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Data-Intensive Computing in Science
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Artificial Intelligence and Scientific Discovery
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Computational Scientific Discovery
■  [Lenat 1976] 
■  [Lindsay, Buchanan, 

Feigenbaum & Lederberg 1980] 
■  [Langley & Simon 1981] 
■  [Simon et al 1983] 
■  [Falkenhainer 1985] 
■  [Langley et al 1987] 
■  [Kulkarni and Simon 1988] 
■  [Cheeseman et al 1989] 
■  [Zytkow et al 1990] 
■  [Valdes-Perez 1997]  
■  [Todorovski et al 2000] 
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http://commons.wikimedia.org/wiki/File:MRI_brain_sagittal_section.jpg 
http://commons.wikimedia.org/wiki/File:Earth_Eastern_Hemisphere.jpg 
http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html 



6Yolanda GilUSC Information Sciences Institute gil@isi.edu

AI’s Coming of Age 

IBM Watson Google Knowledge Graph Apple Siri 

RoboCup Soccer 

https://en.wikipedia.org/wiki/Watson_(computer)#/media/File:IBM_Watson.PNG 
https://en.wikipedia.org/wiki/Siri#/media/File:SirioniOS9.png 
https://commons.wikimedia.org/wiki/File:Google_Knowledge_Panel.png 
https://commons.wikimedia.org/wiki/File:13-06-28-robocup-eindhoven-005.jpg 
http://www.greencarreports.com/news/1100482_tesla-autopilot-the-10-most-important-things-you-need-to-know 
https://en.wikipedia.org/wiki/Netflix#/media/File:NetflixDVD.jpg 

Tesla AutoPilot Netfix Recommenders 
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Before There Was the Knowledge Graph…

Google Knowledge Graph 
(2012) 

Linked Data 
(2007) 
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Giving Meaning to Hyperlinks on the Web

http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/ 
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The Semantic Web
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Data and Ontologies on the Semantic Web

<Bob> <is a> <person>. 
<Bob> <is a friend of> <Alice>. 
<Bob> <is born on> <the 4th of July 1990>.  
<Bob> <is interested in> <the Mona Lisa>. 
<the Mona Lisa> <was created by> <Leonardo da Vinci>. 
<the video 'La Joconde à Washington'> <is about> <the Mona Lisa>. 

<Person> <type> <Class> 
<is a friend of> <type> <Property> 
<is a friend of> <domain> <Person> 
<is a friend of> <range> <Person> 
<is a good friend of> <subPropertyOf> <is a friend of> 
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Interlinked Data and Ontologies in the 
Semantic Web

"Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/"  
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Interlinked Data and Ontologies on the Web

2007 2011 2015 

Datasets 294 571 3426 

Triples 2B 31B 85B 

Cross-refs 2M 500M 

74% of datasets in a weakly 
connected component 

FOAF: from 27% to 59% 

DC: from 31% to 56% 

http://lod-cloud.net 
http://stats.lod2.eu 
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Interlinking Scientific Knowledge

Mathematical 

Taxonomical Networks 

Bayesian Simulations 
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Complexity of Scientific Endeavors
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Focus: Intelligent Systems for Data Analysis

What is the state of the art? 

What is a good problem to work on? 

What is a good experiment to design? 

What data should be collected? 

What is the best way to analyze the data? 

What are the implications of the experiments? 

What are appropriate revisions of current models? 

What to focus on next? 
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Capturing Scientific Knowledge

Data 

Workflows 

Software Provenance 

Meta-Workflows 

DISK 
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From: http://www.ncdc.noaa.gov/paleo/metadata/noaa-coral-1865.html  

{{ #ask: [[Is a::dataset]] 
 | ?Domain=geochemistry 
 | ?Archive 
 | ?MeasurementMaterial 
 | ?MeasurementStandard 
 | ?MeasurementUnits}} 

Knowledge about Data: Linked Earth Wiki  
Work with Julien-Emile Geay of USC and Nick McKay of NAU  

