
Time-Bound Analytic Tasks on Large Datasets through
Dynamic Configuration of Workflows

Yolanda Gil
Varun Ratnakar

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292
gil@isi.edu, varunr@isi.edu

Rishi Verma, Andrew Hart,
Paul Ramirez, Chris Mattmann

NASA Jet Propulsion Laboratory
4800 Oak Grove Drive,
Pasadena, CA 91109

{rishi.verma, andrew.f.hart,
paul.m.ramirez,

chris.a.mattmann}@jpl.nasa.gov

Arni Sumarlidason
Samuel L. Park

MDA Information Systems LLC
820 West Diamond Ave., Suite 300

Gaithersburg, MD 20878
arni.sumarlidason@mdaus.com

sam.park@mdaus.com

ABSTRACT
Domain experts are often untrained in big data technologies and
this limits their ability to exploit the data they have available.
Workflow systems hide the complexities of high-end computing
and software engineering by offering pre-packaged analytic steps
combined into multi-step methods commonly used by experts. A
current limitation of workflow systems is that they do not take
into account user deadlines: they run workflows selected by the
user, but take their time to do so. This is impractical when large
datasets are at stake, since users often prefer to see an answer
faster even if it has lower precision or quality. In this paper, we
present an extension to workflow systems that enables them to
take into account user deadlines by automatically generating
alternative workflow candidates and ranking them according to
performance estimates. The system makes these estimates based
on workflow performance models created from workflow
executions, and uses semantic technologies to reason about
workflow options. Possible workflow candidates are presented to
the user in a compact manner, and are ranked according to their
runtime estimates. We have implemented this approach in the
WOOT system, which combines and extends capabilities from the
WINGS semantic workflow system and the Apache OODT Object
Oriented Data Technology and workflow execution system.

Categories and Subject Descriptors
C. Computer systems organization, D.2 Software engineering,
D.2.10 Design.

General Terms
Design, Performance, Human Factors.

Keywords
Workflows, semantic workflows, performance, WINGS, OODT.

1. INTRODUCTION
Big data is pushing the boundaries of computing by increasing
information available from higher resolution scientific
instruments, sensors, business and financial systems, and other
data sources. End users with no expertise in big data analytics
techniques face many challenges in analyzing their data.
Workflow systems make big data analytics more accessible by
managing common tasks that big data producers and algorithm
developers execute to transform information throughout its
lifecycle from data production, to processing/transformation, and
ultimately to data distribution [Woollard et al 2008]. Experts can
create workflows that represent complex multi-step analytic tasks
and share them so that end users can use them with their own data
[De Roure et al 2009].

It is possible to design alternative workflows for the same task
that have very different performance, particularly for big data. For
example, many different workflows can be created using different
algorithms to detect popular topics in a large collection of
documents (e.g., news articles, tweets, etc). An end user may
need a workflow to perform that task within a certain deadline, or
that has a desired accuracy. When datasets are very large, and the
performance varies widely depending on many metadata
characteristics and parameter settings, how can an end user
compare and select among possible alternative workflows?

In this paper we describe an approach to enable end users to get
workflow solutions that meet their performance requirements, in
particular runtime deadlines. We leverage: 1) semantic workflows
to automatically generate candidate workflows based on available
data analysis algorithms, 2) workflow execution with integrated
data and metadata management and provenance recording, and 3)
learning predictive performance models from prior workflow
executions.

Our approach allows a workflow designer (i.e., an expert in big
data analytics) to create abstract workflow templates that can be
run using different application algorithms, and to provide training
data (e.g., sets of inputs and outputs) to be used in a learning
phase to create a performance model for each workflow template
under different datasets and parameter settings. When a workflow
user (e.g., an end user with limited or no background on big data
analytics) provides a set of performance requirements, the system
automatically generates possible candidate specializations of the
workflow template and uses the learned performance model to
rank those candidate workflows. These ranked candidates are
offered to the user, who can choose based on their runtime
performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
WORKS’13 November 17, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2502-8/13/11...$15.00.
http://dx.doi.org/10.1145/2534248.2534257

Proceedings of the Eighth Workshop on Workflows in Support of Large-Scale Science (WORKS),
held in conjunction with SC 2013, Denver, CO, November 17, 2013.

We have implemented this approach in WOOT, a system that
combines and extends the semantic workflow reasoning
capabilities of WINGS [Gil et al 2011a; Gil et al 2011b] and the
metadata extraction and provenance tracking capabilities of the
Apache OODT Object Oriented Data Technology and workflow
execution system [Mattmann et al 2006; Mattmann et al 2009].

