
Proceedings of Machine Learning Research 1:1–8, 2018 ICML 2018 AutoML Workshop

P4ML: A Phased Performance-Based Pipeline Planner for

Automated Machine Learning

Yolanda Gil, Ke-Thia Yao, Varun Ratnakar, Daniel Garijo, Greg Ver Steeg, Pe-
dro Szekely, Rob Brekelmans, Mayank Kejriwal, Fanghao Luo and I-Hui Huang
[gil, kyao, varunr, dgarijo, gregv, pszekely, brekelma, kejriwal]@isi.edu

Information Sciences Institute, University of Southern California

Abstract

While many problems could benefit from recent advances in machine learning, significant
time and expertise are required to design customized solutions to each problem. Prior
attempts to automate machine learning have focused on generating multi-step solutions
composed of primitive steps for feature engineering and modeling, but using already clean
and featurized data and carefully curated primitives. However, cleaning and featurization
are often the most time-consuming steps in a data science pipeline. We present a novel
approach that works with naturally occurring data of any size and type, and with diverse
third-party data processing and modeling primitives that can lead to better quality so-
lutions. The key idea is to generate multi-step pipelines (or workflows) by factoring the
search for solutions into phases that apply a di↵erent expert-like strategy designed to im-
prove performance. This approach is implemented in the P4ML system, and demonstrates
superior performance over other systems on a variety of raw datasets.
Keywords: Automating machine learning, planning, pipelines, workflows, AutoML

1. Introduction

Machine learning applications require significant expertise and e↵ort. Research on au-
tomating machine learning (AutoML) focuses on developing approaches to automatically
generate models for a given dataset, including any necessary featurization and data prepa-
ration steps. Early work in this area explored the use of artificial intelligence planning to
generate multi-step pipelines (i.e., workflows) composed of data pre-processing and model-
ing steps (St. Amant and Cohen, 1998; Hauder et al., 2011). Given the ubiquity of data
and the great interest in exploiting it, AutoML has been receiving increased attention and a
variety of approaches have been proposed. Auto-sklearn uses Bayesian optimization meth-
ods, and placed first in the ChaLearn AutoML challenge (Feurer et al., 2015a). Fusi et al.
(2017) augmented that approach with probabilistic matrix factorization. A very di↵erent
approach was used in TPOT, which relies on genetic algorithms to explore combinations
of steps that lead to better performance (Olson et al., 2016b). However, there are still
many open research topics in AutoML. Existing approaches focus on feature engineering
and modeling, and assume that the data is already clean and that numerical features have
already been generated. They use a carefully selected and well-curated set of pre-processing
and modeling steps (or primitives) in order to make the search manageable. They also focus
on classification tasks. Our goal is to design AutoML approaches that can accommodate
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any type of naturally occurring data, any collection of primitives, and any size of data. This
paper presents a novel approach to AutoML that supports these goals and that has three
key contributions:

1. Exploits expert strategies to structure the search for solutions in a machine learning
problem into meaningful phases,

2. CHaracterizes both datasets and primitives in order to design end-to-end pipelines
that include data cleaning and featurization steps,

3. Explores the search space e�ciently and returns the best solution found within a given
time limit.

The paper begins articulating our goals and requirements, followed by an overview of our
approach. We then describe the implementation of our approach in P4ML, a phased
performance-based pipeline planner for automating machine learning. P4ML was popu-
lated with dozens of diverse third-party primitives, and the evaluations so far demonstrate
superior performance on a variety of real world datasets.

