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Abstract 
 Artificial Intelligence researchers have long sought to 
understand and replicate processes of scientific discovery.  
This article discusses Discovery Informatics as an emerging 
area of research that builds on that tradition and applies 
principles of intelligent computing and information systems 
to understand, automate, improve, and innovate processes of 
scientific discovery.     

Introduction   
Computing has been a crucial enabling force for science 

in recent decades.  Cyberinfrastructure today provides 
important capabilities such as high-performance 
computing, distributed services, shared high-end 
instruments, data management services, and support for 
virtual organizations.  These investments have had a 
tremendous impact on scientific discoveries [ACCI 2011], 
have radically changed many sciences, and opened new 
doors to discovery and innovation. 

But advances in computing have also imposed new 
challenges to fully utilizing computing in scientific 
discover.  Scientists in all disciplines openly acknowledge 
their inability to exploit all the data and information that is 
already available to them and that continues to expand so 
rapidly (e.g., [Science 2011]).  The volume, variety, and 
velocity of the data already available across all areas of 
science and engineering are already surpassing existing 
analytic capabilities to understand complex phenomena.  
Human cognitive abilities to make discoveries are limited 
and greatly challenged by the overwhelming availability of 
data.  These challenges have prompted a rich research 
agenda for Artificial Intelligence (AI) and information 
systems [Muggleton 2006; Waltz and Buchanan 2009; Gil 
and Hirsh 2012]. 

This paper discusses Discovery Informatics, an emerging 
area of research focused on computing advances that target 
scientific discovery processes requiring knowledge 
assimilation and reasoning, and applying principles of 
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intelligent computing and information systems to 
understand, automate, improve, and innovate any aspects 
of those processes.   AI has a long tradition of analysis and 
replication of scientific processes [Simon 1969; Langley et 
al 1987]. Discovery Informatics builds and expands on this 
tradition to innovate and improve scientific discovery 
processes.  

The paper begins with a discussion of the potential of 
Discovery Informatics for two important current topics in 
science: “big data” and “the long tail” of science.  It then 
focuses on two illustrative areas of research for 
information and intelligent systems: workflows of 
scientific processes and citizen science.  They provide two 
examples of the potential for information and intelligent 
systems to improve and innovate scientific discovery 
processes. 

Discovery Informatics 
Three hallmarks of 21st century science highlight major 

challenges for discovery: 

1. Discovery processes are increasingly complex.  
This complexity results from having to integrate a 
great range of resources, such as multiple diverse 
data sources, software systems of variable 
interoperability and usability, and participants with 
diverse expertise. For example, it has become 
increasingly unmanageable to conduct effective 
literature searches to identify and synthesize what is 
known in an area of interest given the ever-
increasing size of the published record.  Data 
analysis is another example, wherein the complexity 
of both the data and analysis tools often hampers 
scientists’ ability to leverage effectively the large 
amounts of data at their disposal.  As a further 
example, discovery processes are still largely 
human-driven activities, and cognitive limitations 
increasingly constraining scientific progress.  New 
computational approaches are needed to manage 
such complexities that are arising in contemporary 
discovery processes. 
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2. Discovery processes for complex phenomena 
require tight connections between knowledge 
and data.  Science is becoming increasingly data-
centered, with data leading to new scientific 
knowledge disseminated in such forms as 
publications, taxonomies, Bayesian models, and 
influence networks.  However, the connection 
between that knowledge and the original data is 
often not thoughtfully captured and preserved in 
existing computational frameworks.  This 
separation between knowledge and data makes it 
difficult for scientists to keep track of what 
hypotheses have been considered, what data 
supports them, what models have been created from 
the data, and how new hypotheses are formulated 
from those models.  As more complex data becomes 
available with increasing volume, variety, and 
velocity, the exploration of models becomes 
unmanageable.  New computational approaches are 
needed to increase the capture of the connections 
between knowledge and data and exploit them to 
facilitate scientists’ understanding of complex 
phenomena. 

3. Innovative social processes can enable new 
discoveries.  New opportunities for discovery lie in 
the amalgamation of human expertise and effort.  
Although collaborations among scientists are 
common we currently lack the ability to facilitate 
unplanned, cross-disciplinary collaborations.  A 
researcher addressing a complex scientific question 
in one field often only realizes the need for 
expertise in another field during the course of the 
work.  In addition, the public’s participation in 
science makes it possible to have massive 
contributions of effort that result either in precious 
data that would not otherwise be available or in 
valuable problem solving that only humans can 
perform [Young 2010].  New computational 
approaches are needed to flexibly combine diverse 
human abilities to tackle science problems that may 
not be otherwise considered possible.  

