	This	type	of	knowledge	to	combine	and	validate	analytic	processes	is	very	
difficult	 to	 obtain	 and	 it	 takes	 a	 lot	 of	 effort.	 But	 once	we	 have	 captured	 all	 this	
knowledge,	it	can	be	reused	very	broadly	just	by	re-running	these	workflows.	A	great	
challenge	 for	 science	 today	 is	 the	 compartmentalization	 of	 all	 that	 knowledge:		
scientists	that	collect	patient	data	from	genomics	and	proteomics	instruments	do	not	
necessarily	have	expertise	in	both.		A	lot	of	data	just	sits	there	waiting	to	be	studied	
for	 lack	 of	 in-house	 expertise	 or	 collaborators.	 	 This	 presents	 a	 tremendous	
opportunity	for	AI	systems	to	analyze	tirelessly	and	thoroughly	to	extract	as	many	
findings	as	possible.	

DISK	represents	a	hypothesis	statement	as	a	triple	that	expresses	a	relationship	
between	two	objects,	for	example	that	a	protein	(first	object)	is	associated	with	(the	
relationship)	a	cancer	type	(second	object).		Each	hypothesis	statement	has	a	qualifier	
that	 indicates	 the	 confidence	 level	 on	 the	hypothesis,	 and	 an	 evidence	 trail	 of	 the	
analysis	 details	 (that	 is,	 the	 executed	workflow)	 that	 led	 to	 that	 confidence	 level.		
When	more	data	becomes	available,	 it	will	 run	a	new	analysis	and	revise	both	the	
confidence	 level	 and	 the	 hypothesis.	 	 In	 this	 case,	 it	 will	 re-examine	 not	 just	 the	
association	of	the	protein	with	colon	cancer,	but	it	will	look	for	a	more	specialized	and	
refined	 hypothesis	 regarding	 a	 subtype	 of	 colon	 cancer.	 	 DISK	 has	 a	 hypothesis	
ontology	 to	 express	 hypothesis	 statements,	 qualifiers	 of	 confidence,	 analytical	
evidence,	and	the	evolution	of	the	statement	and	its	confidence	over	time.	

The	way	we	do	science	today	is	that	a	paper	is	published	with	a	certain	finding	
and	 is	 considered	 final.	 But	 as	more	 data	 becomes	 available,	 one	wonders	 if	 that	
finding	 may	 be	 different	 than	 what	 was	 originally	 discovered,	 for	 example	 if	 the	
confidence	is	greater	or	the	evidence	more	diverse	or	the	hypothesis	more	precise.			
We	envision	AI	systems	like	DISK	that	will	continuously	update	findings,	which	would	
revolutionize	our	current	approach	to	publications.			

We	 used	DISK	 to	 reproduce	 a	 seminal	 cancer	 omics	 paper	 by	 Bing	 Zhang	 and	
colleagues	as	part	of	the	CPTAC	collaboration	[Zhang	et	al	2014].		It	took	two	years	to	
do	this	large-scale	proteogenomic	study.		The	paper’s	major	result	was	the	discovery	
of	a	new,	fifth	subtype	of	colon	cancer	based	on	patient	proteomes.	 	All	the	data	is	
available,	and	the	paper	has	many	figures	that	show	intermediate	results	and	a	long	
appendix	with	many	details.		It	took	us	quite	a	long	time	to	really	understand	what	
was	done	and	reproduce	the	results.				

Using	DISK,	we	were	able	to	reproduce	the	results	and	find	the	same	new	fifth	
subtype	of	colon	cancer.	But	we	wanted	to	quantify	how	close	our	results	were	to	the	
original	findings	–	not	just	at	the	highest	level,	but	throughout	the	extensive	hierarchy	
of	sub-hypotheses	that	support	the	highest	level,	major	hypothesis.		It	is	often	the	case	
with	complex	hypotheses	that	they	are	based	upon	hundreds	to	thousands	of	lower-
level	hypotheses.			



