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Theme of this Talk: 
Knowledge-Driven Science Infrastructure

Data-intensive computing is producing major advances

Scientists are still responsible for major aspects of the 
science process themselves, becoming unmanageable
        Human bottleneck

      Great opportunities for cognitive systems
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Outline

1.  The human bottleneck in data analytics 

2.  Related work on AI and cognitive aspects of 

scientific discovery 

3.  Semantic workflows to capture data analytics 

processes 

4.  Meta-reasoning to automate discovery 

5.  Discovery Informatics 
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Data-Intensive Computing in Science



5Yolanda GilUSC Information Sciences Institute gil@isi.edu

Scientific Data Analysis
■  Complex processes involving a variety of algorithms/software 
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Problems (I): 
Efficiency and Quality

■  High cost 
•  “Scientists and engineers spend more 

than 60% of their time just preparing the 
data for model input or data-model 
comparison” (NASA A40) 

■  Quality concerns 
•  “We write QC code without thinking 

about the best way to do the WC.  Such 
approaches perpetuate mediocrity.  If 
someone did it right once, it would 
benefit many people.” (EC WF CQ) 

■  Inefficiency 
•  “I often see that I’m repeating the work 

that 100 other people have been doing to 
obtain and process the data.” (EC WF CQ) 
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Problems (II):  
Reproducibility

Financial 
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1.  How was the sample size chosen to ensure adequate power 
to detect a pre-specified effect size?

  For animal studies, include a statement about sample size 
estimate even if no statistical methods were used.

2.  Describe inclusion/exclusion criteria if samples or animals were 
excluded from the analysis. Were the criteria pre-established? 

3.  If a method of randomization was used to determine how 
samples/animals were allocated to experimental groups and 
processed, describe it. 

  For animal studies, include a statement about randomization 
even if no randomization was used. 

4.  If the investigator was blinded to the group allocation during 
the experiment and/or when assessing the outcome, state 
the extent of blinding. 

   For animal studies, include a statement about blinding even 
if no blinding was done.

5. For every figure, are statistical tests justified as appropriate? 

  Do the data meet the assumptions of the tests (e.g., normal 
distribution)? 

  Is there an estimate of variation within each group of data? 
Is the variance similar between the groups that are being 
statistically compared? 

Reporting Checklist For Life Sciences Articles
This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, 
please read Reporting Life Sciences Research. 

`  Figure legends
Each figure legend should contain, for each panel where they are relevant:

  the exact sample size (n) for each experimental group/condition, given as a number, not a range;
  a description of the sample collection allowing the reader to understand whether the samples represent technical or biological 

replicates (including how many animals, litters, cultures, etc.);
  a statement of how many times the experiment shown was replicated in the laboratory;
 definitions of statistical methods and measures: 

○   very common tests, such as t-test, simple χ2 tests, Wilcoxon and Mann-Whitney tests, can be unambiguously identified by name only, 
but more complex techniques should be described in the methods section; 

○   are tests one-sided or two-sided?
○   are there adjustments for multiple comparisons?
○   statistical test results, e.g., P values;
○   definition of ‘center values’ as median or average; 
○   definition of error bars as s.d. or s.e.m.

Any descriptions too long for the figure legend should be included in the methods section. 

Please ensure that the answers to the following questions are reported in the manuscript itself. We encourage you to include a specific 
subsection in the methods section for statistics, reagents and animal models. Below, provide the page number(s) or figure legend(s) 
where the information can be located.