AI opportunities: 
- collection 
- normalization  
- organization 
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Linked Data and Linked Knowledge

Quelccaya  
Ice Cap 

Quelccaya 
20C 

Oxygen -16 

Ice 
Core 

Isotopes 
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Capturing Scientific Knowledge

Data 

Workflows 

Software Provenance 

Meta-Workflows 

DISK 
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Knowledge about Software:  
OntoSoft

Work with C. Duffy of PSU, C. Mattmann of 
JPL, S. Peckham of CU, and E. Robinson of ESIP 
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Knowledge About Software: 
Physical Variables and Assumptions
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OntoSoft: 
Comparing Software Implementations

PIHM PIHMgis DrEICH TauDEM WBMsed 
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OntoSoft: 
Publishing Software Metadata as RDF

AI opportunities: 
- functional desc.  
- organization 
- linking to data 
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Linked Data and Linked Knowledge

Quelccaya  
Ice Cap 

Quelccaya 
20C 

Ice 
Core 

Neotoma 

Navier-Stokes 

Oxygen -16 

Isotopes 
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Capturing Scientific Knowledge

Data 

Workflows 

Software Provenance 

Meta-Workflows 

DISK 
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Knowledge about Data Analysis: 
WINGS

Owens-Gibbs 

O’Connor-Dobbins 

Churchill 

DailySensorData	
  
	
  	
  isa	
  Hydrolab_Sensor_Data	
  	
  
	
  	
  siteLong	
  rdf:datatype=“long”	
  
	
  	
  siteLa9tude	
  rdf:datatype=“lat”	
  
	
  	
  dateStart	
  rdf:datatype=“date”	
  
	
  	
  forSite	
  rdf:datatype=”site”	
  
	
  	
  numberOfDayNights	
  rdf:datatype=“int”	
  
	
  	
  avgDepth	
  rdf:datatype=”depth”	
  
	
  	
  avgFlow	
  rdf:datatype=“flow”	
  	
  	
  	
  

low  
flow 
med 
flow 

high 
flow 

Work with V. Ratnakar (USC) 
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WINGS Dynamically Customizes the  
Workflow Based on Daily Sensor Readings

Churchill model O’Connor-Dobbins  
model 

Owens-Gibbs 
model 

AI opportunities: 
- generation 
- mining 
- linking to data 
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Describing Execution (Provenance) 
vs General Method (Workflow)

SensorData-
August2011 

23 8 5 800 

SensorData-
TimePeriod 

Metabolism-
August2011 

Metabolism-
TimePeriod 

AI opportunities: 
- abstraction  
- repurposing 
- assembly 
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Linked Data and Linked Knowledge

Quelccaya  
Ice Cap 

Quelccaya 
20C 

Ice 
Core 

Neotoma 

Navier-Stokes 

Vegetation 
Estimates 

Oxygen -16 

Isotopes 
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Capturing Scientific Knowledge

Data 

Workflows 

Software Provenance 

Meta-Workflows 

DISK 
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Knowledge about Meta-Processes:  
DISK

DISK 

Confidence Value = ?n 
Evidence = { …….     } 

Pumping rate 
up ?x% at ?L1 

Springflow 
at ?L2 ?y% 

ExpectedResponse 

Input: Simulation models for ?L1  
with pumping rate parameter ?x 

Workflows generate data for  
springflow at ?L2 by y% 

Work with P. Mallick (Stanford U) and S. Pierce (UT Austin) 
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DISK: 
Hypotheses

Pumping rate up 
10% at Kemp 

Springflow at 
Cayuga 50% lower  

ExpectedResponse 

DISK 

33 groundwater  
models for Texas 
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DISK: 
Hypotheses

DISK 

Confidence Value = 0 
Evidence = { } 

Pumping rate up 
10% at Kemp 

Springflow at 
Cayuga 50% lower  

ExpectedResponse 
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Confidence Value = ?n 
Evidence = { …….     } 