What	we	found	is	that	even	though	DISK	was	able	to	independently	discover	a	fifth	
subtype	 and	 confirm	 the	 main	 finding,	 it	 got	 very	 different	 results	 for	 the	 sub-
hypotheses.	 	At	the	lowest	level	of	the	hypothesis	tree	are	the	peptides	(aminoacid	
chains	that	combine	to	form	proteins)	present	 in	each	patient	sample.	 	These	then	
feed	up	to	hypotheses	about	which	proteins	are	present	in	the	sample.	DISK	got	very	
different	 results	 for	 the	peptides	 and	proteins	 that	were	present	 in	 each	patient’s	
tumors.	 It	 found	a	10%	difference,	which	 is	quite	 large.	 	After	discussion	with	 the	
authors,	we	discovered	they	had	used	multiple	thresholds	and	complex	filtering	in	
their	 analysis.	 	 In	 particular,	 they	 used	 a	 stringent	 filter	 at	 one	 step,	 and	 a	 less	
stringent	 filter	 in	 a	 subsequent	 step.	 	 None	 of	 that	 was	 mentioned	 in	 the	 paper.		
Incorporating	these	filters	cut	the	difference	in	the	results	in	half,	which	is	still	quite	
a	large	difference	but	it	is	more	acceptable.		But	this	points	to	how	sensitive	lower-
level	hypotheses	may	be	to	subtle	variations	in	the	methods.		The	overall	finding	still	
stands,	but	it	is	quite	alarming	that	the	detailed	analytic	results	are	so	different.		

We	 then	 used	 DISK	 to	 try	 a	 few	 alternative	 methods,	 for	 example	 different	
approaches	to	do	peptide	search.		This	is	very	easy	to	do	using	semantic	workflows,	
since	 DISK	 can	 easily	 explore	 all	 the	 methods	 that	 fit	 a	 step	 and	 find	 the	 best	
performing	 ones.	 	 We	 found	 that	 there	 was	 a	 35%	 difference	 in	 the	 protein	
identifications,	and	that	key	proteins	were	missed	by	some	of	the	methods.		This	is	
alarming,	 because	 proteogenomics	 publications	 typically	 use	 only	 one	 search	
method.	 	So	many	proteins	are	likely	to	be	missed	unless	we	use	an	AI	system	like	
DISK	to	do	a	more	systematic	exploration	of	alternative	methods.			

DISK	 also	 showed	 a	 marked	 difference	 when	 using	 the	 same	 method	 with	
different	 parameters,	 or	 different	 reference	 databases.	 	 The	 protein	 and	 peptide	
identifications	also	varied	substantially.		We	also	looked	at	other	measures,	like	single	
aminoacid	 variants	 and	 variant	 peptides,	 and	 found	 the	 differences	 to	 be	 quite	
substantial.	 	 So	 there	 is	 a	 great	 need	 to	 use	AI	 to	 systematically	 explore	 all	 these	
method	parameters,	and	to	understand	their	differences.	

I	mentioned	earlier	that	another	significant	opportunity	 for	AI	 is	 to	continually	
analyze	data	and	update	findings	as	new	data	becomes	available.		We	took	the	dataset	
from	the	original	[Zhang	et	al	2014]	paper,	and	updated	the	analysis	with	the	new	
samples	 that	 have	 appeared	 in	 the	 data	 repositories	 since	 the	 publication	 of	 that	
original	paper.		When	the	first	few	new	samples	are	added,	they	fall	nicely	in	the	five	
subtypes.		The	next	few	samples	do	as	well,	as	do	the	next	ones.		When	we	added	the	
last	few	samples,	the	clustering	algorithm	still	generated	five	subtypes	but	it	grouped	
the	samples	a	bit	differently	so	it	is	unclear	that	they	are	the	same	five	subtypes	as	
before.		This	makes	the	analysis	more	challenging,	and	one	of	the	things	we	had	to	do	
to	 revise	 hypotheses	 over	 time	 is	 to	 develop	 new	 workflows	 with	 batch	 effect	
correction	for	the	new	samples.		

