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Abstract 
 

This chapter envisions a much more expanded role of AI systems that goes beyond 
their current use for simply learning from given data using a given metric.  To tackle 
many challenges of our time, scientists will need to partner with AI systems that are 
capable of independent inquiry, proactive learning, and deliberative reasoning.  The 
chapter describes thoughtful AI systems that can make good partners for scientists 
and will need to be more collaborative, more resourceful and independent, and more 
responsible.  The chapter also describes six core competencies for AI scientists that 
will create powerful machines for discovery, and expands on the reflection 
competency which involves formulating scientific questions, devising general 
strategies to answer them, executing methods that implement those strategies, and 
placing new findings in the context of the original questions.   A broader and more 
expanded role of AI systems in the scientific discovery process will in turn enable 
significant advances in AI, particularly in knowledge representation, reasoning, 
planning, meta-reasoning, and architectures for intelligence. 

 
 
1. Introduction: Eighty Years of AI for Science 
 
Scientific discovery has long been of interest to AI researchers.  Herbert Simon (Nobel 

Laureate and Turing award winner) worked on cognitive modeling of scientific discovery 

as early as the 1940s [1].  Edward Feigenbaum (also a Turing award winner) worked with 

Joshua Lederberg (himself a Nobel Laureate) and other colleagues in Stanford University 
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in the 1960s on using AI to automate the identification of organic molecules from their 

mass spectra [2].  Many more AI systems have been developed over the years to address 

major activities in scientific discovery such as problem formulation, experimentation and 

data collection, data analysis, machine learning, and model revision [3].  Indeed, a recent 

cover of Science states “artificial intelligence transforms science” [4]. 

 

Today, a major focus of AI for science is on machine learning.  In the last few decades, 

advances in machine learning as well as data-intensive computing have pushed the 

envelope in the nature and scale of the scientific phenomena that can be addressed.  

Powerful learning paradigms and distributed computation work at unison to process data 

at scale, leading to spectacular discoveries in diverse areas such as high-energy physics, 

biomedicine, and geosciences.  More recently, new deep learning approaches for 

machine learning and new intelligent techniques for data mining have given rise to 

modern data science, combining these powerful data-driven discovery capabilities with 

scalable computing and data systems that have completely changed how we look at data. 

 

In addition to machine learning, many other areas of AI are making significant 

contributions to science.  Examples include natural language processing to extract 

knowledge from publications [5], constraint reasoning to search for optimal solutions [6], 

experiment design and execution [7], and semantic data repositories to facilitate 

information integration [8].    

 

Future AI systems can contribute much more to science.  AI systems for scientific 

discovery today have very limited scope in the scientific research process, as they are 

given the learning goals, they are given the data, and they are given optimization metrics.  

The role of AI systems is limited to solving a well-defined task where the data and 

techniques are specified by a scientist.  Confining intelligent machines to this narrow 

realm is severely limiting our ability to truly harness the potential of AI to tackle complex 

science questions.  The limited incorporation of intelligent systems in science is also 

thwarting the pursuit of fundamentally new discoveries particularly at the fringe of current 

science practice. The increased complexity of the scientific questions that we face is 



3 
 

challenging the abilities of human scientists.  Imagine a new generation of AI systems 

that can formulate the learning problems needed to address a given science question, 

that can find or generate necessary data of appropriate quality, and that can incorporate 

background knowledge such as theories and scientific principles in order to discern what 

metrics would be appropriate to assess any new findings.  Many scholars have shed light 

on the diverse and rich cognitive processes involved in scientific reasoning that AI still 

does not address, from discovering laws [1], to understanding causal mechanisms [9; 10], 

to collaboration [11], to prioritizing problems [12; 13; 14; 15], to producing paradigm shifts 

[16].     

 

In this article, we argue that a much more expanded role for AI in scientific discovery will 

be necessary to tackle many of the challenges of our time.  Scientists will need to partner 

with intelligent systems that are AI scientists capable of doing independent inquiry, 

proactive learning, and deliberative reasoning.  A new generation of AI systems will 

enable a true partnership between scientists and machines. This partnership will be 

essential to tackle a new generation of science questions.  And expanding the role of 

intelligent machines in the scientific discovery process will in turn enable significant 

advances in knowledge representation, reasoning, planning, meta-reasoning, and 

architectures for intelligence. 
 
