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ABSTRACT 
Domain experts are often untrained in big data technologies and 
this limits their ability to exploit the data they have available.  
Workflow systems hide the complexities of high-end computing 
and software engineering by offering pre-packaged analytic steps 
combined into multi-step methods commonly used by experts. A 
current limitation of workflow systems is that they do not take 
into account user deadlines: they run workflows selected by the 
user, but take their time to do so.  This is impractical when large 
datasets are at stake, since users often prefer to see an answer 
faster even if it has lower precision or quality.  In this paper, we 
present an extension to workflow systems that enables them to 
take into account user deadlines by automatically generating 
alternative workflow candidates and ranking them according to 
performance estimates.  The system makes these estimates based 
on workflow performance models created from workflow 
executions, and uses semantic technologies to reason about 
workflow options.  Possible workflow candidates are presented to 
the user in a compact manner, and are ranked according to their 
runtime estimates.  We have implemented this approach in the 
WOOT system, which combines and extends capabilities from the 
WINGS semantic workflow system and the Apache OODT Object 
Oriented Data Technology and workflow execution system. 

Categories and Subject Descriptors 
C. Computer systems organization, D.2 Software engineering, 
D.2.10 Design. 

General Terms 
Design, Performance, Human Factors. 

Keywords 
Workflows, semantic workflows, performance, WINGS, OODT. 

1. INTRODUCTION 
Big data is pushing the boundaries of computing by increasing 
information available from higher resolution scientific 
instruments, sensors, business and financial systems, and other 
data sources.  End users with no expertise in big data analytics 
techniques face many challenges in analyzing their data. 
Workflow systems make big data analytics more accessible by 
managing common tasks that big data producers and algorithm 
developers execute to transform information throughout its 
lifecycle from data production, to processing/transformation, and 
ultimately to data distribution [Woollard et al 2008].  Experts can 
create workflows that represent complex multi-step analytic tasks 
and share them so that end users can use them with their own data 
[De Roure et al 2009]. 

It is possible to design alternative workflows for the same task 
that have very different performance, particularly for big data. For 
example, many different workflows can be created using different 
algorithms to detect popular topics in a large collection of 
documents (e.g., news articles, tweets, etc).  An end user may 
need a workflow to perform that task within a certain deadline, or 
that has a desired accuracy.  When datasets are very large, and the 
performance varies widely depending on many metadata 
characteristics and parameter settings, how can an end user 
compare and select among possible alternative workflows? 

In this paper we describe an approach to enable end users to get 
workflow solutions that meet their performance requirements, in 
particular runtime deadlines. We leverage: 1) semantic workflows 
to automatically generate candidate workflows based on available 
data analysis algorithms, 2) workflow execution with integrated 
data and metadata management and provenance recording, and 3) 
learning predictive performance models from prior workflow 
executions.  

Our approach allows a workflow designer (i.e., an expert in big 
data analytics) to create abstract workflow templates that can be 
run using different application algorithms, and to provide training 
data (e.g., sets of inputs and outputs) to be used in a learning 
phase to create a performance model for each workflow template 
under different datasets and parameter settings. When a workflow 
user (e.g., an end user with limited or no background on big data 
analytics) provides a set of performance requirements, the system 
automatically generates possible candidate specializations of the 
workflow template and uses the learned performance model to 
rank those candidate workflows.  These ranked candidates are 
offered to the user, who can choose based on their runtime 
performance.   
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We have implemented this approach in WOOT, a system that 
combines and extends the semantic workflow reasoning 
capabilities of WINGS [Gil et al 2011a; Gil et al 2011b] and the 
metadata extraction and provenance tracking capabilities of the 
Apache OODT Object Oriented Data Technology and workflow 
execution system [Mattmann et al 2006; Mattmann et al 2009]. 