Finally,	using	AI	to	do	systematic	analyses	makes	it	easy	to	apply	methods	to	new	
datasets.	 	 We	 applied	 the	 same	 workflows	 for	 datasets	 from	 colorectal	 cancer	
(CRC95),	NCI60	(9	types	of	cancer,	multiple	tissues),	ovarian	cancer	(OV),	and	breast	
cancer	(BRCA).		DISK	found,	for	example,	that	colorectal	cancer	has	a	lot	less	variance	



than	other	 types	of	cancer.	This	 is	well	known,	but	we	were	able	 to	 find	 that	very	
easily	very	quickly.	

We	 think	 DISK	 can	 be	 used	 as	 a	 reference	 benchmarking	 framework,	 and	we	
demonstrated	this	for	the	National	Cancer	Institute	CPTAC	DREAM	Proteogenomics	
Challenge	 [Srivastava	 et	 al	 2019].	 	 For	 that	 challenge,	 the	 same	 datasets	 were	
analyzed	by	dozens	of	teams	to	identify	proteins.	It	 is	very	hard	to	pinpoint	why	a	
specific	team	did	better,	because	their	methods	are	quite	similar	and	only	differ	in	
very	small	ways.		The	teams	follow	a	typical	analysis	structure,	where	they	first	align	
the	gene	sequences,	then	the	quantify	and	normalize	the	data,	and	then	they	predict	
the	protein	levels.	 	We	created	generic	semantic	workflows	that	DISK	could	reason	
about	to	specialize	them	into	the	kinds	of	methods	adopted	by	individual	teams.		With	
this	 framework,	 we	 can	 analyze	 the	 solutions	 proposed	 by	 different	 teams,	 and	
compare	and	contrast	what	specific	differences	made	a	method	significantly	better.		
What	we	found	is	that	gene-specific	models	give	significantly	better	results,	while	the	
other	steps	are	only	responsible	for	minor	improvements.		And	by	exploring	all	the	
possibilities	systematically,	DISK	found	the	optimal	combination	of	methods.		

All	this	work	illustrates	how	AI	can	make	a	different	in	making	scientific	research	
more	 systematic.	 	 Every	 year	 omics	 datasets	 are	 increasing	 in	 size,	 diversity,	 and	
complexity.		The	expertise	is	very	fragmented.		And	there	is	more	and	more	analytic	
complexity.		At	some	point	sooner	or	later,	biomedical	researchers	will	not	be	able	to	
keep	up.		Imagine	if	AI	systems	like	DISK	were	used	to	analyze	proteogenomic	data	
systematically	 in	 every	 cancer	 study.	 	 This	 would	 accelerate	 discoveries	 for	 new	
problems	 and	 easily	 update	 earlier	 findings	 when	 new	 data	 is	 available.	 	 AI	 will	
become	a	game	changer	for	omics	research,	and	many	other	areas	of	science	where	
there	is	abundant	data	available.	

AI	for	Interdisciplinary	Science	Frontiers	

The	 second	 way	 in	 which	 we	 use	 scientific	 knowledge	 is	 in	 exploring	
interdisciplinary	science	frontiers.			