 
2. The Imperative of AI for Science 
 
As scientific questions become more complex and multidisciplinary, the capabilities of 

scientists to do research will need to be augmented with intelligent machines.  Compare 

the challenges of finding a cure for polio and finding a cure for cancer.  Polio, a scourge 

that has affected humanity for millennia, was cured with a vaccine that was discovered 

by one scientist.  Glioblastoma, a brain cancer that takes very few months to go to 

advanced stages and is very hard to detect and treat, is being studied by scores of 

scientists in multiple specialties.  Different research groups have complementary 

information about the disease, with disparate data on genomics, proteomics, 

transcriptomics, MRIs, treatments, etc.  It is a challenge to combine their independent 
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partial findings and synthesize major discoveries.  Similarly, compare the challenges of 

early river hydrology and physics modelling with the challenges of understanding the 

interacting hydro-bio-agro-human processes in our environment and ecosystems.  

Scientists with expertise in each of these areas develop complementary models that are 

very hard to integrate to study the intricate interactions that cut across them. Today’s 

science processes require work that goes beyond what human scientists can do in the 

face of the complexity and multidisciplinarity of the research questions pursued.  There 

are several key aspects in this matter. 
 
First, keeping up with research innovation is challenging and costly for any scientist.  Each 

discipline advances very quickly, with new sophisticated methods coming out 

continuously.  It is challenging for any given research group to keep up with all the latest 

methods, so only a few are likely adopted.  There is a high cost to understanding what 

new methods are becoming important and are crucial, learning their nuanced 

assumptions, and training younger researchers to use sophisticated methods properly.  

Scientists today do not have intelligent assistance to facilitate fast learning and adoption 

of new methods. 
 
Second, collaborative research requires very significant effort.  It is becoming harder for 

an individual researcher to tackle the more advanced science questions.  Integrating all 

the information needed is very challenging, particularly across disciplines, and requires 

partnerships and collaborations.  It can take a year of work by a dozen of scientists to 

integrate climate, hydrology, and agriculture models to understand and forecast food 

shortages.  It takes two years of work by hundreds of scientists to assemble and analyze 

data to do a global climate study to see trends across the last few decades.  It has taken 

thousands of scientists working for several years to discover the Higgs boson. These 

efforts require so much coordination (to secure funding, to organize the work, to 

coordinate responsibilities, to monitor progress, to assemble results, etc) that they are far 

from being the norm and in some cases can be described as heroic.  Scientists today do 

not have intelligent assistance to support these kinds of collaborative research tasks. 
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Third, accounting for new data requires continuous updates of prior findings that the 

science enterprise is not well equipped to do.  When cancer data for a new cohort of 

patients becomes available, previously published studies for similar cohorts should be 

reconsidered and their findings updated to incorporate the new data.  When new 

environmental data is continuously captured through sensors, or with improved quality 

with a new type of sensor, previous findings should be reconsidered and extended to 

account for the new data.  When a new and more powerful analysis method comes to 

light, it should be applied to existing data that was previously analyzed.  Each paper in 

the published literature provides a static snapshot of how scientists would answer a 

question, but researchers seldom have the resources to revisit published results.  

Scientists today do not have intelligent tools that automatically reproduce the methods 

and update the results. 

 

Fourth, significant innovation could result from reimagining research methodologies and 

processes.  There are many aspects of scientific research that could be automated, 

improved, or redesigned to incorporate capable intelligent systems.  This could open the 

door to advance the frontiers of science in fundamentally new directions by tackling new 

kinds of questions and creating unconventional approaches.  Scientists today do not have 

intelligent tools that complement and augment their abilities to create innovative changes 

in research. 
 
In summary, in order to pursue increasingly complex science questions effectively and 

efficiently we need: 

 

1. AI systems that help scientists adopt new methods quickly so they can keep up 

with continuous advances in their field 

2. Intelligent aids that reduce the effort to integrate knowledge across disciplines so 

scientists can tackle complex multi-faceted phenomena with reduced effort and 

therefore more frequently  

3. Automated AI systems that can incorporate newly available data into previously 

published studies in order to continuously update findings so scientists can keep 

up with all the new data that is being continuously collected 
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4. AI approaches that can synthesize and innovate scientific research 

methodologies and processes so scientists have new avenues to address 

fundamentally new kinds of questions 

In turn, these avenues of AI research will lead to a new generation of intelligent systems 

capable of understanding the scientific research process, knowing the different ways to 

carry out the steps involved, and able to learn the skills required to keep up with new 

methods and even create their own.  These capabilities will be generally applicable 

beyond scientific domains, as they will become important tools for humanity to tackle 

complex problems.  

 

What new avenues of AI research do we need to pursue in order to address these science 

needs?    
 