The rest of the paper is organized as follows. The next section 
motivates through examples the needs of end users as they 
confront the analysis of big data at scale in the face of many 
alternative algorithms, implementations, and methods. Section 3 
surveys related work.  Section 4 introduces our approach, defining 
five key capabilities needed. Section 5 explains the architecture of 
WOOT that combines and extends WINGS and OODT to achieve 
those capabilities, walking through examples along the way. 
Section 6 discusses additional aspects of this problem that would 
require extensions to our work to date. Finally, we present 
conclusions and future work. 

2. MOTIVATION 
Big data requires a range of expertise that very few people have.  
End users have a deep understanding of their domain and the 
questions they want answered from the vast amounts of data, but 
generally do not have the range of skills required to analyze it.  
Our goal is to empower end users with the ability to analyze their 
data through the use of workflows. 

Consider a social scientist who has access to large amounts of 
social media data, such as tweets.  He is interested in 
understanding the dynamics of followers based on affinity to 
topics of tweets.  Another example would be a communications 
student doing a thesis on what groups of teenagers discuss 
particular topics in social media. Consider also an epidemiologist 
trying to understand the spread of disease from social media data.  
Finally, consider a historian who, as suggested by 
http://programminghistorian.org, has a large set of documents 
such as multi-year newspaper records1 or decades worth of daily 
diaries2.  She would like to know the topics that were being 
discussed at any given time and how they changed over the years 
particularly in response to known historical events.   

These are all examples of end users, who may be aware that there 
are topic modeling techniques developed by natural language 
experts that they could apply but do not have the necessary skills. 

Workflows provide a mechanism to capture state-of-the-art multi-
step methods that experts would use for a particular task, and that 
non-experts can easily reapply.  Figure 1 shows an example of a 
general workflow for topic modeling taken from [Hauder 2011a].  
The workflow starts removing stop words (e.g., punctuation) and 
short words (e.g., “the”, “of”, “and”), and then converts the data 
to a format that can be used by a state-of-the-art topic modeling 
algorithm such as Latent Dirichlet Allocation (LDA) [Blei et al 
2003]. This particular workflow was used with little training by 
high-school students to analyze twitter data [Hauder et al 2011b].  
Experts can create workflows and share them with others in 
repositories [De Roure et al 2009; Ramachandran et al 2009] or as 
open web objects [Garijo and Gil 2011]. 

                                                                    
1 E.g., http://dsl.richmond.edu/dispatch  
2 E.g., http://historying.org/2010/04/01/topic-modeling-martha-ballards-diary/  

    

Figure 1: A general workflow for detecting popular topics in a 
set of documents. 

However, many different algorithms and approaches exist for 
topic modeling step, and many alternative implementations of 
those algorithms exist, each requiring different parameters and 
offering efficient performance.  Therefore, many different 
workflows might be possible.  Figure 2 shows examples of 
alternative workflows that instantiate the general workflow in 
Figure 1, particularly the topic training step.  They use different 
algorithms and implementations for LDA, each one with different 
parameters and with different performance.  An end user would 
wonder which implementation would give them an answer faster, 
and what workflows will give the best answer (a “good” quality 
answer) within the time bounds. 

Figure 2(a) shows a workflow (WF-LDA-MALLET) that uses a 
popular implementation for LDA in the MALLET package 
[McCallum 2002].  The site indicates: 

“The MALLET topic model package includes an 
extremely fast and highly scalable implementation of 
Gibbs sampling and efficient methods for document-
topic hyperparameter optimization.” 

An analogous workflow (WF-LDA-TMT) could be built with the 
TMT software3, which also implements LDA. 

Figure 2(b) shows a workflow (WF-OLDA) that uses online LDA 
[Hoffman et al 2010], an algorithm for online learning that builds 
the topic models as it processes documents incrementally: 

“Online LDA is based on online stochastic 
optimization with a natural gradient step […]. It can 
handily analyze massive document collections, 
including those arriving in a stream.” 

