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Abstract—Current workflows have limited reusability and shelf 
life because they specify particular application software to be run 
at each step, which can become obsolete or no longer run.  We 
describe semantic workflow representations composed of domain 
tasks, which the system then automatically maps to the 
application codes available in the particular execution 
environment.  We have implemented this approach in the 
WINGS semantic workflow system, and demonstrate the 
mapping of workflows to different sets of application codes 
depending on the workflow execution engine and execution 
environment selected. 
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I.  INTRODUCTION 
A variety of workflow systems have been developed to 

manage complex scientific computations [11].  An important 
area of research has been to allow users to specify workflow 
computations in a manner that is independent from the 
execution environment, where the workflow system 
automatically maps the codes to whatever execution resources 
are available at run time.  This can be seen as managing a 
separation between the physical layer and the logical layer of 
the computation. A workflow specification at the logical layer 
has a specification of the codes to be executed, and there is no 
mention of the actual resources where the execution will take 
place. A workflow specification at the physical layer does 
mention execution resources that are to be used to run the 
computations.  This separation between the logical and the 
physical layers is also common in web services frameworks 
and has been adopted in some workflow systems [10].  A 
workflow specification at the logical layer is sometimes called 
an “abstract workflow” [2].  Workflow systems automatically 
map the workflow specification at the logical layer to a 
workflow specification at the physical layer.  This is an 
important benefit, as it enables users to run their workflow in 
different execution environments, bringing flexibility to their 
applications. 

However, workflow representations are still very tied to the 
execution environment because they specify the application 
codes that are to be run at each step. For example, depending 
on the workflow system a step may specify the MATLAB 

routine or Java code to run, or the signature of the service that 
needs to be invoked.  In this respect, workflows are still tied to 
particular application codes and software environments. When 
published in workflow repositories [1], this limits their reuse by 
others who may use different software.  It also limits their 
validity over time when code becomes obsolete and no longer 
runs.  Ideally, workflow specifications would be independent of 
the particular code and software environment, specifying only 
the domain task to be carried out rather than what application 
codes to run.  Previous work has focused on interoperability of 
workflow systems and workflow representations [8], but not on 
creating more abstract representations that address the domain 
layer. 

We have developed an approach to represent workflows 
that express domain tasks rather than the application codes that 
implement those tasks.  This paper describes how we tackle 
three important challenges: 1) representing domain tasks, 2) 
matching invocation signatures of application codes to domain 
tasks, 3) mapping workflows of domain tasks to workflows of 
application codes that can be executed in alternative workflow 
execution engines.  We have implemented this approach in the 
Wings semantic workflow system, and extended Wings to 
demonstrate the mapping of semantic workflows into two 
workflow execution engines: Pegasus/Condor [2] and Apache 
OODT [9]. 

The paper begins by introducing domain tasks, and the 
benefits of semantic workflows that represent domain tasks.  
We then discuss our approach to represent domain tasks, and 
their relationship to application codes.  We describe our 
approach to automatically map semantic workflows composed 
of user-defined domain tasks into application codes available in 
different execution engines. 

II. WORKFLOWS AT THE DOMAIN LAYER 
Data analysis tasks are implemented by application codes. 

They represent abstractions of the functions that those codes 
perform.  An example of a domain task is linear regression, 
which could be implemented with a variety of application 
codes such as a MATLAB routine, an R routine, a Java code, 
etc.  A semantic workflow specification at the domain layer 
would have steps that specify domain tasks.  A semantic 
workflow system would then map automatically the workflow 
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specification at the domain layer into a workflow specification 
at the logical layer.  A workflow execution engine would, in 
turn, map the logical layer (application codes) to the physical 
layer (i.e., execution resources). 

Semantic workflows at the domain layer are closer to 
specifications of scientific methods that are described in 
scientific publications.  These methods describe steps in ways 
that are not dependent on the application codes, and are 
therefore more reusable by other researchers who may use 
different software.  

Workflow specifications at the domain layer would provide 
scientists with additional flexibility: 

• Facilitate method design and testing: Scientists 
would design semantic workflows at the domain layer, 
and submit the same workflow in a local host or in a 
shared resource.  For example, scientists often use 
smaller datasets to test different workflow designs on a 
local host, then when one of the workflow designs 
looks promising it can be submitted to execution with 
larger datasets in shared high end computing resources.  
Their local resource and the shared resource may not 
have the same codes.  For example, a shared resource 
may have an efficient MPI version of a clustering 
algorithm, while a local host may have an inefficient 
one that is easy to install locally and is sufficient for 
testing purposes.   

