
Mapping Semantic Workflows
to Alternative Workflow Execution Engines

Yolanda Gil
Information Sciences Institute

University of Southern California
 4676 Admiralty Way

Marina del Rey, CA 90292
 +1-310-822-1511

gil@isi.edu

Abstract—Current workflows have limited reusability and shelf
life because they specify particular application software to be run
at each step, which can become obsolete or no longer run. We
describe semantic workflow representations composed of domain
tasks, which the system then automatically maps to the
application codes available in the particular execution
environment. We have implemented this approach in the
WINGS semantic workflow system, and demonstrate the
mapping of workflows to different sets of application codes
depending on the workflow execution engine and execution
environment selected.

Keywords- Scientific workflows; semantic workflows; abstract
workflows; workflow reuse

I. INTRODUCTION
A variety of workflow systems have been developed to

manage complex scientific computations [11]. An important
area of research has been to allow users to specify workflow
computations in a manner that is independent from the
execution environment, where the workflow system
automatically maps the codes to whatever execution resources
are available at run time. This can be seen as managing a
separation between the physical layer and the logical layer of
the computation. A workflow specification at the logical layer
has a specification of the codes to be executed, and there is no
mention of the actual resources where the execution will take
place. A workflow specification at the physical layer does
mention execution resources that are to be used to run the
computations. This separation between the logical and the
physical layers is also common in web services frameworks
and has been adopted in some workflow systems [10]. A
workflow specification at the logical layer is sometimes called
an “abstract workflow” [2]. Workflow systems automatically
map the workflow specification at the logical layer to a
workflow specification at the physical layer. This is an
important benefit, as it enables users to run their workflow in
different execution environments, bringing flexibility to their
applications.

However, workflow representations are still very tied to the
execution environment because they specify the application
codes that are to be run at each step. For example, depending
on the workflow system a step may specify the MATLAB

routine or Java code to run, or the signature of the service that
needs to be invoked. In this respect, workflows are still tied to
particular application codes and software environments. When
published in workflow repositories [1], this limits their reuse by
others who may use different software. It also limits their
validity over time when code becomes obsolete and no longer
runs. Ideally, workflow specifications would be independent of
the particular code and software environment, specifying only
the domain task to be carried out rather than what application
codes to run. Previous work has focused on interoperability of
workflow systems and workflow representations [8], but not on
creating more abstract representations that address the domain
layer.

We have developed an approach to represent workflows
that express domain tasks rather than the application codes that
implement those tasks. This paper describes how we tackle
three important challenges: 1) representing domain tasks, 2)
matching invocation signatures of application codes to domain
tasks, 3) mapping workflows of domain tasks to workflows of
application codes that can be executed in alternative workflow
execution engines. We have implemented this approach in the
Wings semantic workflow system, and extended Wings to
demonstrate the mapping of semantic workflows into two
workflow execution engines: Pegasus/Condor [2] and Apache
OODT [9].

The paper begins by introducing domain tasks, and the
benefits of semantic workflows that represent domain tasks.
We then discuss our approach to represent domain tasks, and
their relationship to application codes. We describe our
approach to automatically map semantic workflows composed
of user-defined domain tasks into application codes available in
different execution engines.

II. WORKFLOWS AT THE DOMAIN LAYER
Data analysis tasks are implemented by application codes.

They represent abstractions of the functions that those codes
perform. An example of a domain task is linear regression,
which could be implemented with a variety of application
codes such as a MATLAB routine, an R routine, a Java code,
etc. A semantic workflow specification at the domain layer
would have steps that specify domain tasks. A semantic
workflow system would then map automatically the workflow

Proceedings of the Seventh IEEE International Conference on Semantic Computing (ICSC), Irvine, CA, 2013.

specification at the domain layer into a workflow specification
at the logical layer. A workflow execution engine would, in
turn, map the logical layer (application codes) to the physical
layer (i.e., execution resources).

Semantic workflows at the domain layer are closer to
specifications of scientific methods that are described in
scientific publications. These methods describe steps in ways
that are not dependent on the application codes, and are
therefore more reusable by other researchers who may use
different software.