There are several implementations of this algorithm leading to 
different workflows: gensim [Řehůřek 2009] (WF-OLDA-
GENSIM) and Vowpal Wabbit [Langford 2011] (WF-OLDA-
VW), both in Python. 
                                                                    
3 http://www-nlp.stanford.edu/software/tmt/tmt-0.4/  



 

Figure 2: Alternative workflows for topic modeling using LDA: a) Mallet implementation, b) Online LDA, c) ParallelLDA, and d) 
an LDA implementation that includes a final visualization step and an initial sampling of the input dataset. 

Figure 2(c) shows another workflow that uses a parallel version of 
the LDA algorithm [Wang et al 2009]:  

“PLDA can be applied to large, real-world 
applications and achieves good scalability.” 

There could be two versions of this workflow: one with an MPI 
implementation (WF-PLDA-MPI) and a MapReduce 
implementation (WF-PLDA-MR). 

Finally, Figure 2(d) shows a workflow (WF-LDA-VIZ) that first 
creates a topic model and then generates a visualization of it.  In 
addition, it includes a sampling step at the beginning, which can 
be used to reduce execution time by reducing the size of the input 
dataset. 

To complicate matters, not only are the above LDA algorithms 
and implementations very different but they use different input 
parameters and have a very different performance depending on 
the value of the parameters.  For example, although Mallet LDA 

and online LDA both have parameters to indicate the number of 
iterations and desired number of topics, Mallet LDA has another 3 
parameters (optimization bounds, optimization interval, and 
output state interval) that are different from online LDA’s other  
parameter (batch size).   

All the algorithms have a parameter to specify the number of 
iterations of the LDA algorithm.  This parameter in particular 
greatly affects the performance of the algorithm in terms of 
execution time.  Parallel LDA has a parameter to specify the 
number of processors to use.  Below a certain number, 
performance is likely to suffer from the communication overhead.   

In summary, we have described 8 workflow templates for topic 
detection, all with different algorithms and parameters that affect 
performance.  Suppose a user has a very large dataset, and wants 
to obtain topics within a certain time bound (e.g., 1 hour).  What 
would be the best workflow for them?  This is the problem we 
aim to address in this paper. 

(a) 

(b) 

(c) 

(d) 



3. RELATED WORK 
Retrieving workflows from repositories has been a topic of active 
research.  Some approaches look at matching based on social tags 
[Goderis 2008], or the shape of the workflow graph [Goderis et al 
2008].  In our own work in WINGS, we investigated the retrieval 
of workflows based on high-level requests, such as finding 
workflows that generate a desired type of result or process a given 
type of data [Bergmann and Gil 2012]. Also in our own work on 
Apache OODT [Mattmann et al 2009], workflows can be 
retrieved based on a series of dynamic multi-valued metadata that 
is also used in file cataloging, metadata extraction, and curation 
and in resource management. This metadata can correspond to 
workflow status (e.g., FINISHED, EXECUTING; or FAILED); 
current task wall clock time or workflow wall clock time; 
workflow id; workflow instance id; and other information.  In our 
own work, and more broadly within the community retrieval of 
workflows based on performance bounds has not been explored 
before. 

There is a vast literature on performance modeling that is directly 
relevant to characterizing performance of algorithms (see [Hutter 
et al 2012] for an overview).  Performance modeling relies on 
collecting performance data for a given algorithm or code with 
different input datasets and parameter settings, then building a 
predictive model that can be used to estimate runtime for new 
datasets.  Algorithms are often considered to be “workflow 
blocks” and their predicted performance based on different input 
sizes to improve the allocation of resources [Miu and Missier 
2012]. In contrast, for this work we want to consider the 
performance of the entire workflow rather than individual codes.  
Because our focus is on extending workflow systems to generate 
and use workflow performance models, our models are quite 
simple and can be extended in future work to incorporate 
techniques from this body of work. 