We	have	a	project	called	MINT,	for	Model	INTegration,	where	we	are	looking	at	
how	 climate	 is	 affecting	 water	 availability,	 agriculture	 and	 food	 production,	
socioeconomic	factors,	with	extremes	of	flooding	and	drought	cutting	across	all	those	
aspects	[Gil	et	al	2021].	To	study	these	types	of	problems,	we	have	to	integrate	climate	
models,	 models	 for	 hydrology,	 agriculture	 models,	 economics	 models,	 and	 social	
models.	Each	of	these	types	of	models	is	developed	by	different	disciplines	each	with	
their	 own	methods	 and	 approaches.	 	 For	 example,	 hydrology	models	 use	 physics	
equations	 to	 simulate	 where	 rain	 water	 goes	 in	 an	 ecosystem.	 In	 contrast,	 social	
models	often	rely	on	agent-based	simulations	of	social	behaviors.	It	takes	months	or	
years	 to	 assemble	 integrated	models	 for	 a	 certain	 region,	 since	 it	 is	 really	 a	 craft.		
There	is	increasing	demand	to	understand	these	cross-domain	regional	phenomena.		
We	have	a	growing	community	of	collaborators	in	Ethiopia,	Texas,	and	California.		

Our	goal	is	to	reduce	the	time	to	assemble	cross-domain	models	from	months	or	
years	down	to	days.		To	do	this,	we	are	using	AI	to	do	the	mediation	between	models	



at	all	levels:	at	the	variable	level,	at	the	dataset	level,	at	the	process	level,	and	so	on.	
At	the	variable	level,	we	use	an	ontology	conceived	by	Scott	Peckham	at	the	University	
of	Colorado	that	is	very	extensive	and	has	thousands	of	terms.		It	has	not	been	built	
manually,	 instead	 it	 was	 designed	 using	 principles	 for	 how	 to	 describe	 physical	
variables	 in	a	consistent,	uniform	way.	With	 this	ontology,	we	can	be	very	precise	
about	what	a	particular	variable	in	a	model	is	measuring.		We	think	of	a	model	as	a	
computational	 object,	 where	we	 need	 to	 represent	 the	 data	 formats,	 the	 physical	
variables,	the	constraints	on	how	to	use	the	model,	and	so	on.		

We	also	use	AI	to	mediate	models	and	datasets	from	different	sources	that	have	
varying	quality,	and	 this	 is	also	a	big	challenge.	We	represent	what	 those	datasets	
contain,	what	variables	they	characterize,	and	the	structure	of	those	files.	Then,	we	
use	AI	planning	techniques	to	automatically	transform	the	datasets	from	their	native	
format	to	the	format	that	a	model	requires.	Craig	Knoblock	and	Jay	Pujara	at	USC/ISI	
have	been	leading	this	research.		There	has	been	a	lot	of	work	in	this	particular	topic	
over	the	years,	and	we	are	building	on	that	to	work	with	much	more	complex	data.		

In	some	regions,	there	is	simply	not	enough	data	available	for	modeling.		This	is	
the	case	with	regions	like	Ethiopia,	where	there	are	not	enough	river	gauges.	We	do	
not	have	enough	measurements	of	water	 levels	over	 the	 last	30	years	 to	calibrate	
models.	So	in	the	case	in	Ethiopia,	if	we	model	the	Awash	or	Baro	rivers,	the	models	
are	incredibly	coarse	and	the	flooding	indicators	appear	very	pixelated.		In	contrast,	
in	work	that	we	are	doing	with	Suzanne	Pierce	of	the	University	of	Texas	at	Austin	we	
can	show	the	extent	of	the	flooding	building	by	building	 in	Travis	County.	And	the	

 

 
 

Figure 4.  MINT captures metadata and constraints  
about models and datasets and uses them to guide users to develop and integrate 
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models	actually	generate	very	accurate	predictions	of	the	flooding	that	correspond	
well	 to	manual	 flood	maps.	 	 In	 order	 to	 improve	our	models	 for	Ethiopia,	we	use	
machine	learning	to	extract	from	satellite	data	useful	information	about	water	level	
in	rivers,	the	degree	of	flooding,	what	kinds	of	crops	were	typically	planted	over	the	
years	 and	 so	on.	 	This	 is	work	by	Vipin	Kumar	and	his	 group	at	 the	University	of	
Minnesota.		There	are	many	groups	exploring	how	to	combine	physics-based	models	
with	machine	 learning	models	 in	 a	 variety	 of	 ways,	 and	 this	 is	 a	 very	 promising	
direction	to	use	AI	to	improve	the	accuracy	of	models	in	geosciences.	