`  Statistics and general methods
Reported on page(s) or figure legend(s):

Corresponding Author Name:  ________________________________________

Manuscript Number:  ______________________________

(Continues on following page)

Human lives 

Reliability 

Scientific  
integrity 

Financial 

Trust 

5/29/15, 1:49 AMRetracted Scientific Studies: A Growing List - NYTimes.com

Page 1 of 8http://www.nytimes.com/interactive/2015/05/28/science/retractions-scientific-studies.html?smid=tw-nytimesscience&_r=1

Sections  Home  Search  Skip to content

Advertisement

Email
Share
Tweet
More

Search

Subscribe
Log In  0  Settings

Close search

search sponsored by

Search NYTimes.com
 Clear this text input  Go

http://nyti.ms/1HPVX1t

1. 1. Study on Attitudes Toward Same-Sex Marriage Is Retracted by a Scientific Journal

2. A Proposal to Modify Plants Gives G.M.O. Debate New Life

3. Chimpanzees in Liberia, Used in New York Blood Center Research, Face Uncertain Future

4. Matter

The Human Family Tree Bristles With New Branches

5. Observatory

Race and Gender Biases Can be Reduced With Sleep Therapy, Study Finds

6. Observatory

Ancient Skull Suggests an Early Murder

7. National Briefing | Washington

Live Anthrax Spores Shipped to Laboratories

8. A Robot That Can Perform Brain Surgery on a Fruit Fly

9. Jinghong Journal

China’s High Hopes for Growing Those Rubber Tree Plants

10. Scientists Warn to Expect More Weather Extremes

11. Arguing in Court Whether 2 Chimps Have the Right to ‘Bodily Liberty’

12. Sister Megan Rice, Freed From Prison, Looks Ahead to More Anti-Nuclear Activism

13. Obama Announces New Rule Limiting Water Pollution

14. Lassa Fever Carries Little Risk to Public, Experts Say

SUBSCRIBE NOW

5/29/15, 1:49 AMRetracted Scientific Studies: A Growing List - NYTimes.com

Page 4 of 8http://www.nytimes.com/interactive/2015/05/28/science/retractions-scientific-studies.html?smid=tw-nytimesscience&_r=1

Advertisement

Science
Share

Retracted Scientific
Studies: A Growing List

By MICHAEL ROSTON MAY 28, 2015

The retraction by Science of a study of changing attitudes on gay marriage is the latest in a
growing number of prominent withdrawals of the results of studies from scientific literature.

Photo

Haruko Obokata, the lead scientist of a retracted stem cell study, at a news conference last year. Credit Kimimasa Mayama/European Pressphoto Agency
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The retraction by Science of a study of changing attitudes about gay marriage is
the latest prominent withdrawal of research results from scientific literature.
And it very likely won't be the last. A 2011 study in Nature found a 10-fold
increase in retraction notices during the preceding decade.

Many retractions barely register outside of the scientific field. But in some
instances, the studies that were clawed back made major waves in societal
discussions of the issues they dealt with. This list recounts some prominent
retractions that have occurred since 1980.

Photo

In 1998, The Lancet, a British medical journal,
published a study by Dr. Andrew Wakefield
that suggested that autism in children was
caused by the combined vaccine for measles,
mumps and rubella. In 2010, The Lancet
retracted the study following a review of Dr.
Wakefield's scientific methods and financial
conflicts.

Despite challenges to the study, Dr.
Wakefield's research had a strong effect on
many parents. Vaccination rates tumbled in
Britain, and measles cases grew. American
antivaccine groups also seized on the research. The United States had more
cases of measles in the first month of 2015
than the number that is typically diagnosed in a full year.

Vaccines and
Autism

Papers published by Japanese researchers in Nature in 2014 claimed to provide
an easy method to create multipurpose stem cells, with eventual implications
for the treatment of diseases and injuries. Months later, the authors, including
Haruko Obokata, issued a retraction. An investigation by one of Japan's most
prestigious scientific institutes, where much of the research occurred, found
that the author had manipulated some of the images published in the study.

Approximately one month after the retraction, one of Ms. Obokata's co-authors,
Yoshiki Sasai, was found hanging in a stairwell of his office. He had taken his
own life.