Workflow performance is often used to compare across execution 
infrastructures [Montagnat et al 2010; Vahi et al 2012].  
Workflow runtime is one of many metrics that must be taken into 
account, others can include resource utilization and reliability 
[Furlani et al 2013; Carrington et al 2005].  Predicting workflow 
performance is key for resource reservation and resource 
allocation.  All these sophisticated metrics and performance 
measurements could be used to extend our approach and provide 
end users with additional tradeoffs. 

In prior work, we investigated performance/quality tradeoffs in 
the context of biomedical image analysis [Kumar et al 2010].  The 
work focused on the creation of the performance models, which 
expert high-end computing users would then inspect and based on 
them decide how to set up parameters for a new dataset.  
However, there was no interaction with an end user.  In addition, 
the focus was on the selection of parameters, while we focus here 
on the selection of both algorithms and their implementations in 
addition to parameters. 

4. APPROACH 
Our goal is to assist end users with time-bound analytic tasks by 
recommending workflows that meet their performance 
requirements in terms of target deadlines.  Our approach is to: 

1. Learn workflow performance models: For every 
workflow, the system should learn performance models 
using training datasets of different sizes and 
characteristics (i.e., metadata) as well as using different 
parameter settings. 

2. Allow users to specify their requirements and 
constraints: Users should be able to specify the desired 
task and request an answer within a specific time bound. 

3. Automatically generate candidate workflows: Given the 
user task and time bound, the system should 
automatically retrieve all the relevant workflows and 
instantiate them with possible parameter values. 

4. Rank candidate workflows: The system should use the 
workflow performance models to rank the candidate 
workflows. 

5. Present users with options: The system should select 
one or more workflows to run, and present the user with 
other possible workflows. 

Our approach combines capabilities of two complementary 
workflow systems, WINGS [Gil et al 2011a; Gil et al 2011b] and 
Apache OODT [Mattmann et al 2006; Mattmann et al 2009], and 
augments them with new features as follows.   
WINGS is a semantic workflow system that facilitates the 
generation of candidate workflows for user requirements (items 2 
and 3 above), since it has a workflow matching engine that can 
retrieve relevant workflows given a high-level specification of a 
user’s task [Bergmann and Gil 2012] as well as an algorithm to 
search the space of possible workflow instantiations [Gil et al 
2011b].  WINGS supports the specification of abstract workflow 
templates4 that include classes of steps (e.g., the workflow in 
Figure 1 with a topic modeling step) that can be specialized to 
specific algorithms or implementations (e.g., the workflows in 
Figure 2, such as 2(c) with topic modeling with Parallel LDA 
using MPI). WINGS uses workflow reasoning algorithms that 
take an abstract workflow and automatically generate workflows 
of executable application codes that can be submitted to a 
workflow execution engine.  For example, WINGS can take the 
workflow in Figure 1 as input and generate automatically all the 
candidate workflows shown in Figure 2.  While the workflow in 
Figure 1 is too unspecified to submit to execution, the workflows 
in Figure 2 are fully specified and can be submitted to a workflow 
execution engine like OODT. 
Apache OODT is a distributed data management and processing 
framework greatly facilitates learning performance models (item 1 
above), since it can extract metadata characteristics upon 
workflow execution that can be used to do profiling [Mattmann et 
al 2009], and with distributed execution of workflows with 
provenance tracking [Mattmann et al 2006].  OODT represents 
metadata characteristics using OODT’s canonical key value pairs 
that supports a multi-valued metadata representation.  OODT also 
tracks workflow execution and generates provenance records that 
include execution time for each workflow component and for the 
overall workflow. 
In addition to integrating WINGS with OODT to take advantage 
of their capabilities, new functionality was needed to learn 
performance models and rank workflows (item 4 above) and to 
present the user with options (item 5).  

In the next section, we describe our implementation of this 
approach. 
 