2. Goals and Requirements

Our goal is to automate machine learning with approaches that will handle naturally oc-
curring datasets, which leads us to several important requirements not addressed in prior
research. First, we need to be able to generate solutions for any type of dataset, including
images, audio, text, etc. There may be many ways to featurize these datasets, and the
featurization approach matters for the quality of the solution. Second, we need to assume
that the datasets are not necessarily clean. Raw data is typically full of errors, missing
values, and other imperfections that often make it of a less than acceptable quality to get
reasonable results from models. Therefore, data cleaning steps should be part of the so-
lution. Third, we want to be able to incorporate a large number of diverse third-party
modeling and other data processing primitives. A small number of primitives may be suf-
ficient to generate some solution but, because di↵erent algorithms work better for some
datasets, having a wide range and a large number of primitives is desirable. Our goal is to
be able to incorporate into the pipeline generation process a large and diverse set of third
party primitives and use them to generate the best solutions. Fourth, we need to be able to
handle very large datasets within time constraints. At any time, complete pipelines should
be available, so the best one can be returned as the answer.

3. P4ML: A Phased Performance-Based Pipeline Planner

There are three key aspects of our approach:

1. Exploit expert-like strategies to factor the search space. We use a hierarchical metadata-
based planner that searches for solutions while being mindful of performance. The
planner is given a time limit and outputs the best solution generated within that time.

2. Automatically annotate a catalog of primitive data processing and modeling steps.
The annotations provide rich metadata about preconditions, performance, and other
constraints of each primitive that are used during search.
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3. Dynamically characterize, clean, and featurize datasets.

We first describe the pipeline generation process that uses metadata about primitives and
datasets, and then discuss how that metadata is obtained or created.

3.1. Pipeline Generation

The pipeline generation process starts with a task (e.g., classification, regression, etc.), a
metric (e.g., f1 macro, mean squared error, etc.), a dataset and a time limit. A catalog of
primitives for modeling and data processing is used, described in Section 3.2. We divide
the search into five distinct phases:

1. Phase 1: Dataset characterization and featurization. Tabular datasets are
characterized with metadata in terms of the types of features (enumerated values,
strings, numerical, etc.) and their ranges. Cleaning primitives are added to improve
the overall quality of the dataset. Datasets that contain images, sound or video need
to be featurized in order to extract relevant features that can be used by modeling
primitives. Featurization primitives are selected depending on the type of data, and
if several are available then multiple candidate pipelines are generated and passed on
to the next phase.

2. Phase 2: Pipeline skeleton design. In this phase, we identify the modeling
primitives in the catalog that are suitable for addressing the given task based on
metadata annotations of their functionality. This results in pipeline candidates for
the next phase. Pipeline candidates are prioritized according to the diversity of the
modeling primitives based on their algorithm types. For example, if a Naive Bayes
classifier has already been explored as a solution, we will prioritize other types of
classifiers based on random forest or decision trees.

3. Phase 3: Requirement satisfaction. Each primitive in a Phase 2 pipeline may
have requirements that need to be addressed prior to its execution. For example, a
classifier may only work on datasets that have no missing values. Other primitives
may only work on numerical data (i.e., not on categorical features that are strings),
or on non-negative values. Given a candidate pipeline from Phase 2, Phase 3 analyzes
the requirements of the pipeline primitives and adds additional primitives to create
an executable pipeline. These requirements are addressed by profiling the dataset
being analyzed, and adding primitives that address requirements when necessary.
For any Phase 2 pipeline candidate, several Phase 3 pipelines may be generated, as
there could be di↵erent strategies for addressing the requirements of a primitive. For
example, di↵erent imputation primitives (e.g., most common value, average values,
etc.) may be available to address a non-missing values requirements, each leading to
di↵erent pipeline performance. While Phase 2 pipelines are just skeletons and are not
executable, Phase 3 candidate pipelines can be run.

4. Phase 4: Hyperparameter search. Phase 3 pipelines provide the basic structure
of the pipeline solutions. However, these pipelines use default hyperparameters for
each of their primitives. In Phase 4 we select the highest ranked Phase 3 pipelines
and search through hyperparameter values.
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5. Phase 5: Ensemble generation. An ensemble is created with the top perform-
ing pipelines. We carry out a greedy search over ensembles, beginning with the best
performing pipeline and adding pipelines (with replacement) while the cross valida-
tion score is improving. Ensemble predictions are calculated and evaluated using a
majority vote for classification or mean for regression.