3. General Intelligent Capabilities of AI Systems for Science: 
Thoughtful AI 
 
Intelligent systems with some basic AI capabilities for science will soon become 

necessary for all scientists.  At first, they will be used simply as tools that have no initiative 

or autonomy.  AI systems will soon become assistants to scientists, carrying out tasks 

that a lab assistant or a research assistant would do.  Intelligent systems will at some 

point become more independent, perhaps making contributions that deserve co-

authorship and in some instances writing scientific papers on their own [17].  Eventually, 

they will become more than assistants and will act as partners to scientists. Some 

envision AI systems capable of making major scientific discoveries and even winning the 

Nobel prize [18]. 
 
In order to be assistants and partners for scientists, intelligent systems will need to be 

more collaborative, more resourceful and independent, and more responsible.  These 

kinds of skills can be considered under the umbrella term of thoughtful AI systems which 

will act as is expected of human assistants and partners.  Key design principles for such 

thoughtful AI systems are summarized in Table 1 and discussed in detail in [19].   
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Table 1.  Principles for designing Thoughtful Artificial Intelligence Systems (from [19]). 
 

 Principle Description 

1 Rationality  Behavior is governed by knowledge 

2 Context  Seek to understand the purpose and significance of tasks 

3 Initiative  Proactively learn new knowledge relevant to their task 

4 Networking  Access external sources of knowledge and capabilities 

5 Articulation  Respond with persuasive justifications and arguments 

6 Systems  Facilitate integration and collaboration with other systems  

7 Ethics Behavior that conveys scope and limitations 
 
 

Future AI research in these principles will enable successful approaches for developing 

intelligent systems that can be partners for scientists. 
 
 
4. Specific Capabilities of AI Systems for Science: Core Competencies 
 
What kinds of tasks and activities would intelligent systems carry out in pursuing scientific 

research?  Defining core competencies required for scientific research that are shared 

across scientific disciplines is not an easy endeavor given the diversity and complexity of 

scientific work.  As a starting point, we posit six core competencies needed in intelligent 

systems for science: 

 

1. Reflection. This competency is focused on reasoning about scientific knowledge 

to formulate questions, identify strategies to pursue them, and situate new findings 

in the context of what is known.  It will push the frontiers in AI in areas such as 

reasoning, meta-reasoning, and problem solving. 

 

2. Observation. This competency focuses on data gathering through laboratory 

experiments, sensor management, remotely controlled robots and drones, and 

other science tasks focused on interactions with the physical world or the system 

under study.  It will advance AI research in robotics and cyberphysical systems. 
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3. Modeling. This competency is about the analysis of complex scientific data to 

uncover patterns and create explanatory and predictive models.  It will result in AI 

innovations in all aspects of machine learning, causality, and uncertainty 

reasoning. 

 

4. Probing. This competency is focused on design and exploration of solutions 

through efficient search strategies.  This competency is important in many science 

domains that are not so focused on modeling the world but in synthesizing new 

artifacts, such as drug design and materials discovery.  This competency will 

emphasize AI search, constraint reasoning, and optimization. 

 

5. Extraction. This competency is focused on pulling out and integrating information 

from the literature, online data repositories, and other Web sources.  It will result 

in AI advances in natural language, vision, and information integration. 

 

6. Creation.  This competency is focused on generating new theories, designing new 

approaches, constructing new instruments, and other inventions that lead to 

significant inventions and paradigm changes that open fundamentally new 

directions in science.  It will result in AI advances in creativity, design, and 

representation shift. 

 
The six core competencies are summarized in Figure 1.  Each will advance 

complementary areas of AI research and will need to be integrated together to create 

powerful machines for science. Each competency can be explored separately, which will 

enable the AI community to make significant progress.  Most of the work to date on AI for 

science has focused on the Observation Competency, Modeling Competency, Probing 

Competency, and Extraction Competency.  The Reflection Competency and Creation 

Competency have not received as much attention.  We discuss next some of our prior 

work on the Reflection Competency. 
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5. Reflection Competency in Intelligent Systems for Science 
 
Intelligent systems for science will need reflection capabilities in order to formulate 

scientific questions, devise general strategies to answer them, execute methods that 

implement those strategies, and to place new findings in the context of the original 

questions. These reflection capabilities are crucial to automatically generating new 

scientific findings, no matter the question or the domain.   
 
Key research challenges for the Reflection Competency include: 

 

 

 
 

 
 

Figure 1. Six core competencies of AI scientists. 