The rest of the paper is organized as follows. The next section
motivates through examples the needs of end users as they
confront the analysis of big data at scale in the face of many
alternative algorithms, implementations, and methods. Section 3
surveys related work. Section 4 introduces our approach, defining
five key capabilities needed. Section 5 explains the architecture of
WOOT that combines and extends WINGS and OODT to achieve
those capabilities, walking through examples along the way.
Section 6 discusses additional aspects of this problem that would
require extensions to our work to date. Finally, we present
conclusions and future work.

2. MOTIVATION
Big data requires a range of expertise that very few people have.
End users have a deep understanding of their domain and the
questions they want answered from the vast amounts of data, but
generally do not have the range of skills required to analyze it.
Our goal is to empower end users with the ability to analyze their
data through the use of workflows.

Consider a social scientist who has access to large amounts of
social media data, such as tweets. He is interested in
understanding the dynamics of followers based on affinity to
topics of tweets. Another example would be a communications
student doing a thesis on what groups of teenagers discuss
particular topics in social media. Consider also an epidemiologist
trying to understand the spread of disease from social media data.
Finally, consider a historian who, as suggested by
http://programminghistorian.org, has a large set of documents
such as multi-year newspaper records1 or decades worth of daily
diaries2. She would like to know the topics that were being
discussed at any given time and how they changed over the years
particularly in response to known historical events.

These are all examples of end users, who may be aware that there
are topic modeling techniques developed by natural language
experts that they could apply but do not have the necessary skills.

Workflows provide a mechanism to capture state-of-the-art multi-
step methods that experts would use for a particular task, and that
non-experts can easily reapply. Figure 1 shows an example of a
general workflow for topic modeling taken from [Hauder 2011a].
The workflow starts removing stop words (e.g., punctuation) and
short words (e.g., “the”, “of”, “and”), and then converts the data
to a format that can be used by a state-of-the-art topic modeling
algorithm such as Latent Dirichlet Allocation (LDA) [Blei et al
2003]. This particular workflow was used with little training by
high-school students to analyze twitter data [Hauder et al 2011b].
Experts can create workflows and share them with others in
repositories [De Roure et al 2009; Ramachandran et al 2009] or as
open web objects [Garijo and Gil 2011].

1 E.g., http://dsl.richmond.edu/dispatch
2 E.g., http://historying.org/2010/04/01/topic-modeling-martha-ballards-diary/

Figure 1: A general workflow for detecting popular topics in a
set of documents.

However, many different algorithms and approaches exist for
topic modeling step, and many alternative implementations of
those algorithms exist, each requiring different parameters and
offering efficient performance. Therefore, many different
workflows might be possible. Figure 2 shows examples of
alternative workflows that instantiate the general workflow in
Figure 1, particularly the topic training step. They use different
algorithms and implementations for LDA, each one with different
parameters and with different performance. An end user would
wonder which implementation would give them an answer faster,
and what workflows will give the best answer (a “good” quality
answer) within the time bounds.

Figure 2(a) shows a workflow (WF-LDA-MALLET) that uses a
popular implementation for LDA in the MALLET package
[McCallum 2002]. The site indicates:

“The MALLET topic model package includes an
extremely fast and highly scalable implementation of
Gibbs sampling and efficient methods for document-
topic hyperparameter optimization.”

An analogous workflow (WF-LDA-TMT) could be built with the
TMT software3, which also implements LDA.

Figure 2(b) shows a workflow (WF-OLDA) that uses online LDA
[Hoffman et al 2010], an algorithm for online learning that builds
the topic models as it processes documents incrementally:

“Online LDA is based on online stochastic
optimization with a natural gradient step […]. It can
handily analyze massive document collections,
including those arriving in a stream.”

There are several implementations of this algorithm leading to
different workflows: gensim [Řehůřek 2009] (WF-OLDA-
GENSIM) and Vowpal Wabbit [Langford 2011] (WF-OLDA-
VW), both in Python.

3 http://www-nlp.stanford.edu/software/tmt/tmt-0.4/

Figure 2: Alternative workflows for topic modeling using LDA: a) Mallet implementation, b) Online LDA, c) ParallelLDA, and d)
an LDA implementation that includes a final visualization step and an initial sampling of the input dataset.

Figure 2(c) shows another workflow that uses a parallel version of
the LDA algorithm [Wang et al 2009]:

“PLDA can be applied to large, real-world
applications and achieves good scalability.”

There could be two versions of this workflow: one with an MPI
implementation (WF-PLDA-MPI) and a MapReduce
implementation (WF-PLDA-MR).

Finally, Figure 2(d) shows a workflow (WF-LDA-VIZ) that first
creates a topic model and then generates a visualization of it. In
addition, it includes a sampling step at the beginning, which can
be used to reduce execution time by reducing the size of the input
dataset.

To complicate matters, not only are the above LDA algorithms
and implementations very different but they use different input
parameters and have a very different performance depending on
the value of the parameters. For example, although Mallet LDA

and online LDA both have parameters to indicate the number of
iterations and desired number of topics, Mallet LDA has another 3
parameters (optimization bounds, optimization interval, and
output state interval) that are different from online LDA’s other
parameter (batch size).