In order to be able to explore a maximum number of solutions within the given time
limit, phases 2 to 4 occur in parallel. As the pipelines are executed in Phases 3 and 4, cross
validation is performed to rank the candidate pipelines in a global table according to their
performance with the given metric. When the given time limit is approaching, Phase 5 is
executed to generate ensembles and output a final solution.

3.2. Primitive Catalog

We assume a catalog of primitives that contains metadata to describe their invocation
and functionality. We clustered all primitives using rules that took into account both the
’primitive family’ (e.g., Classification) and ’algorithm type’ (e.g., KNN) annotations that
accompany each primitive release. This rule-based clustering was found to closely mirror
pre- built algorithmic hierarchies like scikit-learn (Pedregosa et al., 2011), and we used it
to build a primitive taxonomy to organize our search. We also performed an automated
analysis on primitives to annotate requirements of each primitive (e.g. inputs must have no
missing values) by using a primitive profiler1. These requirements are used in Phase 3 of
pipeline generation.

3.3. Characterizing, Cleaning, and Featurizing Datasets

To characterize tabular datasets, data profiling and cleaning are integral components in
many real-world machine learning pipelines. We designed a data profiler that annotates
basic characteristics such as column data types (e.g., String, Date, Number) and the pro-
portions of missing values in each column, as well as more advanced characteristics such as
the language in text columns. The data profiler is executed in Phase 1.

We also designed a suite of data cleaning primitives. An important primitive is miss-
ing value imputation (MVI), which encapsulates various algorithmic options for imputing
missing values, including simple algorithms (e.g., using column mean values), and advanced
matrix-based algorithms. By default, greedy search is used to automatically configure the
primitive and decide which imputation algorithm to use for each column containing missing
values.

We use a variety of third-party primitives to featurize datasets that contain text, images,
and audio.

3.4. Implementation

We have implemented this approach in P4ML, an AutoML system that is organized in a
modular architecture. P4ML is an initial prototype, and the pipeline generation phases
can be easily extended as our research moves forward. As more metadata about primitives

1. https://github.com/usc-isi-i2/dsbox-ta2/tree/master/python/dsbox/profiler/primitive
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is added (e.g., through a metalearning approach), the system can use that information to
generate and prioritize candidates.

We use a primitive catalog provided by third parties that participate in the DARPA
Data Driven Discovery of Models (D3M) program. The version of the catalog used for this
work includes 127 primitives that contain basic metadata describing their main function-
ality. Among these 127 primitives, 43 are scikit-learn primitives (Pedregosa et al., 2011)
such as classifiers, regressors and data processing primitives. We collaborated with D3M
program participants to develop appropriate APIs for the primitives, as well as for inges-
tion of datasets and for testing and evaluation. Datasets are read from files, and Pandas
DataFrames are generated to represent attribute matrices and target vectors. An up-to-
date development version of our prototype is available in Github;2 while a snapshot of the
code with the version used in this paper is available in Zenodo (Yao et al., 2018).

4. Related Work

Recent developments in AutoML have focused on algorithm selection and hyperparameter
optimization problems using Bayesian optimization and genetic programming approaches.

Auto-sklearn (Feurer et al., 2015a), the overall winner of the ChaLearn AutoML chal-
lenge (Guyon et al., 2016), extends the Bayesian optimization approach of the Auto-WEKA
system. (Thornton et al., 2013) to a Python environment. In particular, Sequential Model-
Based Algorithm Configuration (Hutter et al., 2011) (SMAC) is used not only for hyperpa-
rameter optimization but also for algorithm selection by conditionally initializing relevant
parameters. Importantly, (Feurer et al., 2015a) find marked improvement from using en-
sembles of models (Caruana et al., 2004) and warm-starting hyperparameter settings based
on dataset meta-features (Feurer et al., 2015b), fitting within the wider tradition of meta-
learning (Brazdil et al., 2008; Lemke et al., 2015). Meta-learning is also useful in finding a
surrogate model, used by SMAC to predict performance for a given algorithm configuration
and guide exploration toward promising models. While Feurer et al. (2015a) use random
forests as a surrogate, recent advances have been achieved by using matrix factorization
(Fusi et al., 2017) or scaling Gaussian process surrogates to large collections of metadata
(Wistuba et al., 2018).