Reflection

Observation

Modeling

Probing

Extraction

Creation

Competency Description AI Research Targets

Reflection Formulate questions, identify strategies, 
understand findings

Reasoning and problem 
solving

Observation Gather data through laboratory 
experiments or sensors

Robotics, cyberphysical
systems

Modeling Analyze data to uncover patterns and create 
predictive models

Machine learning, causality, 
uncertainty reasoning

Probing Design and explore solutions through 
efficient search & optimization

Search, constraint reasoning, 
optimization

Extraction Pull out and integrate information from 
diverse online resources

Natural language, vision, 
information integration

Creation Significant inventions and paradigm 
changes

Creativity, design, 
representation shift
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• Representing scientific knowledge to capture questions, hypotheses, and 

methods, and relating those to one another 

• Reasoning about hypotheses, the methods to test them, and the results obtained 

• Implementing the scientific processes and steps involved in answering different 

types of questions, and that can be similar or differ significantly across science 

domains 

• Integrating new findings into current theories and models, detecting 

inconsistencies, and resolving them with theory revisions or further questions 

• Explaining findings and the supporting evidence appropriately, answering follow 

up questions about the findings in the context of what is already known 

The development of a reflection competency will result in significant advances in many 

areas of AI, including cognitive architectures, knowledge representation, reasoning, 

planning, meta-reasoning, explanation, question answering, theory revision, and 

argumentation. 

 

Figure 2 illustrates a proposed conceptual framework for reflection based on six major 

steps of the scientific research process, based on [3; 20; 21].  Scientific research often 

starts with an inquiry, which can be a hypothesis that can be tested or simply a question 

to explore.  Next, a scientist will decide what approach to take to pursue the question, in 

terms of what kinds of data would be needed and how the data would be analyzed.  Then 

there would be a step for gathering data, which may mean carrying out experiments or 

retrieving data from an existing data repository.  Once the data is available, different 

analysis are carried out for different subsets of the data or with different assumptions. The 

results of these analyses are consolidated in relation to the original question or 

hypothesis.  Finally, a scientist would reflect on the nature and significance of the findings 

and revise existing theories or models in their domain. 
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This reflection framework focuses on inquiry-driven research, where a question or 

hypothesis prompts a scientist to gather evidence necessary to answer the questions 

posed.  This is by no means a universal account of all scientific research processes, which 

may be more exploratory (starting with some data rather than driven by questions), 

analytical (driven by representation change and redesign of some body of knowledge), 

instrument focused (design of a new instrument), synthesis (e.g. of new methods or 

algorithms), etc.  This is a high-level process that captures commonalities in many 

scientific endeavors.  This general reflection framework can be fleshed out based on the 

approaches and processes that are used in different science domains.  
 
Figure 3 illustrates the use of this conceptual framework for reflection with real examples 

from multi-omics (from [22], neuroscience (from [23]), and flood prediction (from [21]).   

This highlights the generality of this framework, and its flexibility to adapt to different kinds 

of inquiries, data types, and analyses.  In multi-omics, there is readily available data in 

shared repositories from many prior studies, and many specialized software tools that 

can be used for analysis of proteomic and genomic data.  Combining the results from 

these different modalities is an open area of research. In neuroscience, there is data 

available  but  specific  features  of interest  have  to be extracted  from brain  image  data.   

 
Figure 2. An initial conceptual framework for reflection in the scientific research 

process. 

Formulate 
Inquiry

(pose question/hypothesis)

Design 
Approach

(identify data & methods)

Gather 
Data

(find data, do experiments)

Conduct
Analysis

(run computations)

Consolidate
Results

(integrate evidence)

Assimilate 
Findings

(revise existing theories)
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Figure 3. Illustrations of the reflection framework with real examples in three diverse areas of 

science: cancer omics (top), neuroscience (middle), and flood prediction (bottom). 
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cancer 
studies

Use peptide search, 
genomic alignment, etc.

Increase confidence in 
hypothesis if both genomic 
and proteomic evidence,
refine hypothesis to more 
specific protein mutations 
or cancer subtypes

Extend known pathways 
to incorporate the protein 
found

wikipedia.org
10.1158/1078-0432.CCR-11-1026
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Results
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Findings

Question: Is the EffectSize of 
<Genotype on BrainImagingDerivedTrait> 
associated with <DemographicAttribute>

Check hippocampus 
volume, putamen volume, 
etc. when varying  age and 
other demographics in 
cases and controls

Alzheimer’s affects 
hippocampus volume

Find data 
from major 
brain studies

Extract volumes, consider
covariates, use regression

Increase confidence in 
hypothesis if high z-scores

wikipedia.org
10.1073/pnas.1801093115
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Fig. 2. Meta-regression for age and the e↵ect size of Alzheimer’s disease related risk
genotype on hippocampal volume (p=0.011). Age is negatively associated with the
APOE4 e↵ect size on MRI-derived hippocampal volume. The size of the points are
proportional to cohort size, and dashed lines indicate confidence intervals.