Stem Cell Production
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Problems (III):  
Lack of Access to Data Analytics Expertise

Science, Dec 2011 
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Mallick, P. & Kuster, B. Proteomics: a pragmatic perspective. Nat Biotechnol 28, 695–709 (2010) 

Fragmentation of Expertise: An Example from Proteomics
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The Bottleneck is the Process, Not the Data!
■  Today: significant human bottleneck in the scientific process 

 

■  Need to help machines understand the scientific research 
process in order to assist scientists 

•  Cognitive systems can be a game changer 

What is the state of the art? 

What is a good problem to work on? 

What is a good experiment to design? 

What data should be collected? 

What are the implications of the experiments? 

What are appropriate revisions of current models? 

What is the best way to analyze the data? 
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Outline

1.  The human bottleneck in data analytics 

2.  Related work on AI and cognitive aspects of 

scientific discovery 

3.  Semantic workflows to capture data analytics 

processes 

4.  Meta-reasoning to automate discovery 

5.  Discovery Informatics 
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Semantic 
integration of 
biomedical 
databases 

Text extraction 
from publications 

Text Extraction in Hanalyzer  
(L. Hunter, U. Colorado)

Generation of interesting 
new hypotheses 
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Robot Scientist [King et al 2009]
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Computational Scientific Discovery
■  [Lenat 1976] 
■  [Lindsay et al 1980] 
■  [Langley 1981] 
■  [Falkenhainer 1985] 
■  [Kulkarni and Simon 1988] 
■  [Cheeseman et al 1989] 
■  [Zytkow et al 1990] 
■  [Simon 1996] 
■  [Valdes-Perez 1997]  
■  [Todorovski et al 2000] 
■  [Schmidt and Lipson 2009] 
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Philosophy of Science
THE 

STRUCTURE 
OF 

SCIENTIFIC 
REVOLUTIONS 
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Cognitive Science
A computational model of 
biological pathway 
construction [Chandrasekaran 
& Nersessian 2015] 
1.  Assembly 
2.  Trimming 
3.  Evaluation 
4.  Revision 

Metabolites*and*main*reac0ons*

Posi0ve/nega0ve*regula0on*of*
metabolites*

Add*parameters*
(Speed*of*change*+*kine0c*order)*

Use*simplifying*assump0ons*to*
reduce*complexity*

Generate*differen0al*equa0ons*

Es0mate*values*for*parameters*
using*training*data*

(main*heuris0c*is*fit*to*data,*but*also*sensi0vity,*

stability,*consistency,*complexity,…)*

Make*predic0ons*

Assess*overall*fit*to*test*data*

Discoveries*

Possible*revisions*
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Collec0on*of*models*

Research*ques0ons* En00es*and*processes* Training*(experimental)*data*

Adapted from  
[Chandrasekaran and Nersessian 2015], 
with thanks to Parag Mallick (Stanford), 
Dan Ruderman, and Shannon 
Mumenthaler of USC/PSOC.  
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Focus: Intelligent Science Assistants for 
Data Analysis

What is the state of the art? 

What is a good problem to work on? 

What is a good experiment to design? 

What data should be collected? 

What is the best way to analyze the data? 

What are the implications of the experiments? 

What are appropriate revisions of current models? 
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Outline

1.  The human bottleneck in data analytics 

2.  Related work on AI and cognitive aspects of 

scientific discovery 

3.  Semantic workflows to capture data analytics 

processes 

4.  Meta-reasoning to automate discovery 

5.  Discovery Informatics 
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Timely	  Analysis	  of	  Environmental	  Data	  	  
[Gil	  et	  al	  ISWC	  2011]

California’s Central Valley:  
•  Farming, pesticides, waste 
•  Water releases 
•  Restoration efforts 

With Tom Harmon (UC Merced), Craig Knoblock and Pedro Szekely (ISI) 
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A Semantic Workflow