All the algorithms have a parameter to specify the number of
iterations of the LDA algorithm. This parameter in particular
greatly affects the performance of the algorithm in terms of
execution time. Parallel LDA has a parameter to specify the
number of processors to use. Below a certain number,
performance is likely to suffer from the communication overhead.

In summary, we have described 8 workflow templates for topic
detection, all with different algorithms and parameters that affect
performance. Suppose a user has a very large dataset, and wants
to obtain topics within a certain time bound (e.g., 1 hour). What
would be the best workflow for them? This is the problem we
aim to address in this paper.

(a)

(b)

(c)

(d)

3. RELATED WORK
Retrieving workflows from repositories has been a topic of active
research. Some approaches look at matching based on social tags
[Goderis 2008], or the shape of the workflow graph [Goderis et al
2008]. In our own work in WINGS, we investigated the retrieval
of workflows based on high-level requests, such as finding
workflows that generate a desired type of result or process a given
type of data [Bergmann and Gil 2012]. Also in our own work on
Apache OODT [Mattmann et al 2009], workflows can be
retrieved based on a series of dynamic multi-valued metadata that
is also used in file cataloging, metadata extraction, and curation
and in resource management. This metadata can correspond to
workflow status (e.g., FINISHED, EXECUTING; or FAILED);
current task wall clock time or workflow wall clock time;
workflow id; workflow instance id; and other information. In our
own work, and more broadly within the community retrieval of
workflows based on performance bounds has not been explored
before.

There is a vast literature on performance modeling that is directly
relevant to characterizing performance of algorithms (see [Hutter
et al 2012] for an overview). Performance modeling relies on
collecting performance data for a given algorithm or code with
different input datasets and parameter settings, then building a
predictive model that can be used to estimate runtime for new
datasets. Algorithms are often considered to be “workflow
blocks” and their predicted performance based on different input
sizes to improve the allocation of resources [Miu and Missier
2012]. In contrast, for this work we want to consider the
performance of the entire workflow rather than individual codes.
Because our focus is on extending workflow systems to generate
and use workflow performance models, our models are quite
simple and can be extended in future work to incorporate
techniques from this body of work.

Workflow performance is often used to compare across execution
infrastructures [Montagnat et al 2010; Vahi et al 2012].
Workflow runtime is one of many metrics that must be taken into
account, others can include resource utilization and reliability
[Furlani et al 2013; Carrington et al 2005]. Predicting workflow
performance is key for resource reservation and resource
allocation. All these sophisticated metrics and performance
measurements could be used to extend our approach and provide
end users with additional tradeoffs.

In prior work, we investigated performance/quality tradeoffs in
the context of biomedical image analysis [Kumar et al 2010]. The
work focused on the creation of the performance models, which
expert high-end computing users would then inspect and based on
them decide how to set up parameters for a new dataset.
However, there was no interaction with an end user. In addition,
the focus was on the selection of parameters, while we focus here
on the selection of both algorithms and their implementations in
addition to parameters.

4. APPROACH
Our goal is to assist end users with time-bound analytic tasks by
recommending workflows that meet their performance
requirements in terms of target deadlines. Our approach is to:

1. Learn workflow performance models: For every
workflow, the system should learn performance models
using training datasets of different sizes and
characteristics (i.e., metadata) as well as using different
parameter settings.

2. Allow users to specify their requirements and
constraints: Users should be able to specify the desired
task and request an answer within a specific time bound.

3. Automatically generate candidate workflows: Given the
user task and time bound, the system should
automatically retrieve all the relevant workflows and
instantiate them with possible parameter values.

4. Rank candidate workflows: The system should use the
workflow performance models to rank the candidate
workflows.

5. Present users with options: The system should select
one or more workflows to run, and present the user with
other possible workflows.