• Provide new failure recovery mechanisms:  When 
the execution of a particular application code fails, the 
semantic workflow system could select an alternative 
application code for the same domain task specified in 
the step that failed. 

• Portability and reproducibility of methods across 
research groups: Different research groups often use 
different software environments for their analyses. 
Some research groups prefer to use proprietary 
software for their work (e.g., MATLAB), perhaps 
because it is more reliable or more efficient.  Other 
groups prefer using open software that implements 
similar functionality.  Other labs prefer to develop their 
own software. A semantic workflow specified at the 
domain level could be more easily transferred and 
reused across research groups.   

• Archival publication of methods: The software base 
that is used today may not be available tomorrow.  
Software libraries evolve, implementations are revised 
into new versions, and commercial software has new 
periodic releases. Libraries and packages are 
abandoned in favor of new ones.  Describing a 
semantic workflow at the domain layer enables the 
method to survive the test of time more easily, making 
workflows more portable over time.   

• Improve provenance and metadata annotations:  
Workflow systems automatically annotate provenance 
and metadata of workflow data products.  If the 
provenance annotated is specific to the application 
codes then it has limited generality.  A semantic 

workflow system would record provenance in terms of 
domain tasks independent of the codes executed. 

• Facilitate the transition of methods from research 
into operational environments:  A research 
environment may use more exploratory application 
codes, while an operational environment may use more 
robust and efficient implementations.  Transitioning 
methods from research to operations could be 
facilitated with semantic workflow specifications at the 
domain level.  

III. SEMANTIC WORFKLOWS OF DOMAIN TASKS 
Our work addresses three major challenges in providing 

semantic workflow specifications at the domain layer: 

1. Representing domain tasks with sufficient generality to 
encompass equivalent application codes and with 
sufficient detail to provide meaningful descriptions to 
scientists.   

2. Mapping domain tasks into application codes.   

3. Automating the generation of executable workflows 
from workflows of domain tasks. 

A. Representing Domain Tasks 
We create representations of domain tasks using ontologies.  

We define a concept (class) for each domain task. Each of the 
arguments of a task is represented as a property of that class.  
When used in a workflow, the dataset or parameter for an 
argument is the value of the corresponding property.  These 
classes form ontologies of domain tasks, containing hierarchies 
that organize them from more general abstract ones to more 
specific ones.  These ontologies form a Catalog of Domain 
Tasks (CDoT).  The domain tasks in the CDoT are then used to 
represent workflow steps at the domain layer.  

Figure 1 illustrates the representation of domain tasks in a 
CDoT for machine learning, described in [7].  Domain tasks for 
machine learning such as modeling and classification, shown in 
the top part, can be done using different approaches, such as 
decision trees and Bayesian methods.  Two decision tree 
algorithms are shown: ID3 and J48, each represented as a 
subclass.  Training a classifier using ID3 is a domain task, 
represented in this CDoT as “ID3-Modeler”.  This domain task 
can be implemented in codes in different languages and 
libraries, and all can be used to execute that task as we describe 
next. 

B. Mapping Domain Tasks to Application Codes 
Domain tasks are ultimately implemented by application 

codes.  We assume that a workflow execution engine has a 
Catalog of Application Codes (CAC), concerned with the 
logical layer and that includes implemented codes available to 
run for individual workflow steps.  Therefore, we need a 
mechanism to map domain tasks in semantic workflows into 
application codes. 
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Figure 1.  The Catalog of Application Codes (CAC) for each 

workflow execution engine is mapped to the Catalog of Domain 
Tasks (CDoT).  

Our approach to facilitate the mapping of semantic 
workflows to application codes available in an execution 
engine is through the use of ontologies.  Application codes in 
the CAC are represented as a class similar to the representation 
of domain tasks. A CAC must always refer to a CDoT, which 
can be done through importing the CDoT ontology.  Then, each 
application code available in a workflow execution engine’s 
CAC is mapped to a domain task concept in the CDoT through 
a subclass relation.   