Owens-Gibbs Model 

O’Connor-Dobbins Model 

Churchill Model 

DailySensorData	  
	  	  isa	  Hydrolab_Sensor_Data	  	  
	  	  siteLong	  rdf:datatype=“float”	  
	  	  siteLaHtude	  rdf:datatype=“float”	  
	  	  dateStart	  rdf:datatype=“date”	  
	  	  forSite	  rdf:datatype=”string”	  
	  	  numberOfDayNights	  rdf:datatype=“int”	  
	  	  avgDepth	  rdf:datatype=”float”	  
	  	  avgFlow	  rdf:datatype=“float”	  	  	  	  
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Semantic Workflows in Wings 
[Gil et al 10][Gil et al 09][Kim & Gil et al 08][Kim et al 06]

■  Workflows are augmented with 
semantic constraints  

•  Each workflow constituent has a 
variable associated with it 

–  Workflow components, arguments, 
datasets 

•  Constraints are used to restrict 
workflow variables 

•  Can define abstract classes of 
components  

–  Concrete components model exec. codes 
■  Workflow reasoners propagate and use 

semantic constraints 
■  Uses semantic web standards:   OWL/

RDF, SPARQL 
■  Compilation of workflows to scalable 

execution infrastructure 
9 

www.wings-workflows.org  
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;; Depth must be over .6m 
[ CMInvalidity1: 
(?c rdf:type pcdom:ReaerationCMClass) 
(?c pc:hasInput ?idv) 
(?idv pc:hasArgumentID 
'InputParameters') 
(?idv dcdom:depth ?depth) 
le(?depth '0.61’) 
-> (?c pc:isInvalid 'true’)] 

Classes of 
models/
components  

I/O Data 
constraints 

Use 
constraints 

Semantic Components in WINGS 
[Gil iEMSs 2014]
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<dcdom:Hydrolab_Sensor_Data	  rdf:ID=“Hydrolab-‐CDEC-‐04272011">	  
	  	  	  <dcdom:siteLong	  rdf:datatype=“float">-‐120.931</dcdom:siteLongitude>	  
	  	  	  <dcdom:siteLaHtude	  rdf:datatype=“float">37.371</dcdom:siteLaHtude>	  
	  	  	  <dcdom:dateStart	  rdf:datatype=“date">2011-‐04-‐27</dcdom:dateStart>	  
	  	  	  <dcdom:forSite	  rdf:datatype=”string">MST</dcdom:forSite>	  
	  	  	  <dcdom:numberOfDayNights	  rdf:datatype=“int">1</dcdom:numberOfDayNights>	  
	  	  	  <dcdom:avgDepth	  rdf:datatype=”float">4.523957</dcdom:avgDepth>	  
	  	  	  <dcdom:avgFlow	  rdf:datatype=“float">2399</dcdom:avgFlow>	  
</dcdom:Hydrolab_Sensor_Data>	  

1)	  Parameter	  
se+ngs	  

Owens-Gibbs Model 

O’Connor-Dobbins Model 

Churchill Model 

2)	  Choice	  	  
of	  models	  

<dcdom:Metabolism_Results	  	  rdf:ID=“Metabolism_Results-‐CDEC-‐04272011">	  
	  	  	  <dcdom:siteLong	  rdf:datatype=“float">-‐120.931</dcdom:siteLongitude>	  
	  	  	  <dcdom:siteLaHtude	  rdf:datatype=“float">37.371</dcdom:siteLaHtude>	  
	  	  	  <dcdom:dateStart	  rdf:datatype=“date">2011-‐04-‐27</dcdom:dateStart>	  
	  	  	  <dcdom:forSite	  rdf:datatype=”string">MST</dcdom:forSite>	  
	  	  	  <dcdom:numberOfDayNights	  rdf:datatype=“int">1</dcdom:numberOfDayNights>	  
	  	  	  <dcdom:avgDepth	  rdf:datatype=”float">4.523957</dcdom:avgDepth>	  
	  	  	  <dcdom:avgFlow	  rdf:datatype=“float">2399</dcdom:avgFlow>	  
</dcdom:	  Metabolism_Results>	  

3)	  Metadata	  of	  new	  results	  

WINGS Specializes Workflow Based on 
Characteristics of Daily Data
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WINGS Dynamically Selects Appropriate Model 
Based on Daily Sensor Readings