Pumping rate 
up ?x% at ?L1 

Springflow 
at ?L2 ?y% 

ExpectedResponse 

DISK: 
Lines of Inquiry

DISK 

Input: Simulation models for ?L1  
with pumping rate parameter ?x 

Workflows generate data for  
springflow at ?L2 by y% 
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DISK:  
Lines of Inquiry

         Meta-workflows 

Confidence  
assessment 

Cross-method  
assessment 

Data growth  
assessment 

Novel  
results 

DISK 

Confidence Value = ?n 
Evidence = { …….     } 

Pumping rate 
up ?x% at ?L1 

Springflow 
at ?L2 ?y% 

ExpectedResponse 

Input: Simulation models for ?L1  
with pumping rate parameter ?x 

Workflows generate data for  
springflow at ?L2 by y% 
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DISK: 
Matching Hypotheses Against Lines of Inquiry

Hypotheses Lines of Inquiry 

Pumping rate up 
10% at Kemp 

ExpectedResponse 
Springflow at 
Cayuga 80% lower  

Confidence Value = .7 
Evidence = {                    } 

DISK 

Confidence Value = 0 
Evidence = { } 

Pumping rate up 
10% at Kemp 

Springflow at 
Cayuga 50% lower  

ExpectedResponse 

Confidence Value = ?n 
Evidence = { …….     } 

Pumping rate 
up ?x% at ?L1 

Springflow 
at ?L2 ?y% 

ExpectedResponse 

Input: Simulation models for ?L1  
with pumping rate parameter ?x 

Workflows generate data for  
springflow at ?L2 by y% 
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DISK: 
Matching Hypotheses Against Lines of Inquiry

Hypotheses Lines of Inquiry 

Pumping rate up 
10% at Kemp 

ExpectedResponse 
Springflow at 
Cayuga 80% lower  

Confidence Value = .7 
Evidence = {                    } 

DISK 

Confidence Value = 0 
Evidence = { } 

Pumping rate up 
10% at Kemp 

Springflow at 
Cayuga 50% lower  

ExpectedResponse 

Confidence Value = ?n 
Evidence = { …….     } 

Pumping rate 
up ?x% at ?L1 

Springflow 
at ?L2 ?y% 

ExpectedResponse 

Input: Simulation models for ?L1  
with pumping rate parameter ?x 

Workflows generate data for  
springflow at ?L2 by y% 

AI opportunities: 
- representation 
- interestingness 
- evolution 
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Knowledge about Meta-Processes:  
Organic Data Science

!

Work with P. Hanson (U Wisc) and C. Duffy (PSU) 

AI opportunities: 
- collaboration 
- group formation 
- community health 
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Linked Data and Linked Knowledge

Quelccaya  
Ice Cap 

Quelccaya 
20C 

Ice 
Core 

Neotoma 

Navier-Stokes 

Vegetation 
Estimates 

Oxygen -16 

Isotopes DISK 

Springflow  
levels 

Estimate 
Age of 
Water 
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Linked Data and Linked Knowledge

Quelccaya  
Ice Cap 

Quelccaya 
20C 

Ice 
Core 

Neotoma 

Navier-Stokes 

Vegetation 
Estimates 

Oxygen -16 

Isotopes 

Physical  
sample 

DISK 

Springflow  
levels 

Estimate 
Age of 
Water 
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Linked Data and Linked Knowledge

Quelccaya  
Ice Cap 

Quelccaya 
20C 

Ice 
Core 

Neotoma 

Navier-Stokes 

Vegetation 
Estimates 

Oxygen -16 

Isotopes 

Physical  
sample 

DISK 

Springflow  
levels 

AI opportunities: 
- interlinking 
- analysis 
- recommenders 

Estimate 
Age of 
Water 
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Capturing Scientific Knowledge

Data 

Workflows 

Software Provenance 

Meta-Workflows 

DISK 
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Focus: Intelligent Science Assistants for 
Data Analysis

What is the state of the art? 

What is a good problem to work on? 

What is a good experiment to design? 

What data should be collected? 