A major research initiative focused on understanding and 
improving scientific discovery processes would have a 
profound impact on all sciences, accelerating the pace of 
scientific advances and innovation.  Fundamentally new 
computational frameworks to address these challenges 
would make those processes significantly more 
manageable, enabling scientists to explore more complex 
phenomena than ever before.  Those processes could also 
be made more efficient, making scientists significantly 
more productive.  Moreover, new processes that do not 
exist today could be designed, enabling innovations to the 
scientific process that open doors to new discoveries. 

Although there is some existing relevant research, the 
work is scattered across several disciplines and will not 
achieve the critical mass required to have a significant 
effect on scientific discovery.  In computer science, there is 
relevant work in information management, intelligent 

interfaces, workflows, text extraction, visualization, 
machine learning, theory formation, collaborative systems, 
and social computing.  There is also relevant work in the 
social sciences to understand the processes of scientific 
discovery, innovation, and collaboration. Researchers with 
common goals and complementary expertise are separated 
by disciplinary boundaries.  Moreover, in the domain 
sciences these topics are addressed in a variety of 
informatics groups: bioinformatics, geoinformatics, 
ecoinformatics, astroinformatics, etc. As a result, advances 
have been piecemeal, with limited impact.  Discovery 
Informatics could bring critical mass to the improvement 
and innovation of scientific discovery processes. 

Discovery Informatics research would encompass a 
broad spectrum of basic research in areas such as 
information extraction and text understanding to process 
publications and lab notebooks; synthesis of models from 
first principles, hypotheses, or data analysis; knowledge 
representation and reasoning for all forms of scientific 
knowledge; dynamic and adaptive design of data analysis 
methods; design, execution, and steering of experiments; 
selective data collection; data and model visualization; 
theory and model revision; collaborative activities that 
improve data understanding and synthesis; intelligent 
interfaces for scientists; design of new processes for 
scientific discovery; and computational mechanisms to 
represent and communicate scientific knowledge to 
colleagues, researchers in other disciplines, students, and 
the public. 

Importantly, Discovery Informatics can also drive 
research in AI and information systems as it poses 
challenges to our capabilities in areas such as natural 
language understanding, model formulation and revision, 
knowledge representation, automated reasoning, semantics 
and ontologies, problem solving, constraint reasoning, 
uncertainty reasoning, process modeling and execution, 
robotics, intelligent control, distributed intelligence, 
adaptive and robust intelligence, model-driven learning, 
intelligent user interfaces, cognitive aspects of discovery, 
collaboration and communication, tutoring and education 
frameworks, integrated intelligence, and social computing. 

Tackling Big Data 
The volume, variety, and velocity of data is surpassing 

our ability to interpret and understand observations and 
derive comprehensive models that lead to new discoveries.  
The availability of unprecedented amounts of data, 
sometimes referred to as “big data,” will require new 
approaches to tackle the complexity of the underlying 
phenomena.  Discovery Informatics could have great 
impact in our ability to analyze and understand big data. 

First, Discovery Informatics would address volume 
through the development of new approaches that integrate 
intelligent capabilities to reason with sophisticated 
scientific models, explore large hypotheses spaces, fully 
automate the design and execution of experiments, and 
dynamically learn and adapt models to changing 



phenomena.  Big data often requires new methods different 
from methods that work for smaller data, and often also 
requires large amounts of trial and error until appropriate 
methods are found for the data at hand.  These advanced 
intelligent capabilities will be required to mine vast 
quantities of data to understand complex phenomena.  

Second, Discovery Informatics would address data 
variety by enabling the aggregation and analysis of smaller 
datasets, giving rise to new kinds of longitudinal big data.  
In addition, big data can provide breadth to smaller 
datasets to aid understanding of local phenomena in the 
context of the broader bigger picture.   

Third, Discovery Informatics would enable coping with 
the velocity of data collection.  Real-time data processing 
requires adaptive and flexible intelligent systems that can 
keep up with the pace of data collection, harness the large 
temporal and spatial extent of complex phenomena, and 
design new collection methods that incorporate model-
based control and experimentation.   