Churchill model O’Connor-Dobbins  
model 

Owens-Gibbs 
model 
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Workflows Capture Data Analytics Expertise  
[Hauder et al e-Science 2011]

Naïve  
Approach 

Expert 
Approach 

Workflows for text analytics, joint work with Yan Liu (USC) and Mattheus Hauder (TUM) 

Feature  
selection  
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WINGS Workflow Reasoners

?Dataset4  
dcdom:isDiscrete true 

Input data for 
decision tree 
modelers (eg ID3) 
must be discrete 

■  Key idea: Skeletal planning, 
where constraints for each 
component are propagated 
through a fixed workflow 
structure (the skeleton) 

■  Phase 1: Goal Regression 
•  Starting from final products, 

traverse workflow backwards 
•  For each node, query for constraints 

on inputs 

■  Phase 2: Forward Projection 
•  Starting from input datasets, 

traverse workflow forwards 
•  For each node, query for constraints 

on outputs 
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Example (Step 1 of 5)

Rule in Component Catalog: 
[modelerSpecialCase2: 
       (?c rdf:type pcdom:ID3ModelerClass)  
       (?c pc:hasInput ?idv)  
       (?idv pc:hasArgumentID "trainingData”) 
 
 -> (?idv dcdom:isDiscrete 
"true"^^xsd:boolean)] 
 

?Dataset4 dcdom:isDiscrete true 

Model5 Model6 Model7
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Example (Step 2 of 5)

Rule in Component Catalog: 
[samplerTransfer: 
 (?c rdf:type pcdom:RandomSampleNClass) 
 (?c pc:hasOutput ?odv)  
 (?odv pc:hasArgumentID 
"randomSampleNOutputData") 
 (?c pc:hasInput ?idv)  
 (?idv pc:hasArgumentID 
"randomSampleNInputData”) 
  (?odv ?p ?val)  
   (?p rdfs:subPropertyOf dc:hasMetrics)  
 
-> (?idv ?p ?val)] 
 

?Dataset3 dcdom:isDiscrete true 

?Dataset4 dcdom:isDiscrete true 

Model5 Model6 Model7
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Example (Step 3 of 5)

Rule in Component Catalog: 
[normalizerTransfer: 
 (?c rdf:type pcdom:NormalizeClass) 
 (?c pc:hasOutput ?odv)  
 (?odv pc:hasArgumentID 
"normalizeOutputData") 
 (?c pc:hasInput ?idv) 
 (?idv pc:hasArgumentID 
"normalizeInputData") 
  (?odv ?p ?val)  
  (?p rdfs:subPropertyOf dc:hasMetrics 
 
-> (?idv ?p ?val)] 
 

?Dataset4 dcdom:isDiscrete true 

?TrainingData dcdom:isDiscrete true 

?Dataset3 dcdom:isDiscrete true 

Model5 Model6 Model7
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Example (Step 4 of 5)

Rule in Component Catalog: 
[modelerTransferFwdData: 
 (?c rdf:type pcdom:ModelerClass) 
 (?c pc:hasOutput ?odv) 
 (?odv pc:hasArgumentID "outputModel”) 
 (?c pc:hasInput ?idv)  
 (?idv pc:hasArgumentID "trainingData") 
 (?idv ?p ?val) 
 (?p rdfs:subPropertyOf dc:hasDataMetrics) 
  notEqual(?p dcdom:isSampled) 
 
 -> (?odv ?p ?val)] 
 

?Dataset4 dcdom:isDiscrete true 

?Dataset3 dcdom:isDiscrete true 

?TrainingData dcdom:isDiscrete true 

?Model5 dcdom:isDiscrete true 
?Model6 dcdom:isDiscrete true 
?Model7 dcdom:isDiscrete true 
 

Model5 Model6 Model7
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Example (Step 5 of 5)