Workflow specifications at the domain layer would provide
scientists with additional flexibility:

• Facilitate method design and testing: Scientists
would design semantic workflows at the domain layer,
and submit the same workflow in a local host or in a
shared resource. For example, scientists often use
smaller datasets to test different workflow designs on a
local host, then when one of the workflow designs
looks promising it can be submitted to execution with
larger datasets in shared high end computing resources.
Their local resource and the shared resource may not
have the same codes. For example, a shared resource
may have an efficient MPI version of a clustering
algorithm, while a local host may have an inefficient
one that is easy to install locally and is sufficient for
testing purposes.

• Provide new failure recovery mechanisms: When
the execution of a particular application code fails, the
semantic workflow system could select an alternative
application code for the same domain task specified in
the step that failed.

• Portability and reproducibility of methods across
research groups: Different research groups often use
different software environments for their analyses.
Some research groups prefer to use proprietary
software for their work (e.g., MATLAB), perhaps
because it is more reliable or more efficient. Other
groups prefer using open software that implements
similar functionality. Other labs prefer to develop their
own software. A semantic workflow specified at the
domain level could be more easily transferred and
reused across research groups.

• Archival publication of methods: The software base
that is used today may not be available tomorrow.
Software libraries evolve, implementations are revised
into new versions, and commercial software has new
periodic releases. Libraries and packages are
abandoned in favor of new ones. Describing a
semantic workflow at the domain layer enables the
method to survive the test of time more easily, making
workflows more portable over time.

• Improve provenance and metadata annotations:
Workflow systems automatically annotate provenance
and metadata of workflow data products. If the
provenance annotated is specific to the application
codes then it has limited generality. A semantic

workflow system would record provenance in terms of
domain tasks independent of the codes executed.

• Facilitate the transition of methods from research
into operational environments: A research
environment may use more exploratory application
codes, while an operational environment may use more
robust and efficient implementations. Transitioning
methods from research to operations could be
facilitated with semantic workflow specifications at the
domain level.

III. SEMANTIC WORFKLOWS OF DOMAIN TASKS
Our work addresses three major challenges in providing

semantic workflow specifications at the domain layer:

1. Representing domain tasks with sufficient generality to
encompass equivalent application codes and with
sufficient detail to provide meaningful descriptions to
scientists.

2. Mapping domain tasks into application codes.

3. Automating the generation of executable workflows
from workflows of domain tasks.

A. Representing Domain Tasks
We create representations of domain tasks using ontologies.

We define a concept (class) for each domain task. Each of the
arguments of a task is represented as a property of that class.
When used in a workflow, the dataset or parameter for an
argument is the value of the corresponding property. These
classes form ontologies of domain tasks, containing hierarchies
that organize them from more general abstract ones to more
specific ones. These ontologies form a Catalog of Domain
Tasks (CDoT). The domain tasks in the CDoT are then used to
represent workflow steps at the domain layer.

Figure 1 illustrates the representation of domain tasks in a
CDoT for machine learning, described in [7]. Domain tasks for
machine learning such as modeling and classification, shown in
the top part, can be done using different approaches, such as
decision trees and Bayesian methods. Two decision tree
algorithms are shown: ID3 and J48, each represented as a
subclass. Training a classifier using ID3 is a domain task,
represented in this CDoT as “ID3-Modeler”. This domain task
can be implemented in codes in different languages and
libraries, and all can be used to execute that task as we describe
next.

B. Mapping Domain Tasks to Application Codes
Domain tasks are ultimately implemented by application

codes. We assume that a workflow execution engine has a
Catalog of Application Codes (CAC), concerned with the
logical layer and that includes implemented codes available to
run for individual workflow steps. Therefore, we need a
mechanism to map domain tasks in semantic workflows into
application codes.