Our approach combines capabilities of two complementary
workflow systems, WINGS [Gil et al 2011a; Gil et al 2011b] and
Apache OODT [Mattmann et al 2006; Mattmann et al 2009], and
augments them with new features as follows.
WINGS is a semantic workflow system that facilitates the
generation of candidate workflows for user requirements (items 2
and 3 above), since it has a workflow matching engine that can
retrieve relevant workflows given a high-level specification of a
user’s task [Bergmann and Gil 2012] as well as an algorithm to
search the space of possible workflow instantiations [Gil et al
2011b]. WINGS supports the specification of abstract workflow
templates4 that include classes of steps (e.g., the workflow in
Figure 1 with a topic modeling step) that can be specialized to
specific algorithms or implementations (e.g., the workflows in
Figure 2, such as 2(c) with topic modeling with Parallel LDA
using MPI). WINGS uses workflow reasoning algorithms that
take an abstract workflow and automatically generate workflows
of executable application codes that can be submitted to a
workflow execution engine. For example, WINGS can take the
workflow in Figure 1 as input and generate automatically all the
candidate workflows shown in Figure 2. While the workflow in
Figure 1 is too unspecified to submit to execution, the workflows
in Figure 2 are fully specified and can be submitted to a workflow
execution engine like OODT.
Apache OODT is a distributed data management and processing
framework greatly facilitates learning performance models (item 1
above), since it can extract metadata characteristics upon
workflow execution that can be used to do profiling [Mattmann et
al 2009], and with distributed execution of workflows with
provenance tracking [Mattmann et al 2006]. OODT represents
metadata characteristics using OODT’s canonical key value pairs
that supports a multi-valued metadata representation. OODT also
tracks workflow execution and generates provenance records that
include execution time for each workflow component and for the
overall workflow.
In addition to integrating WINGS with OODT to take advantage
of their capabilities, new functionality was needed to learn
performance models and rank workflows (item 4 above) and to
present the user with options (item 5).

In the next section, we describe our implementation of this
approach.

4 In other research, abstract workflow refers to a workflow with

no resources specified to the workflow tasks. Here, abstract
workflow refers to workflows with no particular algorithms
specified, therefore introducing an additional abstraction layer.

Workflow'
Genera,on''

Workflow'
Retrieval'

Performance'
Modeling'

Workflow'
Execu,on'

Metadata'
Extrac,on'

Performance'
Predic,on'

Workflow'
Library'

Data'
Catalog'

File'
Manager'

Provenance'
Catalog'

Workflow'
+'

Training'Data'

Task'
+'

Datasets'
+''

Deadline'

End$$
User$

(Workflow$
User)$

Big$Data$
Expert$

(Workflow$
Creator)$

WINGS$

OODT$

WOOT$

Workflow''
Ranking'

Ranked'
workflow'
op,ons'

Figure 3: A high-level view of the WOOT system, with the new functionality highlighted with dashed lines. During the learning
phase, the system uses training datasets (of different sizes and characteristics) to run workflows in OODT and extract metadata to
be used as features to train performance models of the workflows. When the system is in use and the user provides a task and a
deadline, WINGS generates relevant workflows (all workflows that include a topic modeling step), ranks them according to their
performance, and offers them to the end user as options. The workflows selected are submitted to OODT for execution.

5. WOOT: The WINGS/OODT Workflow
Recommender
Figure 3 shows a high-level overview of the architecture of the
system, highlighting major WINGS and OODT capabilities used
and in dashed lines the new capabilities in WOOT. In the left
portion of the diagram, a big data expert provides a set of
candidate workflows along with a set of training data and
parameters. The system can run the workflows on the training
data and record provenance together with metadata and execution
times. These form the basis for learning performance models and
generating and ranking workflow options allowing selection of an
appropriate workflow by the end user as shown on the right of
Figure 3.

In the middle of the diagram, the library of candidate workflows is
available both to WINGS (at the top of Figure 3) and to OODT (at
the bottom of Figure 3). WINGS takes these workflows and the
datasets provided by the expert, and generates fully specified
workflows that are submitted to OODT for execution. OODT
stores provenance metadata about the workflow such as its
start/stop wall clock time at a per task level and per workflow
level, as well as specific workflow instance metadata (e.g., the
input parameters that were provided). This information is stored in
the Data Catalog and Provenance Catalog for OODT shown at the
bottom of Figure 3.

The Performance Prediction module, shown in the upper right
portion of Figure 3, mines the OODT Provenance and Data
Catalog to assess workflow performance and ultimately rank the
candidate workflows, and to provide this information to the end
user in the right of Figure 3.

The next sections describe our implementation of each of the five
aspects of our approach listed above.

5.1 Learning Workflow Performance Models
In our approach, a big data expert would create workflows and
provide training datasets and parameters that would enable the
system to learn workflow performance models.

5.1.1 Creating Workflows
Workflow creators (shown on the left of Figure 3) are big data
experts that have experience using the different algorithms
available with different datasets and parameters that impact their
performance. When creating a new workflow, they are asked to
specify some sample datasets of different sizes and characteristics,
as well as key parameter values. These datasets will be used to
form a comparative model that can be leveraged to predict
characteristics of a given workflow, as we describe next.

The semantic features of WINGS workflows are key to our
approach. Workflow creators are offered the ability to create
abstract workflow templates that include steps that do not refer to
specific algorithms or implementations, but instead refer to
classes of algorithms that carry out a similar task. Figure 4(a)
shows an example of such a class hierarchy for topic modeling
workflows that an expert would create. The class TrainTopics
includes three different algorithms represented as subclasses:
Mallet-LDA, Online-LDA, and Parallel-LDA. All three
algorithms take an input dataset, a parameter indicating the
number of iterations, and output the topic models. These
common properties are represented in the class TrainTopics and
inherited to each of the three subclasses. Since each algorithm has
its own parameters, those are represented in their corresponding
subclass as shown in Figure 4(b).