                                                                    
4 In other research, abstract workflow refers to a workflow with 

no resources specified to the workflow tasks.  Here, abstract 
workflow refers to workflows with no particular algorithms 
specified, therefore introducing an additional abstraction layer. 
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Figure 3: A high-level view of the WOOT system, with the new functionality highlighted with dashed lines.  During the learning 
phase, the system uses training datasets (of different sizes and characteristics) to run workflows in OODT and extract metadata to 
be used as features to train performance models of the workflows.  When the system is in use and the user provides a task and a 
deadline, WINGS generates relevant workflows (all workflows that include a topic modeling step), ranks them according to their 
performance, and offers them to the end user as options.  The workflows selected are submitted to OODT for execution.   
 

5. WOOT: The WINGS/OODT Workflow 
Recommender 
Figure 3 shows a high-level overview of the architecture of the 
system, highlighting major WINGS and OODT capabilities used 
and in dashed lines the new capabilities in WOOT.  In the left 
portion of the diagram, a big data expert provides a set of 
candidate workflows along with a set of training data and 
parameters. The system can run the workflows on the training 
data and record provenance together with metadata and execution 
times.  These form the basis for learning performance models and 
generating and ranking workflow options allowing selection of an 
appropriate workflow by the end user as shown on the right of 
Figure 3. 

In the middle of the diagram, the library of candidate workflows is 
available both to WINGS (at the top of Figure 3) and to OODT (at 
the bottom of Figure 3).  WINGS takes these workflows and the 
datasets provided by the expert, and generates fully specified 
workflows that are submitted to OODT for execution. OODT 
stores provenance metadata about the workflow such as its 
start/stop wall clock time at a per task level and per workflow 
level, as well as specific workflow instance metadata (e.g., the 
input parameters that were provided). This information is stored in 
the Data Catalog and Provenance Catalog for OODT shown at the 
bottom of Figure 3. 

The Performance Prediction module, shown in the upper right 
portion of Figure 3, mines the OODT Provenance and Data 
Catalog to assess workflow performance and ultimately rank the 
candidate workflows, and to provide this information to the end 
user in the right of Figure 3. 

The next sections describe our implementation of each of the five 
aspects of our approach listed above.  

5.1 Learning Workflow Performance Models  
In our approach, a big data expert would create workflows and 
provide training datasets and parameters that would enable the 
system to learn workflow performance models.   

5.1.1 Creating Workflows  
Workflow creators (shown on the left of Figure 3) are big data 
experts that have experience using the different algorithms 
available with different datasets and parameters that impact their 
performance.  When creating a new workflow, they are asked to 
specify some sample datasets of different sizes and characteristics, 
as well as key parameter values.  These datasets will be used to 
form a comparative model that can be leveraged to predict 
characteristics of a given workflow, as we describe next. 

The semantic features of WINGS workflows are key to our 
approach. Workflow creators are offered the ability to create 
abstract workflow templates that include steps that do not refer to 
specific algorithms or implementations, but instead refer to 
classes of algorithms that carry out a similar task.  Figure 4(a) 
shows an example of such a class hierarchy for topic modeling 
workflows that an expert would create.  The class TrainTopics 
includes three different algorithms represented as subclasses: 
Mallet-LDA, Online-LDA, and Parallel-LDA.  All three 
algorithms take an input dataset, a parameter indicating the 
number of iterations, and output the topic models. These   
common properties are represented in the class TrainTopics and 
inherited to each of the three subclasses.  Since each algorithm has 
its own parameters, those are represented in their corresponding 
subclass as shown in Figure 4(b).   



(a)!

(b)!

(c)! (d)!

 
Figure 4: WINGS allows workflow designers to organize workflow components into hierarchies, and use component classes as 
abstract steps.  A component class is shown in (a), where the TrainTopics step represents a class of workflow components that have 
one input dataset, an Iterations parameter, and an OutputTopics dataset.  A workflow component under that class for Parallel 
LDA is shown in (b), inheriting those three characteristics and having additional parameters such as Processors, Alpha, Beta, and 
NumberOfTopics.  Workflow designers can create abstract workflow templates with the component class TrainTopics as a step, as 
shown in (c) (same workflow as Figure 1).  WINGS automatically generates specializations of that template including the workflow 
in (d) and other workflows shown in Fig 2(a) and 2(b). 