Rule in Component Catalog: 
[voteClassifierTransferDataFwd10: 
 (?c rdf:type pcdom:VoteClassifierClass) 
 (?c pc:hasInput ?idvmodel1) 
 (?idvmodel1 pc:hasArgumentID "voteInput1") 
 (?c pc:hasInput ?idvmodel2) 
 (?idvmodel2 pc:hasArgumentID "voteInput2") 
 (?c pc:hasInput ?idvmodel3) 
 (?idvmodel3 pc:hasArgumentID "voteInput3") 
 (?c pc:hasInput ?idvdata) 
 (?idvdata pc:hasArgumentID "voteInputData") 
       (?idvmodel1 dcdom:isDiscrete ?val1) 
       (?idvmodel2 dcdom:isDiscrete ?val2) 
       (?idvmodel3 dcdom:isDiscrete ?val3) 
       equal(?val1, ?val2), equal(?val2, ?val3)  
 
       -> (?idvdata dcdom:isDiscrete ?va1l)] 

?Model5 dcdom:isDiscrete true 
?Model6 dcdom:isDiscrete true 
?Model7 dcdom:isDiscrete true 
 

?TestData 
 dcdom:isDiscrete 
 true 

?Dataset4 dcdom:isDiscrete true 

?Dataset3 dcdom:isDiscrete true 

?TrainingData dcdom:isDiscrete true 

Model5 Model6 Model7
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WINGS Workflow Reasoners: 
Result

?Model5 dcdom:isDiscrete true 
?Model6 dcdom:isDiscrete true 
?Model7 dcdom:isDiscrete true 
 

?TestData 
 dcdom:isDiscrete 
 true 

?Dataset4 dcdom:isDiscrete true 

?Dataset3 dcdom:isDiscrete true 

?TrainingData  
dcdom:isDiscrete  
true 

Model5 Model6 Model7

?Dataset4  
dcdom:isDiscrete  
true 
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WINGS Automatic Workflow 
Generation Algorithm [Gil et al JETAI 2011]

Seed workflow from request 

unified well-formed req. 

Find input data requirements 

seeded workflows 

Data source selection 

binding-ready workflows 

Parameter selection 

bound workflows 

configured workflows 

Workflow instantiation 

Workflow grounding 

workflow instances 

Workflow mapping 

ground workflows 

executable workflows 

Workflow ranking 

top-k workflows 

Workflows with S. McWeeney & C. Zhang (OHSU) 
Work with P. Gonzalez (UCM) and Jihie Kim (ISI) 

“Pay-as-
you-go”  

semantics 
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Benefits of Semantic Workflows: 
1) Automatic Workflow Elaboration [Gil et al WORKS’13]

LDA Online LDA 

Parallel  
LDA 

Workflows developed  with Y. Liu (USC) and C. Mattmann (JPL) 



35Yolanda GilUSC Information Sciences Institute gil@isi.edu

3) Capturing Expertise with Workflows: 
“Reproducibility Maps” [Garijo et al PLOS CB12]

■  2 months of effort in reproducing published method (in PLoS’10) 

■  Authors expertise was required 

Comparison	  of	  
ligand	  binding	  
sites	  

Comparison	  of	  dissimilar	  
protein	  structures	  

Graph	  network	  
genera?on	  

Molecular	  Docking	  

Work with D. Garijo of UPM and P. Bourne of UCSD 
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Benefits of Semantic Workflows: 
3) Efficiency Through Reuse [Sethi et al MM’13]

Work with Ricky Sethi and Hyujoon Jo of USC 
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Related Work: Workflow Systems
■  Workflow systems 

■  [Goble et al 2007] 
■  [Ludaescher et al 2007] 
■  [Freire et al 2008] 
■  [Mattmann et al 2007]  
■  [Mesirov et al 2009] 
■  [Dinov et al 2009] 

■  Workflow representations 
■  [Moreau et al 2010] 
■  [IBM/MSR 2002] 
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Related Work: Semantic Process Models
■  Composition from first principles 

•  [McIlraith & Son KR 2002] [Sohrabi et al ISWC 2006] [Sohrabi & 
McIlraith ISWC 2009] [Sohrabi & McIlraith ISWC 2010]  