Classifier Modeler

DecisionTree-Classifier DecisionTree-Modeler

J48-Classifier J48-Modeler ID3-Modeler ID3-Classifier

J48-Modeler-Java J48-Classifier-Java ID3-Classifier-Weka J48-Modeler-Weka

Pegasus/Condor CAC Apache OODT CAC

Catalog of Domain Tasks (CDoT)

Catalogs of Application Codes (CAC) for Alternative Workflow Execution Engines

CDoT
to CAC
mappings

Figure 1. The Catalog of Application Codes (CAC) for each

workflow execution engine is mapped to the Catalog of Domain
Tasks (CDoT).

Our approach to facilitate the mapping of semantic
workflows to application codes available in an execution
engine is through the use of ontologies. Application codes in
the CAC are represented as a class similar to the representation
of domain tasks. A CAC must always refer to a CDoT, which
can be done through importing the CDoT ontology. Then, each
application code available in a workflow execution engine’s
CAC is mapped to a domain task concept in the CDoT through
a subclass relation.

Figure 1 illustrates this, showing the CACs for two
different workflow execution engines. There are different
application codes for the J48 and ID3 modelers and classifiers
available in each workflow execution environment.

The invocation signatures of domain tasks need to be
mapped to the signatures of application codes. In our work to
date we constrain this problem by making a simplifying
assumption. We assume that each domain task has the same
signature as the application codes that implement it. We
prepare and encapsulate application codes so that their
parameters are always aligned with the domain task that they
accomplish.

C. Generating Executable Workflows from Workflows of
Domain Tasks
In prior work, we developed workflow reasoning

algorithms that automatically specialize high-level workflows
so that each step is mapped to executable components to create
a workflow specification at a logical layer [6]. We extended
this work so that there is a clear separation between the CDoT
and the CAC for the algorithm. The user creates workflows
using domain tasks from the CDoT. To run a workflow, the
user can then select one of the CACs available for that CDoT.
Each CAC is supported by a workflow execution engine that
can run those application codes in its execution environment.
The workflow reasoning algorithms then generate executable
workflows by mapping domain tasks in the CDoT to the
application codes available in the selected CAC.

Figure 2. A semantic workflow is defined using component classes
from the CDoT, which is independent of the workflow execution

engine as well as the application codes available within its
execution environment.

!
 Figure 3. Selecting the OODT workflow execution framework.

I. MAPPING SEMANTIC WORKFLOWS TO DIFFERENT
EXECUTION ENGINES USING WINGS

We have implemented this approach in the WINGS
workflow system [6]. WINGS separates the specification of
workflows at the domain layer and the specification of
workflows at the logical layer. In WINGS, the ontologies for
the CDoTs and CACs are represented using the W3C OWL
standard. The workflow reasoning algorithms query these
catalogs using SPARQL queries.

WINGS has been integrated with several execution engines.
In this paper, we demonstrate our approach using two of them.
OODT is a distributed data management framework, with
components to extract metadata and do profiling, and with
distributed execution of workflow components that can be
managed from the workflow execution engine [9].
Pegasus/Condor is a workflow execution engine that selects
distributed resources for the remote distributed execution of
workflow tasks, optimizes the assignment of resources to tasks,
and manages any data movements across resources [2].

A. Catalogs of Domain Tasks in WINGS
Figure 2 shows a semantic workflow of domain tasks from

a WINGS CDoT for a simple machine learning domain. This
workflow takes training data and generates a model, then
classifies any new test data according to that model.

Figure 4. The CDoT components (shown in yellow) are mapped to
the CAC components available in OODT for execution (shown in

blue).

Figure 5. Submitting the semantic workflow to the selected

workflow execution engine.

B. Catalogs of Application Codes in WINGS
Figure 3 illustrates how a user selects a workflow execution

framework in WINGS. In selecting OODT, the system imports
the OODT CAC and maps it to the WINGS CDoT for this
domain. Figure 4 shows the WINGS interface where the user
can browse the CDoT in WINGS and see the mappings to the
CAC in OODT. The domain tasks are shown as puzzle pieces
organized in a hierarchy.

Figure 5 shows how a user submits a semantic workflow to
the selected workflow execution engine. The user selects input
datasets (for testData and TrainingData) and parameter values
(for classIndex and javaHeapSize). Then the user selects “Run
Workflow”. WINGS uses workflow reasoning algorithms that
take a semantic workflow of domain tasks and automatically
generate workflows of executable application codes that can be
submitted to a workflow execution engine.