WINGS allows a workflow creator to use component classes as 
steps in specifying a workflow template.  Figure 3(c) shows an 
example, where one of the steps is TrainTopics, and another step 
is also an abstract class (FormatDataset).  These abstract 
workflows are presented to the end users, and are automatically 
specialized with the algorithms available as we describe in 
Section 5.3 below.  An example of a specialized workflow is 
shown in Figure 4(d) (the same workflow we showed in Figure 
2(c)), other workflow candidates include those shown in Figure 
2(a)(b). 

To train a performance model for the topic modeling workflows 
discussed here, we used public datasets of document collections 
containing news items that are widely used in the natural language 
processing and machine learning communities5.  The metadata 
extracted by OODT includes their sizes, which are as follows: 
R8_train: 3.2MB, R8_test: 1.1MB, R52_train: 4.1MB, R52_test: 
1.5MB.  We then created additional datasets by selecting random 
subsets of those documents.    

As for parameters, we assume that the experts also provide a 
selected set of parameter values.  For example, in the case of 
MALLET LDA the parameter that sets the number of iterations is 
                                                                    
5 http://csmining.org/index.php/r52-and-r8-of-reuters-21578.html  

recommended to be set between 1000 to 2000, so the expert can 
choose a few sample values from that range. 

5.1.2 Learning Performance Models 
Using the datasets and parameter values provided by the 
workflow creator, OODT then runs the workflow with all the 
possible combinations.  OODT records all the performance 
information for each workflow run in a Provenance Catalog.  It 
also extracts and records metadata about the input datasets in a 
Data Catalog.  We created a Performance Modeling module that 
accesses all this execution information, including metadata of 
datasets used as well as parameter settings.  These form the 
features (or variables) for learning the performance models.  For 
example: 

OnlineLDA-Workflow 
input1 R8_test   size 1.1MB    numLines 100,000 
num-topics 10 
num-iterations 1000 
optimize-interval 10 
optimize-burn-in 20 
output-state-interval 0 
runtime 160 
 



 

Figure 5: A partial plot of the performance model for the Online LDA workflow shown in Figure 2(b). 

Note that the second line has the ID of the input dataset followed 
by the metadata extracted by OODT represented as key value 
pairs.   

Given this information, the Performance Modeling module learns 
a performance model by doing a linear regression on the 
workflow execution data collected from OODT.  WINGS will 
invoke this function when trying to rank candidate workflows for 
the user, as will be described in Section 5.4. 

The Performance Modeling module is very flexible and extensible 
and operates in the following way: (1) utilizes extension points for 
incorporating various runtime estimation algorithms, (2) provides 
run time estimation, among other calculations, via a RESTful 
web-application tier, and (3) has network connectors to multiple 
OODT components, such as the File Manager and Workflow 
Manager. 

Figure 5 shows a performance model for the Online LDA 
workflow.  The features that we used included the size of the 
input file, the number of lines of the input file (this corresponds to 
the number of documents in these datasets, where one line is used 
per document), and the values of all the parameters set for the 
specific run.  Shown in the figure are the size and the iterations 
parameter, the latter affecting runtime more dramatically.  
Additional metadata properties to train the performance model can 
be extracted through OODT using Apache Tika [Mattmann and 
Zitting 2011], such as the number of distinct words, the language 
of the file, the file format (html, plain text, etc). 

5.2 User Request 
Workflow users (shown on the right of Figure 3) are end users 
who have a particular data analytic task at hand, but do not have 
the analytic expertise of a workflow creator as discussed in the 
previous section.  They would be presented with a collection of 

abstract workflow templates for different tasks.  For example, for 
the task of topic detection they could be shown the workflow in 
Figure 1 as a starting point,.   Other tasks could include document 
clustering and document classification; we discuss such 
collections of text analytics tasks in [Hauder et al 2011a].  It is 
easy for end users to select workflows based on the tasks that they 
performed, as shown in [Hauder et al 2011b].   