Figure 1 illustrates this, showing the CACs for two 
different workflow execution engines. There are different 
application codes for the J48 and ID3 modelers and classifiers 
available in each workflow execution environment.   

The invocation signatures of domain tasks need to be 
mapped to the signatures of application codes.  In our work to 
date we constrain this problem by making a simplifying 
assumption.  We assume that each domain task has the same 
signature as the application codes that implement it.  We 
prepare and encapsulate application codes so that their 
parameters are always aligned with the domain task that they 
accomplish. 

C. Generating Executable Workflows from Workflows of 
Domain Tasks 
In prior work, we developed workflow reasoning 

algorithms that automatically specialize high-level workflows 
so that each step is mapped to executable components to create 
a workflow specification at a logical layer [6].  We extended 
this work so that there is a clear separation between the CDoT 
and the CAC for the algorithm.  The user creates workflows 
using domain tasks from the CDoT.  To run a workflow, the 
user can then select one of the CACs available for that CDoT.  
Each CAC is supported by a workflow execution engine that 
can run those application codes in its execution environment. 
The workflow reasoning algorithms then generate executable 
workflows by mapping domain tasks in the CDoT to the 
application codes available in the selected CAC. 

 

 

 
Figure 2.  A semantic workflow is defined using component classes 
from the CDoT, which is independent of the workflow execution 

engine as well as the application codes available within its 
execution environment. 
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 Figure 3.  Selecting the OODT workflow execution framework. 

 

I. MAPPING SEMANTIC WORKFLOWS TO DIFFERENT 
EXECUTION ENGINES USING WINGS 

We have implemented this approach in the WINGS 
workflow system [6].  WINGS separates the specification of 
workflows at the domain layer and the specification of 
workflows at the logical layer. In WINGS, the ontologies for 
the CDoTs and CACs are represented using the W3C OWL 
standard.  The workflow reasoning algorithms query these 
catalogs using SPARQL queries. 

WINGS has been integrated with several execution engines. 
In this paper, we demonstrate our approach using two of them. 
OODT is a distributed data management framework, with 
components to extract metadata and do profiling, and with 
distributed execution of workflow components that can be 
managed from the workflow execution engine [9].  
Pegasus/Condor is a workflow execution engine that selects 
distributed resources for the remote distributed execution of 
workflow tasks, optimizes the assignment of resources to tasks, 
and manages any data movements across resources [2].   

A. Catalogs of Domain Tasks in WINGS 
Figure 2 shows a semantic workflow of domain tasks from 

a WINGS CDoT for a simple machine learning domain.  This 
workflow takes training data and generates a model, then 
classifies any new test data according to that model. 



 

 
Figure 4.  The CDoT components (shown in yellow) are mapped to 
the CAC components available in OODT for execution (shown in 

blue). 

 
Figure 5.  Submitting the semantic workflow to the selected 

workflow execution engine. 

B. Catalogs of Application Codes in WINGS 
Figure 3 illustrates how a user selects a workflow execution 

framework in WINGS.  In selecting OODT, the system imports 
the OODT CAC and maps it to the WINGS CDoT for this 
domain.  Figure 4 shows the WINGS interface where the user 
can browse the CDoT in WINGS and see the mappings to the 
CAC in OODT. The domain tasks are shown as puzzle pieces 
organized in a hierarchy.   

Figure 5 shows how a user submits a semantic workflow to 
the selected workflow execution engine.  The user selects input 
datasets (for testData and TrainingData) and parameter values 
(for classIndex and javaHeapSize).  Then the user selects “Run 
Workflow”.  WINGS uses workflow reasoning algorithms that 
take a semantic workflow of domain tasks and automatically 
generate workflows of executable application codes that can be 
submitted to a workflow execution engine.   

 
Figure 6.  Workflow submitted to OODT for execution. 

The workflow reasoning algorithms search through the 
space of possible specializations of the initial high-level 
workflows.  To specialize a workflow, the algorithms query the 
CDoTs and the CACs to retrieve subclasses of a domain task 
class.  The algorithms also query the catalogs regarding the 
properties of classes defined for domain tasks and application 
codes, which represent their arguments.  There may be several 
possible executable workflows that are consistent with the 
initial domain-level workflow, since several application codes 
may be available for a given domain task.  In that case, the user 
is presented with several options. 