As	 far	 as	 the	models	 themselves,	we	also	use	AI	 to	 represent	 abstractions	 and	
connect	 the	 models	 to	 decisions.	 	 For	 this	 I	 am	 going	 to	 use	 examples	 from	 an	
agriculture	model,	developed	by	Armen	Kemanian	at	Penn	State	University.			These	
kinds	of	models	have	a	 lot	of	detailed	parameters,	such	as	nitrogen	stress	or	solar	
radiation	 levels.	But	 those	are	 things	 that	somebody	making	decisions	about	what	
crops	 to	 plant	 does	not	 really	 need	 to	 know.	 	 So	we	 focus	 on	 the	 variables	 that	 a	
decision	maker	would	want	to	adjust.	How	much	corn	should	be	planted?	How	much	
sorghum	 should	 be	 planted?	How	much	 irrigation	 should	 be	 used?	 Those	 are	 the	
kinds	of	factors	that	a	decision	maker	would	actually	want	to	change,	and	then	see	
how	different	weather	predictions	affect	the	outcome	of	interest,	which	is	the	crop	
yield.	

This	 allows	 us	 to	 use	 a	 model	 in	 a	 very	 compositional	 way.	 It	 is	 still	 very	
challenging,	but	we	have	very	rich	descriptions	of	what	each	model	can	be	used	for,	
as	 illustrated	 in	Figure	4.	 	 This	 is	work	with	Daniel	Garijo	 and	Deborah	Khider	 at	
USC/ISI.		Each	model	has	many	different	variants	as	we	adapt	it	for	different	regions,	
and	 for	 each	 variant	we	 capture	 the	 data	 formats,	 the	 physical	 variables,	 the	 use	
constraints,	 and	 the	 adjustable	 parameters.	 	 We	 have	 developed	 ontologies	 for	
describing	 scientific	 software,	 and	 extended	 them	 to	 describe	 models.	 	 These	
descriptions	of	the	models	can	be	used	to	drive	their	integration.	We	can	see	the	areas	
that	will	be	flooded	(from	a	hydrology	model)	and	how	that	affects	other	things:	the	
crops	that	will	be	lost	if	not	harvested	earlier	(from	an	agriculture	model),	the	roads	
that	will	not	be	trafficable	to	bring	the	food	where	it	is	needed	(from	a	transportation	
model),	and	the	towns	that	people	will	flee	to	go	to	dry	grounds.	

This	 work	 illustrates	 how	 AI	 can	 integrate	 diverse	 knowledge	 from	 different	
disciplines	 and	 integrate	 it	 to	 create	 unified	 models	 to	 understand	 complex	
phenomena.		AI	provides	a	crucial	capability	for	many	problems	where	we	need	to	
characterize	 complex	 systems	 where	 natural,	 human,	 and	 engineered	 processes	
interact,	such	as	environmental	and	geosciences	research.			

A	Perspective	on	the	Future	

I	have	described	how	we	capture	scientific	knowledge,	and	illustrated	how	we	use	
all	 of	 this	 knowledge	 to	 do	 systematic	 data	 analysis	 and	 to	 do	 interdisciplinary	
science.	Now	I	would	like	to	take	a	step	back,	and	revisit	the	question	that	I	posed	at	
the	beginning:	“Will	AI	write	scientific	papers	in	the	future?”			Because	if	we	had	AI	
systems	with	enough	knowledge	to	follow	the	methods	of	science,	we	have	to	wonder	



if	they	could	generate	new	findings	on	their	own	and	report	those	findings	by	writing	
their	 own	 papers.	 	 And	 of	 course	 that	 would	 liberate	 scientists	 from	 doing	more	
routine	work	and	spend	more	time	coming	up	with	big	ideas.		