(a)!

(b)!

(c)! (d)!

Figure 4: WINGS allows workflow designers to organize workflow components into hierarchies, and use component classes as
abstract steps. A component class is shown in (a), where the TrainTopics step represents a class of workflow components that have
one input dataset, an Iterations parameter, and an OutputTopics dataset. A workflow component under that class for Parallel
LDA is shown in (b), inheriting those three characteristics and having additional parameters such as Processors, Alpha, Beta, and
NumberOfTopics. Workflow designers can create abstract workflow templates with the component class TrainTopics as a step, as
shown in (c) (same workflow as Figure 1). WINGS automatically generates specializations of that template including the workflow
in (d) and other workflows shown in Fig 2(a) and 2(b).

WINGS allows a workflow creator to use component classes as
steps in specifying a workflow template. Figure 3(c) shows an
example, where one of the steps is TrainTopics, and another step
is also an abstract class (FormatDataset). These abstract
workflows are presented to the end users, and are automatically
specialized with the algorithms available as we describe in
Section 5.3 below. An example of a specialized workflow is
shown in Figure 4(d) (the same workflow we showed in Figure
2(c)), other workflow candidates include those shown in Figure
2(a)(b).

To train a performance model for the topic modeling workflows
discussed here, we used public datasets of document collections
containing news items that are widely used in the natural language
processing and machine learning communities5. The metadata
extracted by OODT includes their sizes, which are as follows:
R8_train: 3.2MB, R8_test: 1.1MB, R52_train: 4.1MB, R52_test:
1.5MB. We then created additional datasets by selecting random
subsets of those documents.

As for parameters, we assume that the experts also provide a
selected set of parameter values. For example, in the case of
MALLET LDA the parameter that sets the number of iterations is

5 http://csmining.org/index.php/r52-and-r8-of-reuters-21578.html

recommended to be set between 1000 to 2000, so the expert can
choose a few sample values from that range.

5.1.2 Learning Performance Models
Using the datasets and parameter values provided by the
workflow creator, OODT then runs the workflow with all the
possible combinations. OODT records all the performance
information for each workflow run in a Provenance Catalog. It
also extracts and records metadata about the input datasets in a
Data Catalog. We created a Performance Modeling module that
accesses all this execution information, including metadata of
datasets used as well as parameter settings. These form the
features (or variables) for learning the performance models. For
example:

OnlineLDA-Workflow
input1 R8_test size 1.1MB numLines 100,000
num-topics 10
num-iterations 1000
optimize-interval 10
optimize-burn-in 20
output-state-interval 0
runtime 160

Figure 5: A partial plot of the performance model for the Online LDA workflow shown in Figure 2(b).

Note that the second line has the ID of the input dataset followed
by the metadata extracted by OODT represented as key value
pairs.

Given this information, the Performance Modeling module learns
a performance model by doing a linear regression on the
workflow execution data collected from OODT. WINGS will
invoke this function when trying to rank candidate workflows for
the user, as will be described in Section 5.4.

The Performance Modeling module is very flexible and extensible
and operates in the following way: (1) utilizes extension points for
incorporating various runtime estimation algorithms, (2) provides
run time estimation, among other calculations, via a RESTful
web-application tier, and (3) has network connectors to multiple
OODT components, such as the File Manager and Workflow
Manager.

Figure 5 shows a performance model for the Online LDA
workflow. The features that we used included the size of the
input file, the number of lines of the input file (this corresponds to
the number of documents in these datasets, where one line is used
per document), and the values of all the parameters set for the
specific run. Shown in the figure are the size and the iterations
parameter, the latter affecting runtime more dramatically.
Additional metadata properties to train the performance model can
be extracted through OODT using Apache Tika [Mattmann and
Zitting 2011], such as the number of distinct words, the language
of the file, the file format (html, plain text, etc).

5.2 User Request
Workflow users (shown on the right of Figure 3) are end users
who have a particular data analytic task at hand, but do not have
the analytic expertise of a workflow creator as discussed in the
previous section. They would be presented with a collection of

abstract workflow templates for different tasks. For example, for
the task of topic detection they could be shown the workflow in
Figure 1 as a starting point,. Other tasks could include document
clustering and document classification; we discuss such
collections of text analytics tasks in [Hauder et al 2011a]. It is
easy for end users to select workflows based on the tasks that they
performed, as shown in [Hauder et al 2011b].

The end user specifies the dataset that they want to analyze, and a
time bound. The user can leave the parameters unspecified. The
parameters and algorithms that are possible are automatically
selected by the system, as we describe next.