Figure 6. Workflow submitted to OODT for execution.

The workflow reasoning algorithms search through the
space of possible specializations of the initial high-level
workflows. To specialize a workflow, the algorithms query the
CDoTs and the CACs to retrieve subclasses of a domain task
class. The algorithms also query the catalogs regarding the
properties of classes defined for domain tasks and application
codes, which represent their arguments. There may be several
possible executable workflows that are consistent with the
initial domain-level workflow, since several application codes
may be available for a given domain task. In that case, the user
is presented with several options.

Figure 6 shows a workflow that WINGS can submit to
OODT for execution. Note that the domain tasks that appeared
in the workflow of Figure 2 have been automatically mapped to
application codes available in the OODT execution
environment and that appeared in the OODT CAC.

C. Workflow Representations in P-PLAN
WINGS uses the W3C PROV standard [5] to publish

provenance of workflow executions. We have developed an
extension of PROV called P-PLAN [4], which enables the
representation of plans that mirror the execution structure (i.e.,
plans with no control constructs like conditionals or iterations).
P-PLAN is used to represent the original workflows. WINGS
uses P-PLAN to represent the workflow that is submitted to
execution engines, such as the one shown in Figure 6. P-
PLAN, in effect, provides a standard representation for
workflows that WINGS uses to submit to all execution engines.
Figure 7 illustrates how the semantic workflow in Figure 2 can
be expressed in P-PLAN. The classes are highlighted in bold,
relations (or properties) are in italics.

The representation of workflows is therefore in a language
that is not specific to WINGS, facilitating reuse as well as
querying of workflows from different workflow systems. In
addition, WINGS has a facility to export both workflows of
domain tasks and workflows of application codes in RDF as
linked data [3]. This ensures that the workflow and all its
constituents are web objects that can be openly accessed by
third-party web applications.

cdot:modeler rdf:is-a
p-plan:activity

cdot:classifier rdf:is-a
p-plan:activity

prov:used

dom:model

prov:generatedBy

prov:used

dom:trainingData

dom:classification

prov:generatedBy

prov:used

dom:testData

prov:used

dom:classIndex

prov:used

Figure 7. P-PLAN representation of the workflow in Figure 2.

!
Figure 8. Selecting Pegasus/Condor as the workflow execution

environment.

Figure 9. The CAC defined in the Pegasus/Condor execution

environment.

D. Using Alternative Execution Engines
It is easy to set up WINGS to run workflows in different

execution engine, even in the same session. Figure 8 shows the
selection of Pegasus/Condor as the workflow execution
environment. Figure 9 shows the application codes available in
the CAC of the Pegasus/Condor environment. Figure 10 shows
the workflow generated by WINGS for submission to
Pegasus/Condor for execution.

Figure 10. Workflow submitted to Pegasus/Condor for execution.

!
Figure 11. Selecting the local shell as the workflow execution

environment.

Figure 12. The CDoT and CAC mappings in the shell execution

environment.

Finally, we show how the user can easily also submit the
same semantic workflow for execution on a local shell. Figure
11 shows the switch to the local shell execution environment.
Figure 12 shows the CDoT and CAC mappings. Figure 13
shows the workflow submitted.

Figure 14 shows the three executions of the semantic
workflow that we showed in Figure 2. Here we have selected
the second execution, run with OODT, and we show the OODT

Figure 13. Workflow submitted to the shell for execution.

Figure 14. Records of the three executions of the same semantic

workflow submitted from WINGS, each executed with a different
workflow execution engine.

execution log. Note that the components used in each workflow
execution framework are different, as shown in Figures 6,
10,and 13. The result browser shows those workflows in the
“Workflow” tab. In each case, WINGS mapped the domain
tasks in the semantic workflow into the application codes of the
CAC available in the selected workflow execution system.

II. CONCLUSIONS
We have described an approach to representing semantic

workflows of domain tasks. These workflows abstract the
specification of steps from the particular application codes to
be executed as well as the particular workflow execution
engines used. We demonstrated this with two very different
workflow execution engines, as well as execution on the shell.