Uncovering the Long Tail of Dark Data 
 In recent years we have seen a surge of 
“collaboratories,” where groups of scientists share very 
large datasets, expensive instruments, and supercomputing 
facilities.  The Large Hydron Collider and the Compact 
Muon Solenoid experiment in physics and the International 
Virtual Observatory and the Sloan Digital Sky Survey in 
astronomy are good examples.  In contrast, there is a “long 
tail” distribution [Anderson 2006] with a very large 
number of individual scientists who focus on collecting 
and studying small datasets that are seldom shared and are 
known as the “dark data” of science [Heidorn 2008].  
These datasets and the contributions from these scientists 
are key to understanding important global questions, 
particularly in ecology and geosciences.  

Discovery Informatics would have great impact on the 
long tail of science.  Data preparation and analysis 
processes are often very costly, and tools to support these 
processes would greatly augment their productivity.  
Moreover, these tools could also assist in the integration of 
these smaller datasets with data from repositories from 
shared observatories.  They would also enable the 
aggregation of individual datasets, and create big data for 
related, broader phenomena. This type of research 
complements the science done by large collaboration 
teams.  Discovery Informatics should address the spectrum 
of discovery processes across the board, from big data to 
the long tail. 

Modeling Discovery Processes:  
Workflows and Beyond 

In this section we discuss some of the opportunities for 
automating and improving discovery processes through 
workflow systems.  

Workflows have emerged as a useful paradigm to 
describe, manage, and share complex scientific analyses 
[Taylor et al 2007; Gil et al 2007b]. Workflows represent 
declaratively the software components that need to be 
executed in a complex application, as well as the data 
dependencies among those components.  Workflow 
systems exploit workflow representations in order to 
manage the efficient execution of workflows in distributed 
environments.  Workflow systems sometimes include a 
significant amount of analytics tools targeted to specific 
types of data, such as social sciences [Schmerl et al 2011] 
genomics [Reich et al 2006; Giardine et al 2005], and 
neuroscience image processing [Dinov et al 2009].  We 
describe here some workflow systems and some of the AI 
research enabled by these projects.  Many more challenges 
remain that Discovery Informatics research could address 
[Gil 2009]. 

The Pegasus workflow system manages mapping and 
execution of computational workflows in distributed 
shared resources that may be highly heterogeneous 
[Deelman et al 2005; Deelman et al 2003]. To map 
workflow tasks, Pegasus uses descriptions of the execution 
requirements of each of the codes, and finds available hosts 
in the execution environment that satisfy those 
requirements. It includes several algorithms for optimizing 
the selection of execution resources not only based on task 
performance but also on minimizing queuing delays and 
data movement times. It also has facilities to recover from 
execution failures that may occur, due to bugs in the 
application codes, memory faults in the execution host, 
network failures, and other unexpected errors that are 
commonplace in distributed architectures.  The Wings 
workflow system extends these capabilities with semantic 
workflows to enable the automatic elaboration of high-
level workflows into executable ones [Gil et al 2011a].  
Wings uses semantic descriptions of datasets to 
automatically configure parameters of the methods in the 
analysis and customize them to the data [Gil et al 2011b].  
Semantic frameworks to describe domain-specific 
workflow components are beginning to emerge 
[DiBernardo et al 2008].  Workflows also have a clear role 
in enabling reproducibility of computational methods 
[Mesirov 2010]. There are many opportunities in workflow 
systems for AI, including constraint reasoning, intelligent 
user interfaces, and process modeling and execution 
management.   

Taverna [Oinn et al 06; Hull et al 06] focuses on 
workflows for bioinformatics applications.  In this area, 
there are thousands of services that are made available over 
the network for access by a wide community of scientists. 
Taverna workflows are composed from these services, and 
are cast in a simple and intuitive workflow language. 
Workflows from Taverna and other systems can now be 
shared in the myExperiment social site [De Roure et al 
2009].  Scientists can post workflows, tag workflows to 
enable discovery and reuse, and rate the workflows.  Many 
open problems remain in order to facilitate widespread 
collaboration and sharing of scientific workflows that 



would benefit from AI, including process representation, 
abstractions, collaboration, and distributed intelligence. 