Scientific	 research	 is	 becoming	 more	 and	 more	 complex.	 	 Many	 significant	
discoveries	are	the	product	of	collaborations	of	hundreds	or	thousands	of	scientists.		
The	Human	Genome	Project	was	an	ambitious	endeavor	that	involved	hundreds	of	
scientists.			The	discovery	of	the	Higgs	boson	in	2012	was	reported	in	an	article	with	
more	than	four	thousand	authors	[Aad	et	al	2021].	 	The	science	questions	that	we	
want	to	ask	are	more	and	more	complex,	and	these	kinds	of	discoveries	take	several	
years	 and	 involve	many	 people.	 These	 are	 very	 unique	 kinds	 of	 efforts	 in	 science	
today,	but	I	wonder	what	would	it	take	for	AI	to	help	make	scientific	advances	of	this	
caliber	more	commonplace.		

Since	we	have	Gary	Kasparov	as	a	speaker	at	the	conference,	which	I	am	really	
thrilled	about,	as	well	as	the	team	that	played	him	with	Deep	Blue,	I	wanted	to	share	
an	 interesting	observation	he	made	about	 freestyle	chess.	 	Here,	a	player	can	be	a	
combination	of	any	number	of	humans	and	any	number	and	type	of	machines.	 	He	
remarked	that	they	were	surprised	that	a	weak	human	plus	a	machine	plus	a	better	
process	was	superior	to	a	strong	computer	alone,	and	superior	to	a	strong	human	and	
a	machine	and	a	less	ideal	process.	This	highlights	the	importance	of	organizing	and	
distributing	 work	 appropriately,	 that	 defining	 a	 good	 process	 is	 crucial	 when	
combining	the	skills	of	humans	and	machines	together.		

What	 would	 it	 take	 for	 machines	 to	 collaborate	 with	 scientists	 in	 similarly	
powerful	teams?		In	the	case	of	chess,	an	AI	system	does	not	need	any	special	skills	to	
become	a	team	member	since	the	only	requirement	is	to	communicate	to	others	the	
recommended	next	move.	But	for	an	AI	system	to	be	a	collaborator	in	science	I	believe	
that	it	needs	to	have	very	sophisticated	skills.		I	recently	proposed	a	set	of	principles	
for	the	design	of	thoughtful	AI	systems	that	will	be	good	partners	for	a	scientist	[Gil	
2017].	 	 Today,	 a	 researcher	 gives	 an	 AI	 system	 some	 data,	 an	 algorithm,	 and	 the	
function	to	optimize.	There	is	a	lot	of	research	that	we	need	to	do	so	an	AI	system	can	
be	a	partner.	Table	1	summarizes	the	principles	that	I	have	proposed	for	thoughtful	
AI	 systems,	 namely	 that	 they	 govern	 their	 behavior	 with	 knowledge	 structures,	
understand	 the	 context	 of	 their	 tasks,	 seek	 knowledge	 when	 needed,	 access	 new	
knowledge	by	asking	others	or	through	the	web,	justify	and	engage	in	argumentation	
to	defend	their	beliefs,	integrate	modularly	with	other	systems	or	humans,	and	finally,	
understand	how	to	convey	their	limitations.	

Will	 AI	 write	 scientific	 papers	 in	 the	 future?	 I	 am	 certainly	working	 on	many	
projects	in	that	direction,	and	many	others	are	working	in	relevant	areas.		And	there	
is	a	 lot	of	good	work	on	re-imagining	 the	 future	of	 science	and	research.	We	have	
worked	with	the	geosciences	community	to	envision	a	future	with	AI	[Gil	et	al	2019],	
and	I	will	highlight	also	Hiroaki	Kitano’s	recent	article	in	AI	Magazine	on	AI	to	win	the	
Nobel	 Prize	 [Kitano	 2016].	 I	 think	 that	 is	 quite	 an	 ambitious	 goal,	 but	 also	 very	
exciting.		There	are	a	lot	of	great	possible	outcomes	along	the	way:	AI	to	reproduce	
published	articles,	AI	as	a	research	assistant,	AI	as	a	partner	and	co-author.		