What is the best way to analyze the data? 

What are the implications of the experiments? 

What are appropriate revisions of current models? 
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AI Technologies: Use in Science

IBM Watson Google Knowledge Graph Apple Siri 

RoboCup Soccer 

https://en.wikipedia.org/wiki/Watson_(computer)#/media/File:IBM_Watson.PNG 
https://en.wikipedia.org/wiki/Siri#/media/File:SirioniOS9.png 
https://commons.wikimedia.org/wiki/File:Google_Knowledge_Panel.png 
https://commons.wikimedia.org/wiki/File:13-06-28-robocup-eindhoven-005.jpg 
http://www.greencarreports.com/news/1100482_tesla-autopilot-the-10-most-important-things-you-need-to-know 
https://en.wikipedia.org/wiki/Netflix#/media/File:NetflixDVD.jpg 

Tesla AutoPilot Netfix Recommenders 
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Summary of Some Computer Science Technologies Relevant to Geoscientists 
Katie Skinner & Matthew Johnson-Roberson http://droplab.engin.umich.edu 
 
Optical Autonomous Underwater Vehicles and SLAM 
Underwater vehicles, capable of high precision navigation and equipped with 
downward-looking stereo cameras, can recover bathymetry at fine resolutions over 
relatively large, contiguous extents of seafloor. Measures derived from these 
surveys make it possible to obtain dense coverage over larger spatial extents more 
rapidly than with human divers. Given that the surveys and calculations can be 
performed without humans, a potential source of measurement bias is eliminated. 
Furthermore, the submersibles and the navigation systems proposed in this grant 
would provide the ability for easy repeat transects, making it possible to revisit an 
area of interest for monitoring purposes.  

A great deal of work has been done in the 
domain of 3D mapping for underwater vehicles and 
this work has established the practicality of 
performing georeferenced mapping, using SLAM 
(Simultaneous Localization and Mapping), 
followed by post-processed 3D reconstruction. 
An example of the state-of-the-art in offline 
models generated with AUV data appears at 
right. 

 
3D image data classification 
The recent success of convolutional neural networks (CNNs) in tasks such as image 
recognition, object detection and semantic scene recognition has spurred a renewed 
interest in multi-layer hierarchal feature learning in the computer vision 
community. One of the most exciting aspects of research in this direction is that 
network architectures such as CNNs alleviate the need for domain specific feature 
engineering. Such methods, which learn feature representations directly from the 
data, are thus desirable because they can be applied to a multitude of input 
modalities, and are not limited to 2D RGB data.  
 
Long-term persistent autonomy with hybrid AUV gliders and chemical sensing 
AUV gliders have begun to blur AUV class distinctions by 
combining active thrust and buoyancy. Hybrid glider with an 
embedded decision architecture that assimilates data to 
generate and continuously update an environmental model of 
the study site could allow for long term site monitoring. An 
AUV glider can operate as a reconnaissance platform in coastal 
zones to autonomously identify benthic areas for follow up 
investigation with a higher resolution sensor. Combing this 
with in-situ mass spectrometry can quantitatively identify a wide range of dissolved 
chemicals at trace concentrations in the subsurface environment. This technology 
can be used to track and follow plumes of chemicals, environmental phenomenon, 
and disasters like oil spills. 

Discussion

The results of our validation study have three important implications. First, we
have demonstrated that our machine reading system is capable of building a
structured database from the heterogeneous scientific literature with quality that
is comparable to a database produced by humans manually reading and extracting
data (at least in the dimensions addressed here). This is notable because current
benchmarks in machine reading and knowledge base construction, such as the
Text Analysis Conference Knowledge Base Population competition, achieve less
than 50% accuracy (albeit in the broader domain of general web text). Second, we
have tested at a large scale the reproducibility of the PBDB, and in so doing we
have identified sources of error and inconsistency that have a bearing on the use of