Tree-based genetic programming provides an alternative viable solution to the AutoML
problem. The TPOT system (Olson et al., 2016b,a) can construct arbitrarily long sequences
of feature construction, feature selection, and classification operations via insertion, deletion,
and sampling mutations.

It is important to note that these systems often draw from a restricted space of possible
models and dataset types. For example, Auto-sklearn is limited to 15 classifiers, 14 feature
selectors, and 4 data preprocessors, while TPOT uses only decision tree and random forest
based methods and Fusi et al. (2017) fixes the space of possible pipelines prior to training. In
contrast, our work focuses on using a variety of preprocessing, featurization, and modeling
primitives to handle diverse types of data.

2. https://github.com/usc-isi-i2/dsbox-ta2
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Classification Regression
Success Failure Success Failure

Auto-sklearn 124 93 61 16
P4ML 217 0 76 1

Table 1: Total number of datasets successfully handled by Auto-sklearn and P4ML.

Better performance
P4ML Ties Auto-sklearn Total problems

Classification 61 8 55 124
Regression 22 1 38 61

Table 2: Number of datasets where P4ML and Auto-sklearn had the best metric scores.

5. Evaluation

For this evaluation we use datasets provided by DARPA’s D3M program, specifically the
LL0 datasets.3 We note that the program will be releasing these datasets and other evalu-
ation harness in the near future. The LL0 datasets consist of 384 individual datasets. The
datasets include text, images, audio, tables, and nested tables. Of the 294 datasets 217
datasets are classification problems, and the remaining 77 datasets are regression problems.
Of the 217 classification datasets 120 are binary classification problems and 97 are multi-
variate classification problems. The number of instances in the datasets range from 152 to
1,025,001, with a median of 751 instances. The number of attributes range from 4 to 10,938
with a median of 15 attributes.

We compare P4ML against Auto-sklearn version 0.3.0 (Auto-sklearn, 2018) with respect
to coverage, that is, the ability to process any datasets including those that are not nec-
essarily clean. We use Pandas DataFrames as the input format for both systems. Table
1 summarizes the results of the runs. Auto-sklearn was able to successfully complete 124
of the 217 classification datasets and 61 of the 77 regression datasets. Most of the failures
were due to text attributes and to categorical attributes. P4ML was able to successfully
complete all 217 of the classification datasets and 76 of the 77 regression datasets. The only
dataset that P4ML failed to process was due to a bug in the D3M code used to read the
input.

We also compare the performance with respect to the metric given in each problem.
For the evaluation presented here, the F1 macro metric is used to evaluate classification
problems and the mean squared error is used for regression problems. Table 2 shows that
the metric scores of our P4ML prototype are comparable to Auto-sklearn. Of the datasets
that Auto-sklearn was able to process, P4ML performed better in 61 of the 124 classification
datasets, and Auto-sklearn did better in 38 of the 61 regression datasets. The results of the
evaluation are available in (Yao, 2018).

3. https://gitlab.datadrivendiscovery.org/d3m/datasets
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6. Conclusions

We present a novel approach to automated machine learning that works with naturally
occurring data of any type and can generate multi-step pipelines using third-party data
processing and modeling primitives. The key idea is to generate multi-step pipelines by
factoring the search for solutions into phases that apply di↵erent expert-like strategies
designed to improve performance. This approach is implemented in the P4ML system, and
has been evaluated with a broad range of datasets. Future work includes the incorporation of
feature engineering primitives and deep learning approaches, learning and reusing pipeline
fragments, meta-learning from other datasets to prioritize primitives and pipelines, and
supporting interactive problem definition by domain experts.
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