Table	1:	Principles	for	Thoughtful	AI	Systems	that	will	partner	with	scientists	to	
accelerate	discoveries.		

Principles	for	Thoughtful	AI	Systems	
Rationality principle	 Behavior is governed by knowledge	

Context principle	 Seek to understand the purpose and significance of tasks	

Initiative principle	 Proactively new learn knowledge relevant to a task	

Network principle	 Access external sources of knowledge and capabilities	

Articulation principle	 Respond with persuasive justifications and arguments	

Systems principle	 Facilitate integration and compositionality with other systems	

Ethical principle	 Behavior that conveys limitations, uncertainty, and unknowns	
	

So	will	AI	write	scientific	papers	in	the	future?	I	will	go	back	to	the	observation	
that	 I	 did	 at	 the	 very	 beginning	 of	 this	 talk:	 the	 AI	 community	 has	 always	 been	
visionary,	 broad,	 inclusive,	 interdisciplinary,	 determined,	 and	 successful	 at	
challenging	endeavors.	That	is	all	standing	in	one	side	of	the	equation.	On	the	other	
side,	I	also	showed	that	human	scientists	are	not	systematic,	they	make	errors,	they	
have	biases,	and	they	do	poor	reporting.	 	So	this	might	 tilt	 the	balance	 for	AI,	 that	
maybe	AI	will	be	a	much	better	approach	and	will	end	up	writing	of	all	of	our	papers.		
But	 at	 the	 same	 time,	 I	 reflect	 on	 the	 wonders	 of	 human	 ingenuity.	 	 Think	 that	
penicillin	came	out	of	a	human	error,	where	Alexander	Fleming	accidentally	left	the	
lid	open	in	a	culture	plate	and	it	ended	up	contaminated	with	Penicillium	mold	that	
killed	the	bacteria.		

In	the	end,	if	we	find	imaginative	ways	to	combine	humans	and	machines	I	believe	
we	will	see	really	remarkable	outcomes	in	science.	My	hope	is	that	this	perspective	
will	 inspire	us	all	 to	pursue	significant	research	goals,	 that	 if	we	read	an	article	or	
work	on	a	problem	where	we	think	to	ourselves	“I	could	write	an	AI	for	that”	then	we	
will	be	less	excited	to	pursue	that	line	of	work.	But	if	we	read	an	article	and	have	a	
sense	that	only	a	human	could	come	up	with	that	kind	of	idea,	I	am	willing	to	bet	that	
in	many	cases	we	will	hear	things	like	“Well,	I	just	was	stubborn,	“I	had	this	firm	belief	
in	this	possibility”,	or	even	“I	made	a	mistake	and	that	led	me	to	see	things	differently.”		
So	 I	do	not	know	what	 the	 future	will	 look	 like	as	scientists	partner	with	AI	 to	do	
significant	discoveries,	but	I	am	very	excited	to	design	that	future	together	with	all	of	
you.	

In	this	talk,	I	have	focused	on	science	but	the	kinds	of	AI	research	that	I	discussed	
are	 universally	 applicable	 to	 other	 important	 areas	 where	 AI	 could	 be	 a	 game	
changer:	wellbeing	and	quality	of	life,	education,	social	justice,	innovation,	and	many	
others.		You	can	find	very	compelling	use	cases	and	interesting	research	directions	in	
a	recent	community	roadmap	for	the	next	20	years	of	AI	research	[Gil	and	Selman	
2019].		Please	continue	to	push	for	the	breadth	and	diversity	of	AI.	All	of	your	ideas,	



every	single	one,	are	important	for	a	future	where	AI	changes	the	way	that	humanity	
approaches	the	most	formidable	challenges.	
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