Social Computing for Discovery: Opening 
Science and Broadening Participation 

Major innovations in scientific discovery processes are 
occurring in the area of citizen science, creating 
opportunities for Discovery Informatics. Citizen science 
projects are already inspiring budding scientists of all ages, 
from energetic young students to retired professionals with 
interest and ability to volunteer time and resources [Savage 
2012].  Science is a costly enterprise, and engaging the 
public enables scientists to harness massive amounts of 
volunteer effort from people who are able to make 
meaningful contributions. Citizen science projects range 
widely in terms of the complexity of the contributions.  We 
describe here a range of citizen science projects and some 
of the AI research done in these projects.  There are many 
additional opportunities for Discovery Informatics that 
could amplify the impact of the work in this area. 

Simple contributions can be sensing activities 
contributed by citizens.  In the eBirds project [McCaffrey 
2005] (http://www.ebirds.org) participants report on bird 
sightings in their local environment to enable scientists to 
track bird migrations.  The vast amounts of data thereby 
available open the door to machine learning techniques. 
For example, [Kelling et al 2012] describes an approach to 
improve the quality of both human and machine 
contributions in the system. 

Another way to harness citizen scientists effort is to give 
them tasks that are beyond a computer’s abilities and can 
be better done by people.  An example is GalaxyZoo 
(http://www.galaxyzoo.org/), wherein participants are 
given images of distant galaxies and must assign tags to 
them, thereby providing important  information concerning 
astronomical images that would otherwise never have been 
inspected by astronomers [Lintott et al 2010].  Current 
image processing algorithms are not able to generate 
accurate labels, so here humans are performing 
computations that are not possible for computers.  The 
Zooniverse system is a generalization of GalaxyZoo that is 
being applied to other astronomy problems, as well as 
social sciences and biology research 
(http://www.zooniverse.org).  AI techniques, in particular 
social computing, can be developed to design the best 
mechanisms to exploit the synergies between human 
contributions and computing.  [Kamar et al 2012] use 
Bayesian models to predict the answers to a task when 
contributions may contain errors, and use these models to 
assign tasks to contributors.  Assignment of tasks to 
contributors can be improved through grouping 
contributors into classes that have similar expertise levels 
[Psorakis et al 2011].  Recent approaches make these 
systems more robust to contributions of varying quality 
while taking maximum advantage of all contributors 
[Simpson et al 2011]. 

The FoldIt project exemplifies citizen science projects 
focused on collaborative contributions through serious 
games (http://fold.it). FoldIt enables contributors to form 
teams and compete to create the most optimal protein fold 
through complex geometrical reasoning [Khatib et al 
2011].  Teams have proposed protein foldings that are 
superior to the best performing science algorithms.  
EteRNA is a more recent game where volunteers explore 
foldings of RNA molecules, where the best proposals are 
actually synthesized in the lab (http://eterna.cmu.edu/).   

A more complex kind of contribution occurred in the 
Polymath project [Nielsen 2011].  It provided a massively 
collaborative online site wherein mathematicians 
collaborate with high-school teachers, engineers, and other 
volunteers to solve mathematics conjectures and open 
problems by decomposing, reformulating, and contributing 
to all aspects of a problem.  This project uses common 
Web infrastructure for collaboration, interlinking public 
blogs for publishing problems and associated discussion 
threads with wiki pages that are used for write-ups of basic 
definitions, proof steps, and overall final publication 
(http://polymathprojects.org/, 
http://michaelnielsen.org/polymath1).  Interactions among 
contributors to share tasks and discuss ideas are regulated 
by a simple set of guidelines that serve as social norms for 
the collaboration (http://polymathprojects.org/general-
polymath-rules/).  Tracking and assigning credit is central 
to these social norms.  It is unknown whether the 
simplicity of these norms will be preserved as this 
relatively young project evolves, or whether they will 
evolve similarly to Wikipedia’s editing practices, which 
started with simple guidelines that became increasingly 
more complex over time.  

Citizen scientists have also created their own science 
questions based on personal motivations, and used science-
grade data and tools to make published contributions in 
first-rate journals [Rocca et al 2012].   By making 
scientific processes more explicit, Discovery Informatics 
would enable more ubiquitous occurrences of these kinds 
of self-organized citizen projects. 

Discovery Informatics could bring about innovations in 
social computing to organize volunteer contributors of 
complementary skills and insights to be more effective and 
to solve increasingly more challenging science tasks.   

 

Conclusions 
Discovery Informatics has the potential to catalyze AI 

researchers to make significant contributions to scientific 
discoveries.  This would require fundamental research 
advances in all areas of AI.  Scientific discovery offers a 
challenging testbed for intelligent systems, with potential 
for inspiring new generations of researchers and for having 
very broad societal impact.    
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