5 Conclusions and Future Work

In this paper we described Neuro-DISK, a framework to automatically test hy-
potheses in the neuroscience domain, specifically in the context of the ENIGMA
and international consortium. Our framework integrates the ENIGMA-ODS
platform, allowing further testing on previous hypotheses whenever a user con-
tributes new datasets in the system. Note that currently a single hypothesis was
tested, and the corresponding variables that were incorporated in the system
were selected a priori. However, in cases when multiple variables are selected,
such as multiple genetic markers, or multiple brain regions, in the same Line of
Inquiry, standard multiple comparisons correction techniques including the false
discovery rate adjustment are conducted.
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availability, use 
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precipitation only in 
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flow from
satellite
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find soils 
data, etc.

Run models for different years 
with different precipitation

Generate flood maps, 
ranges of crop production 
estimates, compare with 
baseline

	 24	

 

                        (a)                                                                                  (b) 

Figure 8:  An illustrative example of the potential of satellite imagery analysis to provide calibration data for 
hydrological models. (a) Study region: St. Johns river near Christmas, Florida. The red star on the image shows 
the location of the USGS gage station (ID:02232500). The blue circle shows the river segment (~8kms away from 
the gage station) analyzed using machine learning and satellite imagery from Sentinel 2 between 2015 and 2020. 
(b) Estimated river segment surface area (in blue) and daily discharge measured from the gage station (in red). 

 

Figure 9:  An illustrative example to demonstrate the ability of auto-encoder architecture to learn inherent 
characteristics in the data. The three sets of images show a sample of 25 images from three different clusters that 

were obtained by clustering images based on the features learned by the auto-encoder architecture. 

 

   (a)                                            (b) 

Figure 10:  An illustrative example to demonstrate the utility of our physics guided machine learning approach 
(a) False color composite of the river segment (same segment as Figure 7) on June 23rd, 2016. (b) The 

corresponding land/water mask that captures the surface extent despite the presence of issues such as clouds and 
shadows. 

 

 

	 32	

	
Figure 15: Interactive Dashboards in MINT. 
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Meta-analysis is needed to combine results from different studies.  For example, in flood 

prediction the analysis consists of running many simulations and the meta-analysis 

combines them to generate prediction ranges and assess uncertainty. 

 

The reflection framework illustrates how this core competency can drive the development 

of other competencies: 

 

• The Experimentation Competency would be prompted by the needs of the Gather 

Data step.  The reflection process can provide context for the Experimentation 

Competency in terms of the kind of data needed, the requirements for data 

collection, and the quality metrics that should drive experimentation. 

• The Modeling Competency would be invoked by the needs of the Conduct Analysis 

step.  The reflection process will determine what kind of modeling needs to be 

done, the data available, the performance criteria for the resulting model, and other 

important information for modeling tasks. 

• The Probing Competency would be driven by the needs of the Conduct Analysis 

step.  The reflection process can determine the search objectives, optimization 

criteria, and the domain knowledge and data that can make the search more 

efficient. 

• The Extraction Competency would be triggered by the needs of all the six steps, 

as it can extract theories to be used in the Formulate Inquiries step, domain 

knowledge to guide the Gather Data and Conduct Analysis steps, and fusion and 

integration methods to synthesize Consolidate Results and Assimilate Findings. 

• The Creation Competency would be needed when the Design Analysis step cannot 

generate appropriate strategies to find data or methods to answer key questions, 

or when no findings result after several iterations of the cycle, or when findings 

remain inconsistent despite the iterations.   
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6. Conclusions 
 
Future AI systems for science will be capable of pursuing independently substantial 

aspects of the research and therefore make their own discoveries.  They will be capable 

of taking on significant problems by formulating their own research goals, proposing and 

testing hypotheses, designing theories, debating alternative options, and synthesizing 

new knowledge. They will also be able to explain their reasoning, compare their lines of 

inference to other possible ones, and situate their findings. They will communicate with 

scientists who have different levels of expertise and understanding in any given research 

topic.   

 

The required capabilities will only be possible through substantial research advances in 

a diversity of areas of AI, including cognitive systems, machine learning, knowledge 

representation, constraint reasoning, problem solving and planning, meta-reasoning, 

reasoning under uncertainty, multi-agent systems, natural language processing, 

collaboration, and robotics.  AI research for science will also emphasize intelligent 

capabilities that have been received less attention in the past, such as representational 

change and creativity. 
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