The end user specifies the dataset that they want to analyze, and a 
time bound.  The user can leave the parameters unspecified.  The 
parameters and algorithms that are possible are automatically 
selected by the system, as we describe next. 

5.3 Automatic Generation of Candidate 
Workflows 
Given an abstract workflow template and input datasets provided 
by the end user, WINGS can automatically generate candidate 
workflows by performing a search through the space of possible 
workflows whose steps are specific algorithms that are consistent 
with that abstract workflow.  An overview of the algorithm is 
given in [Gil et al 2011a], and a detailed description can be found 
in [Gil et al 2011b].  We briefly summarize it here. First, WINGS 
specializes the workflow steps by replacing component classes 
with the possible subclasses, each generating a branch in the 
search for candidate workflows.  Then, WINGS assigns values to 
all unspecified parameters.  Any workflow that is fully elaborated 
through this search can be submitted to OODT for execution.  But 
first, all these candidates are presented to the end user as we 
discuss next. 

5.4 Ranking Candidate Workflows  
For each candidate workflow, the Workflow Ranking module 
requests an estimate of the workflow runtime from the WOOT 

Iterations	
  
(1000’s) 

Run	
  time	
  
(secs) 

Size	
  
(MB) 



Performance Modeling components described in Section 5.2. The request would be given as follows: 

 
Figure 6: Once the end user selects the abstract workflow template shown in Figure 3(c), the system presents different alternative 
workflows that use different algorithms and have different runtimes.  The user can select the faster one, or select an algorithm that 
they recognize and prefer.  The system could show other estimates in addition to runtime, such as expected accuracy of the answer, 
general reliability, and other criteria relevant to an end user. 

OnlineLDA-Workflow 
input1 R52_test  
num-topics 10 
num-iterations 1000 
optimize-interval 10 
optimize-burn-in 20 
output-state-interval 0 
 

The Performance Modeling component would return: 
OnlineLDA-Workflow 
input1 R52_test    size 1.5MB   numLines 135,000 
num-topics 10 
num-iterations 1000 
optimize-interval 10 
optimize-burn-in 20 
output-state-interval 0 
runtime-estimate 185 
 

Note that the system requested from OODT the metadata needed, 
including the size and number of lines in the input file.  Those 
metadata properties and values, together with the parameter 
values, are used to generate the runtime estimate returned in the 
last line.  

5.5 Presenting Users with Workflow Options  
Figure 6 illustrates how the system presents workflow options to 
the end user.  Each line represents a possible workflow candidate, 
and can be selected for execution.  The workflow options are not 
shown as a dataflow graph as workflows are typically shown, 
since they all share the same dataflow graph represented by the 
abstract workflow template.  To highlight the differences between 
the alternative workflows, the system shows for each workflow 
candidate a comparative view in four columns: 1) the particular 
algorithms that would be used for each step, 2) the input data, 3) 
the parameter values, and 4) the estimated runtime.  The workflow 
candidates can be sorted according to runtime.  The user then 
selects one or more workflows for execution, which are then 
submitted to OODT. 

The workflow candidates shown in Figure 6 correspond to the 3 
LDA algorithms discussed in Section 2, and for each of them the 
system is suggesting the best parameter values available.  Note 
that our datasets used here are relatively small, but if they were 
larger they would have dramatically different runtime estimates.  
This is also the reason why the parallel LDA algorithm has the 



worst performance, since the parallelization creates overhead and 
typically is not an efficient way to process a small dataset. 

6. CONCLUSIONS AND FUTURE WORK 
In order to enable end users of big data systems to find solutions 
that suit their needs given a task and a deadline, we presented an 
approach and implemented system that automatically generates 
alternative workflow candidates and presents them to the user in a 
rank order according to performance estimates.  The system 
generates these estimates based on workflow performance models, 
and uses semantic technologies to generate workflow options. We 
implemented this approach in the WOOT system, which combines 
and extends capabilities from the WINGS semantic workflow 
system and the Apache OODT Object Oriented Data Technology 
and workflow execution system. 