Figure 5. Machine-generated Phanerozoic diversity curves. Genus-level diversity generated by PDD for
the whole document set. (a) Total genus diversity calculated as in Fig. 2. For comparison, Sepkoski’s genus-
level diversity curve [3,4] is plotted using his stage-level timescale. (b), Diversity partitioned by genera
resolved to select classes by PDD. Data for analyses accessible in File S5.

doi:10.1371/journal.pone.0113523.g005

Machine-Compiled Fossil Database

PLOS ONE | DOI:10.1371/journal.pone.0113523 December 1, 2014 15 / 22
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A Research Agenda for Intelligent Systems 
in Geosciences (http://www.is-geo.org)

Robotics and Sensing 

Model-Driven 
Sensing 

Optimizing collection 
Unanticipated uses 
Active sampling 
Crowdsourcing 
Virtual sensing 

Information Integration 

Trusted  
Threads 

Distributed repositories 
Threaded resources 

Recommender systems 
Trust and provenance 
Literature extraction 

Machine Learning 

Theory-Guided 
Learning 

Incorporating knowledge 
Combining simulation 

Modeling extremes 
Evaluation methodologies 

Active learning 
 

Intelligent User Interfaces 

Interactive 
Analytics 

Visualization-rich processes 
Automated visualizations 
Immersive visualizations 

Interactive model building 
Spatio-temporal interfaces 

Collaboration and assistance 

Knowledge  
Representation & Capture 

Knowledge  
Maps 

Scientific metadata 
Spatio-temporal processes 

Interoperation and diversity  
Assisted authoring  

Automated extraction 
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http://commons.wikimedia.org/wiki/File:MRI_brain_sagittal_section.jpg 
http://commons.wikimedia.org/wiki/File:Earth_Eastern_Hemisphere.jpg 
http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html 
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Capture and Interlink Scientific Knowledge

Quelccaya  
Ice Cap 

Quelccaya 
20C 

Ice 
Core 

Neotoma 

Navier-Stokes 

Vegetation 
Estimates 

Oxygen -16 

Isotopes 

Physical  
sample 

DISK 

Springflow  
levels 

Estimate 
Age of 
Water 
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Thank you!
http://www.isi.edu/~gil 

http://www.ontosoft.org  
http://www.wings-workflows.org 

http://www.organicdatascience.org 
http://discoveryinformaticsinitiative.org  

■  Wings contributors: Varun Ratnakar, Ricky Sethi, Hyunjoon Jo, Jihie Kim, Yan Liu, Dave Kale 
(USC), Ralph Bergmann (U Trier), William Cheung (HKBU), Daniel Garijo and Oscar 
Corcho (UPM), Pedro Gonzalez & Gonzalo Castro (UCM), Paul Groth (VUA) 

■  Wings collaborators: Chris Mattmann (JPL), Paul Ramirez (JPL), Dan Crichton (JPL), Rishi 
Verma (JPL), Ewa Deelman & Gaurang Mehta & Karan Vahi (USC), Sofus Macskassy (ISI), 
Natalia Villanueva & Ari Kassin (UTEP) 

■  Organic Data Science: Felix Michel and Matheus Hauder (TUM), Varun Ratnakar (ISI), Chris 
Duffy (PSU), Paul Hanson, Hilary Dugan, Craig Snortheim (U Wisconsin), Jordan Read 
(USGS), Neda Jahanshad (USC), Julien Emile-Geay (USC), Nick McKay (NAU) 

■  Biomedical workflows: Phil Bourne & Sarah Kinnings (UCSD), Parag Mallick (Stanford U.) 
Chris Mason (Cornell), Joel Saltz & Tahsin Kurk (Emory U.), Jill Mesirov & Michael Reich 
(Broad), Randall Wetzel (CHLA), Shannon McWeeney & Christina Zhang (OHSU) 

■  Geosciences workflows: Chris Duffy (PSU), Paul Hanson (U Wisconsin), Tom Harmon & 
Sandra Villamizar (U Merced), Tom Jordan & Phil Maechlin (USC), Kim Olsen (SDSU) 

■  And many others! 