Figure 6 shows a workflow that WINGS can submit to 
OODT for execution.  Note that the domain tasks that appeared 
in the workflow of Figure 2 have been automatically mapped to 
application codes available in the OODT execution 
environment and that appeared in the OODT CAC.   

C. Workflow Representations in P-PLAN 
WINGS uses the W3C PROV standard [5] to publish 

provenance of workflow executions.  We have developed an 
extension of PROV called P-PLAN [4], which enables the 
representation of plans that mirror the execution structure (i.e., 
plans with no control constructs like conditionals or iterations). 
P-PLAN is used to represent the original workflows.  WINGS 
uses P-PLAN to represent the workflow that is submitted to 
execution engines, such as the one shown in Figure 6.  P-
PLAN, in effect, provides a standard representation for 
workflows that WINGS uses to submit to all execution engines. 
Figure 7 illustrates how the semantic workflow in Figure 2 can 
be expressed in P-PLAN.  The classes are highlighted in bold, 
relations (or properties) are in italics. 

The representation of workflows is therefore in a language 
that is not specific to WINGS, facilitating reuse as well as 
querying of workflows from different workflow systems.  In 
addition, WINGS has a facility to export both workflows of 
domain tasks and workflows of application codes in RDF as 
linked data [3].  This ensures that the workflow and all its 
constituents are web objects that can be openly accessed by 
third-party web applications.   



cdot:modeler rdf:is-a 
p-plan:activity 

cdot:classifier rdf:is-a 
p-plan:activity 

prov:used 

dom:model 

prov:generatedBy 

prov:used 

dom:trainingData 

dom:classification 

prov:generatedBy 

prov:used 

dom:testData 

prov:used 

dom:classIndex 

prov:used 

 
Figure 7.  P-PLAN representation of the workflow in Figure 2. 

 

! 
Figure 8.  Selecting Pegasus/Condor as the workflow execution 

environment. 

 
Figure 9.  The CAC defined in the Pegasus/Condor execution 

environment. 

D. Using Alternative Execution Engines 
It is easy to set up WINGS to run workflows in different 

execution engine, even in the same session.  Figure 8 shows the 
selection of Pegasus/Condor as the workflow execution 
environment.  Figure 9 shows the application codes available in 
the CAC of the Pegasus/Condor environment.  Figure 10 shows 
the workflow generated by WINGS for submission to 
Pegasus/Condor for execution. 

 

 
Figure 10.  Workflow submitted to Pegasus/Condor for execution. 

 

!  
Figure 11.  Selecting the local shell as the workflow execution 

environment. 

 
Figure 12.  The CDoT and CAC mappings in the shell execution 

environment. 

Finally, we show how the user can easily also submit the 
same semantic workflow for execution on a local shell.  Figure 
11 shows the switch to the local shell execution environment.  
Figure 12 shows the CDoT and CAC mappings.  Figure 13 
shows the workflow submitted. 

Figure 14 shows the three executions of the semantic 
workflow that we showed in Figure 2.  Here we have selected 
the second execution, run with OODT, and we show the OODT  



 
Figure 13.  Workflow submitted to the shell for execution. 

 
Figure 14.  Records of the three executions of the same semantic 

workflow submitted from WINGS, each executed with a different 
workflow execution engine.   

execution log. Note that the components used in each workflow 
execution framework are different, as shown in Figures 6, 
10,and 13.  The result browser shows those workflows in the 
“Workflow” tab.  In each case, WINGS mapped the domain 
tasks in the semantic workflow into the application codes of the 
CAC available in the selected workflow execution system. 

II. CONCLUSIONS 
We have described an approach to representing semantic 

workflows of domain tasks.  These workflows abstract the 
specification of steps from the particular application codes to 
be executed as well as the particular workflow execution 
engines used.  We demonstrated this with two very different 
workflow execution engines, as well as execution on the shell.   

Our work makes workflows more portable to new 
execution environments, where the availability of application 
codes and run-time libraries may vary.  This also facilitates 
reproducibility and reuse.  It also allows users to specify 

workflows at a domain level, which is closer to the descriptions 
of methods that are typically included in scientific articles.  

An area of future work is that application codes with 
similar functionality may have different invocation signatures 
and parameters. In our current work, we assume that the 
invocation signatures are the same for all application codes that 
correspond to a domain task.  We will need to extend the 
representations of the components, as well the workflow 
generation algorithm to take these differences into account.   
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