5.3 Automatic Generation of Candidate
Workflows
Given an abstract workflow template and input datasets provided
by the end user, WINGS can automatically generate candidate
workflows by performing a search through the space of possible
workflows whose steps are specific algorithms that are consistent
with that abstract workflow. An overview of the algorithm is
given in [Gil et al 2011a], and a detailed description can be found
in [Gil et al 2011b]. We briefly summarize it here. First, WINGS
specializes the workflow steps by replacing component classes
with the possible subclasses, each generating a branch in the
search for candidate workflows. Then, WINGS assigns values to
all unspecified parameters. Any workflow that is fully elaborated
through this search can be submitted to OODT for execution. But
first, all these candidates are presented to the end user as we
discuss next.

5.4 Ranking Candidate Workflows
For each candidate workflow, the Workflow Ranking module
requests an estimate of the workflow runtime from the WOOT

Iterations	

(1000’s)

Run	
 time	

(secs)

Size	

(MB)

Performance Modeling components described in Section 5.2. The request would be given as follows:

Figure 6: Once the end user selects the abstract workflow template shown in Figure 3(c), the system presents different alternative
workflows that use different algorithms and have different runtimes. The user can select the faster one, or select an algorithm that
they recognize and prefer. The system could show other estimates in addition to runtime, such as expected accuracy of the answer,
general reliability, and other criteria relevant to an end user.

OnlineLDA-Workflow
input1 R52_test
num-topics 10
num-iterations 1000
optimize-interval 10
optimize-burn-in 20
output-state-interval 0

The Performance Modeling component would return:
OnlineLDA-Workflow
input1 R52_test size 1.5MB numLines 135,000
num-topics 10
num-iterations 1000
optimize-interval 10
optimize-burn-in 20
output-state-interval 0
runtime-estimate 185

Note that the system requested from OODT the metadata needed,
including the size and number of lines in the input file. Those
metadata properties and values, together with the parameter
values, are used to generate the runtime estimate returned in the
last line.

5.5 Presenting Users with Workflow Options
Figure 6 illustrates how the system presents workflow options to
the end user. Each line represents a possible workflow candidate,
and can be selected for execution. The workflow options are not
shown as a dataflow graph as workflows are typically shown,
since they all share the same dataflow graph represented by the
abstract workflow template. To highlight the differences between
the alternative workflows, the system shows for each workflow
candidate a comparative view in four columns: 1) the particular
algorithms that would be used for each step, 2) the input data, 3)
the parameter values, and 4) the estimated runtime. The workflow
candidates can be sorted according to runtime. The user then
selects one or more workflows for execution, which are then
submitted to OODT.

The workflow candidates shown in Figure 6 correspond to the 3
LDA algorithms discussed in Section 2, and for each of them the
system is suggesting the best parameter values available. Note
that our datasets used here are relatively small, but if they were
larger they would have dramatically different runtime estimates.
This is also the reason why the parallel LDA algorithm has the

worst performance, since the parallelization creates overhead and
typically is not an efficient way to process a small dataset.

6. CONCLUSIONS AND FUTURE WORK
In order to enable end users of big data systems to find solutions
that suit their needs given a task and a deadline, we presented an
approach and implemented system that automatically generates
alternative workflow candidates and presents them to the user in a
rank order according to performance estimates. The system
generates these estimates based on workflow performance models,
and uses semantic technologies to generate workflow options. We
implemented this approach in the WOOT system, which combines
and extends capabilities from the WINGS semantic workflow
system and the Apache OODT Object Oriented Data Technology
and workflow execution system.

Current limitations of our approach are topics for future work.
We describe here three areas of future work: 1) incorporating
solution quality estimates, 2) a more sophisticated interaction
with the end user, and 3) improving performance models.

An important capability that we could provide is to compare
workflows along dimensions other than runtime. These could
include domain-specific comparative assessments across
workflow options. For example, an extension that would be easy
to do in our framework is to allow the Workflow Ranking module
to estimate the quality of the solutions. The creator of each
workflow would be asked to provide an assessment of the quality
of the workflow output as a function of the parameters of the
workflow and other metadata. This could be written as a set of
rules for the workflow, and they have to be designed in such a
way that each set of parameter values leads to a single quality
assessment.

For example, for the workflow WF-LDA-MALLET in Figure
1(a) the following rules could be provided:

If the number of iterations is less than 1000,
then the result quality is LOW.

If the number of iterations is more than 1500,
then the result quality is HIGH.

If the number of iterations is more than 1000
and less than 1500, then the result
quality is MEDIUM.

Therefore, each workflow instance would have an associated
quality estimate and an associated runtime estimate, giving users
the ability to explore performance/quality tradeoffs. Such rules
for the alternative algorithms are highly domain specific, but they
represent knowledge that is very familiar to big data experts who
have run the algorithms many times themselves and assessed the
relative quality of the results.