Our work makes workflows more portable to new
execution environments, where the availability of application
codes and run-time libraries may vary. This also facilitates
reproducibility and reuse. It also allows users to specify

workflows at a domain level, which is closer to the descriptions
of methods that are typically included in scientific articles.

An area of future work is that application codes with
similar functionality may have different invocation signatures
and parameters. In our current work, we assume that the
invocation signatures are the same for all application codes that
correspond to a domain task. We will need to extend the
representations of the components, as well the workflow
generation algorithm to take these differences into account.

ACKNOWLEDGMENTS
We thank the WINGS, Apache OODT, and

Pegasus/Condor teams for their support of this work, in
particular Varun Ratnakar and Chris Mattmann. We gratefully
acknowledge support from the Air Force Office of Scientific
Research (AFOSR) with award FA9550-11-1-0104, and from
the Defense Advanced Research Projects Agency (DARPA)
with award FA8750-13-C-0016.

REFERENCES
[1] De Roure, D; Goble, C.;Stevens, R. “The design and realization of the

myExperiment Virtual Research Environment for social sharing of
workflows”. Future Generation Computer Systems, 25 (561-567), 2009.

[2] Deelman, E.; Singh, G.; Su, M.; Blythe, J.; Gil, Y.; Kesselman, C.; Kim,
J.; Mehta, G.; Vahi, K.; Berriman, G. B.; Good, J.; Laity, A.; Jacob, J.
C.; and Katz, D. S. “Pegasus: A Framework for Mapping Complex
Scientific Workflows onto Distributed Systems.” Scientific
Programming, 13(3), 2005.

[3] Garijo, D., and Gil, Y. “A New Approach for Publishing Workflows:
Abstractions, Standards, and Linked Data”. Proceedings of the Sixth
Workshop on Workflows in Support of Large-Scale Science
(WORKS’11), held in conjunction with Supercomputing (SC), 2011.

[4] Garijo, D., and Gil, Y. “ Augmenting PROV with Plans in P-PLAN:
Scientific Processes as Linked Data”. Proceedings of the Second
International Workshop on Linked Science (LISC’12), held in
conjunction with the International Semantic Web Conference (ISWC),
2012.

[5] Gil, Y. and S. Miles (Eds). “A Primer for the PROV Provenance
Model.” W3C Recommendation, April 2013.

[6] Gil, Y.; Gonzalez-Calero, P. A.; Kim, J.; Moody, J.; and Ratnakar, V.
“A Semantic Framework for Automatic Generation of Computational
Workflows Using Distributed Data and Component Catalogs.” Journal
of Experimental and Theoretical Artificial Intelligence, 23(4), 2011.

[7] Hauder, M., Gil, Y. and Y. Liu. “A Framework for Efficient Text
Analytics through Automatic Configuration and Customization of
Scientific Workflows”, Proceedings of the Seventh IEEE International
Conference on e-Science, Stockholm, Sweden, December 5-8, 2011.

[8] Kozlovszky, M., Karoczkai, K., Marton, I., Balasko, A., Marosi, A.,
Kacsuk, P. “Enabling Generic Distributed Computing Infrastructure
Compatibility for Workflow Management Systems.” Computer Science,
13(3), 2012.

[9] Mattmann, C.; Crichton, D.; Medvidovic, N.; and Hughes, S. “A
Software Architecture-Based Framework for Highly Distributed and
Data Intensive Scientific Applications.” Proceedings of the 28th
International Conference on Software Engineering (ICSE06), pp. 721-
730, Shanghai,China, 2006.

[10] Oinn, T., M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M.
Senger, R. Stevens, A. Wipat, and C. Wroe. “Taverna: lessons in
creating a workflow environment for the life sciences.” Concurrency and
Computation: Practice and Experience, 18(10), 2006.

[11] Taylor, I. J., Deelman, E., Gannon, D. B., and M. Shields (Editors),
“Workflows for e-Science: Scientific Workflows for Grids,” Springer,
January 2007.