Current limitations of our approach are topics for future work.  
We describe here three areas of future work: 1) incorporating 
solution quality estimates, 2) a more sophisticated interaction 
with the end user, and 3) improving performance models. 

An important capability that we could provide is to compare 
workflows along dimensions other than runtime.  These could 
include domain-specific comparative assessments across 
workflow options.  For example, an extension that would be easy 
to do in our framework is to allow the Workflow Ranking module 
to estimate the quality of the solutions.  The creator of each 
workflow would be asked to provide an assessment of the quality 
of the workflow output as a function of the parameters of the 
workflow and other metadata.  This could be written as a set of 
rules for the workflow, and they have to be designed in such a 
way that each set of parameter values leads to a single quality 
assessment.  

For example, for the workflow WF-LDA-MALLET in Figure 
1(a) the following rules could be provided: 

If the number of iterations is less than 1000, 
then the result quality is LOW. 

If the number of iterations is more than 1500, 
then the result quality is HIGH. 

If the number of iterations is more than 1000 
and less than 1500, then the result 
quality is MEDIUM. 

Therefore, each workflow instance would have an associated 
quality estimate and an associated runtime estimate, giving users 
the ability to explore performance/quality tradeoffs.  Such rules 
for the alternative algorithms are highly domain specific, but they 
represent knowledge that is very familiar to big data experts who 
have run the algorithms many times themselves and assessed the 
relative quality of the results. 

We are also exploring alternative quality estimate algorithms 
based on Bayesian statistics [Winkler 2003]. In this extension, a 
workflow designer would also provide an assessment of workflow 
quality (HIGH, MEDIUM, LOW).  The system could use the 
metadata of the input datasets (e.g., size) as features and create a 
conditional probability distribution over the space of features, 
such as: 

 
P(HIGH|data size<1Gb) = 0.75 
P(MEDIUM|data size<1Gb) = 0.2 
P(LOW|data size<1Gb) = .05 
.. 
 

The system would take in the above conditional probability 
distribution as workflow designer input, then execute a Bayesian 
inference/selection algorithm to combine the conditional probably 
information into an overall probability for a workflow's quality, 

given its associated metadata, input, and then this would yield a 
ranking for the set of candidate workflows.  

Another dimension of improvement for our system is the 
interaction with the user, which could be made more 
sophisticated.  For example, if the user gives a time bound that is 
not possible with their data and parameters selected, then the 
system could explain how far the time bound is from what the 
user needs and suggest choosing a very different abstract 
workflow for a similar task but perhaps not as thorough.  Another 
possibility would be to show the end user N qualitatively different 
workflows that used very different algorithms and had very 
different performance estimates.  This would give the user a 
broader range of options to choose from. 

Users could also choose more than just one workflow to submit 
for execution.  Several could be submitted, and the user could 
look up results as they come in.  This would give the user more 
flexibility and range in the solutions obtained and in the time to 
solution. 

Another extension would be to improve the system performance 
and confidence as more workflows are run.  Once a workflow has 
been executed, the system would have the predicted runtime and 
the actual runtime.  Clearly it could use the actual runtime to 
improve its performance model for that workflow.  In addition, it 
could use both values to create a measure of its confidence on the 
runtime estimates for the workflow and present those to the user 
as an indication of uncertainty. 

We could also create more accurate and refined performance 
models building on prior work [Miu and Missier 2012; Montagnat 
et al 2010; Vahi et al 2012; Furlani et al 2013; Carrington et al 
2005; Hutter et al 2012].  More refined performance models could 
take into account dynamic factors such as network latency, queue 
wait time, and availability of resources required to run a given 
workflow.  Conversely, those frameworks could use our approach 
to include additional features for the performance estimates, based 
on the metadata properties that we use. 
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