We are also exploring alternative quality estimate algorithms
based on Bayesian statistics [Winkler 2003]. In this extension, a
workflow designer would also provide an assessment of workflow
quality (HIGH, MEDIUM, LOW). The system could use the
metadata of the input datasets (e.g., size) as features and create a
conditional probability distribution over the space of features,
such as:

P(HIGH|data size<1Gb) = 0.75
P(MEDIUM|data size<1Gb) = 0.2
P(LOW|data size<1Gb) = .05
..

The system would take in the above conditional probability
distribution as workflow designer input, then execute a Bayesian
inference/selection algorithm to combine the conditional probably
information into an overall probability for a workflow's quality,

given its associated metadata, input, and then this would yield a
ranking for the set of candidate workflows.

Another dimension of improvement for our system is the
interaction with the user, which could be made more
sophisticated. For example, if the user gives a time bound that is
not possible with their data and parameters selected, then the
system could explain how far the time bound is from what the
user needs and suggest choosing a very different abstract
workflow for a similar task but perhaps not as thorough. Another
possibility would be to show the end user N qualitatively different
workflows that used very different algorithms and had very
different performance estimates. This would give the user a
broader range of options to choose from.

Users could also choose more than just one workflow to submit
for execution. Several could be submitted, and the user could
look up results as they come in. This would give the user more
flexibility and range in the solutions obtained and in the time to
solution.

Another extension would be to improve the system performance
and confidence as more workflows are run. Once a workflow has
been executed, the system would have the predicted runtime and
the actual runtime. Clearly it could use the actual runtime to
improve its performance model for that workflow. In addition, it
could use both values to create a measure of its confidence on the
runtime estimates for the workflow and present those to the user
as an indication of uncertainty.

We could also create more accurate and refined performance
models building on prior work [Miu and Missier 2012; Montagnat
et al 2010; Vahi et al 2012; Furlani et al 2013; Carrington et al
2005; Hutter et al 2012]. More refined performance models could
take into account dynamic factors such as network latency, queue
wait time, and availability of resources required to run a given
workflow. Conversely, those frameworks could use our approach
to include additional features for the performance estimates, based
on the metadata properties that we use.

7. ACKNOWLEDGMENTS
We thank the WINGS and Apache OODT teams for their support
of this work. We gratefully acknowledge support from the US
Defense Advanced Research Projects Agency (DARPA) with
award FA8750-13-C-0016, and from the US Air Force Office of
Scientific Research (AFOSR) with award FA9550-11-1-0104.

8. REFERENCES
[1] Bergmann, R.; and Gil, Y. “Similarity Assessment and

Efficient Retrieval of Semantic Workflows.” Information
Systems Journal, . 2012.

[2] Blei, D., Ng, A., and M. Jordan. “Latent Dirichlet
Allocation.” Journal of Machine Learning Research, 3, pp
993–1022, January 2003.

[3] Carrington, L. C. et al. “How Well Can Simple Metrics
Represent the Performance of HPC Applications?”,
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, 2005.

[4] De Roure, D; Goble, C.; Stevens, R. “The design and
realizations of the myExperiment Virtual Research
Environment for social sharing of workflows”. Future
Generation Computer Systems, 25 (561-567), 2009.

[5] Furlani, T. R., Jones, M. D., Gallo, S. M., Bruno, A. E., Lu,
C., Ghadersohi, A., Gentner, R. J., Patra, A., DeLeon, R. L.,

von Laszewski, G., Wang, F., and A. Zimmerman.
Performance metrics and auditing framework using
application kernels for high-performance computer systems.
Concurrency and Computation: Practice and Experience,
25(7), 2013.

[6] Garijo, D.; and Gil, Y. “A New Approach for Publishing
Workflows: Abstractions, Standards, and Linked Data.”
Proceedings of the Sixth Workshop on Workflows in Support
of Large-Scale Science (WORKS'11), held in conjunction
with SC 2011, Seattle, WA, 2011.

[7] Gil, Y., Groth, P., Ratnakar, V., and C. Fritz. “Expressive
Reusable Workflow Templates.” Proceedings of the IEEE e-
Science Conference, Oxford, UK, pages 244–351. 2009.

[8] Gil, Y.; Deelman, E.; Ellisman, M. H.; Fahringer, T.; Fox,
G.; Gannon, D.; Goble, C. A.; Livny, M.; Moreau, L.; and
Myers, J. “Examining the Challenges of Scientific
Workflows.” IEEE Computer, 40(12), 2007.

[9] Gil, Y.; Ratnakar, V.; Kim, J.; Gonzalez-Calero, P. A.;
Groth, P.; Moody, J.; and Deelman, E. “WINGS: Intelligent
Workflow-Based Design of Computational Experiments.”
IEEE Intelligent Systems, 26(1). 2011.

[10] Gil, Y.; Gonzalez-Calero, P. A.; Kim, J.; Moody, J.; and
Ratnakar, V. “A Semantic Framework for Automatic
Generation of Computational Workflows Using Distributed
Data and Component Catalogs.” Journal of Experimental and
Theoretical Artificial Intelligence, 23(4), 2011.

[11] Goderis, A. “Workflow Re-use and Discovery in
Bioinformatics.” Ph.D. thesis. University of Manchester,
2008.

[12] Goderis, A., Li, P., Goble, C. “Workflow discovery: the
problem, a case study from e-science and a graph-based
solution.” International Journal of Web Services Research 5,
2008.

[13] Hauder, M., Gil, Y. and Liu, Y. “A Framework for Efficient
Text Analytics through Automatic Configuration and
Customization of Scientific Workflows”. Proceedings of the
Seventh IEEE International Conference on e-Science,
Stockholm, Sweden, December 5-8, 2011.

[14] Hauder, M.; Gil, Y.; Sethi, R.; Liu, Y.; and Jo, H. “Making
Data Analysis Expertise Broadly Accessible through
Workflows.” Proceedings of the Sixth Workshop on
Workflows in Support of Large-Scale Science (WORKS'11),
held in conjunction with SC 2011, Seattle, WA, 2011.

[15] Hoffman, M., Blei, D., and F. Bach. “Online Learning for
Latent Dirichlet Allocation.” NIPS, 2010.

[16] Hutter, F., Xu, L., Hoos, H. H., and K. Leyton-Brown.
“Algorithm Runtime Prediction: The State of the Art”.
Available from arXiv:1211.0906.

[17] Kumar, V.; Kurc, T.; Ratnakar, V.; Kim, J.; Mehta, G.; Vahi,
K.; Nelson, Y. L.; Sadayappan, P.; Deelman, E.; Gil, Y.;

Hall, M.; and Saltz, J. “Parameterized Specification,
Configuration, and Execution of Data-Intensive Scientific
Workflows.” Cluster Computing Journal, 13(3), 2010.

[18] Langford, J. Vowpal Wabbit.
https://github.com/JohnLangford/vowpal_wabbit/ 2011.

[19] Mattmann, C., Crichton, D., Medvidovic, N., and Hughes, S.
“A Software Architecture-Based Framework for Highly
Distributed and Data Intensive Scientific Applications.”
Proceedings of the 28th International Conference on
Software Engineering (ICSE06), pp. 721-730, Shanghai,
China, May 20th-28th, 2006.

[20] Mattmann, C. A., et al. "A reusable process control system
framework for the orbiting carbon observatory and NPP
Sounder PEATE missions." Third IEEE International
Conference on Space Mission Challenges for Information
Technology (SMC-IT), 2009.

[21] Mattmann, C. A., and J. Zitting. “Tika in Action.” Manning
Publications, 2011.

[22] McCallum, A. K. “MALLET: A Machine Learning for
Language Toolkit.” http://mallet.cs.umass.edu. 2002.

[23] Miu, T. and P. Missier. Predicting the Execution Time of
Workflow Activities Based on Their Input Features,
Proceedings of the Seventh Workshop on Workflows in
Support of Large-Scale Science (WORKS'12), held in
conjunction with SC 2012.

[24] Montagnat, J., Glatard, T., Reimert, D., Maheshwari, K.,
Caron, E., and F. Desprez. “Workflow-based comparison of
two Distributed Computing Infrastructures.” Proceedings of
the Fifth Workshop on Workflows in Support of Large-Scale
Science (WORKS’10), New Orleans, LA, 2010.

[25] Ramachandran R, Movva S, Conover H, Lynnes C. Talkoot
Software Appliance for Collaborative Science. IEEE
International Geoscience & Remote Sensing Symposium,
2009.

[26] Řehůřek, R. gensim. http://radimrehurek.com/gensim/. 2009.

[27] Vahi, K., Harvey, I., Samak, T., Gunter, D. K., Evans, K.,
Rogers, D., Taylor, I., Goode, M., Silva, F., Al-Shakarchi, E.,
Mehta, G., Jones, A. and E. Deelman. “A General Approach
to Real-Time Workflow Monitoring.” Proceedings of the
Seventh Workshop on Workflows in Support of Large-Scale
Science (WORKS’12), 2012.

[28] Wang, Y., Bai, H., Stanton, M., Chen, W., and E. Y. Chang.
“PLDA: Parallel Latent Dirichlet Allocation for Large-Scale
Applications.” AAIM, 2009.

[29] Winkler, R. L. “An Introduction to Bayesian Inference and
Decision. Probabilistic Press, 2003.

[30] Woollard, D.; Medvidovic, N.; Gil, Y.; and Mattmann, C.
“Scientific Software as Workflows: From Discovery to
Distribution.” IEEE Software, 25(4):37-43. 2008.