•  [McDermott AIPS 2002] 
•  [Kuter et al ISWC 2004] [Sirin et al JWS 2005] [Kuter et al JWS 2005] [Lin 

et al ESWC 2008] 
•  [Lecue ISWC 2009] 
•  [Calvanese et al IEEE 2008] 
•  [Bertolli et al ICAPS 2009] 
•  [Li et al ISSC 2011] 

■  Representations 
•  [Burstein et al ISWC 2002] [Martin et al ISWC 2007] 
•  [Domingue & Fensel IEEE IS 2008] [Dietze et al IJWSR 2011] [Dietze et al 

ESWC 2009] 
•  [Fensel et al 2011] [Vitvar et al ESWC 2008] [Roman et al AO 2005] 
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Some Readings
■  Yolanda Gil: “Intelligent Workflow Systems and 

Provenance-Aware Software.” Proceedings of the Seventh 
International Congress on Environmental Modeling and 
Software (iEMSs), San Diego, CA, 2014.  

■  Yolanda Gil: “From Data to Knowledge to Discoveries: 
Artificial Intelligence and Scientific Workflows.” Scientific 
Programming 17(3), 2009. 

■  Ewa Deelman, Chris Duffy, Yolanda Gil, Suresh Marru, 
Marlon Pierce, and Gerry Wiener: “EarthCube Report on a 
Workflows Roadmap for the Geosciences.” National 
Science Foundation, Arlington, VA. 2012.  

http://www.isi.edu/~gil/publications.php 
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Outline

1.  The human bottleneck in data analytics 

2.  Related work on AI and cognitive aspects of 

scientific discovery 

3.  Semantic workflows to capture data analytics 

processes 

4.  Meta-reasoning to automate discovery 

5.  Discovery Informatics 
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A Workflow Library for Population Genomics 
[Gil et al 2012]

Work with Christopher Mason (Cornell University) 

CNV Detection 
Variant Discovery from Resequencing 

Transmission Disequilibrium Test Association Tests 

Workflows for population genomics 
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A Grand Challenge: 
Automatic Analysis of Entire Data Repositories

■  Capture 
knowledge about 
analytic methods 

•  Run workflows 
in existing data 
repositories 

•  Report new 
findings 
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Meta-Workflows for Identifying Interesting 
Findings of Analysis Workflows

Work with Parag Mallick (Stanford University) 
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Mallick, P. & Kuster, B. Proteomics: a pragmatic perspective. Nat Biotechnol 28, 695–709 (2010) 

A Wide Range of Computational Workflow Options: Automated 
Process Would Be Systematic for Entire Data Repositories
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Upstream Processing Affects Downstream 
Results: Automated Process Would Avoid Errors
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Compartmentalized Expertise: Automated 
Process Would Cover Multiple Expertise Areas
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Water Resource Modeling

•  Texas has over 33 diverse 
groundwater cases, can use  
with initial state conditions, 
parameter settings, and 
decision variables 

•  Different user groups (land 
use planning, environmental 
protection, and economic 
growth) have different 
analysis goals 

•  Automated process would customize the analysis 

Work with Suzanne Pierce (University of Texas Austin) 
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Organic Data Science: Collaborative Workflow 
Development [Gil et al IUI 2015; ESWC 2015]

!

Work with Suzanne Pierce (University of Texas Austin) 
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1.  The human bottleneck in data analytics 

2.  Related work on AI and cognitive aspects of 

scientific discovery 

3.  Semantic workflows to capture data analytics 

processes 

4.  Meta-reasoning to automate discovery 

5.  Discovery Informatics 
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http://discoveryinformaticsinitiative.org

PSB Workshop (Jan 2013): 
on Computational Challenges of  
Mass Phenotyping 

Microsoft eScience Summit (Aug 2012) 
Workshop on Web Observatories  
for Discovery Informatics  

AAAI Fall Symposium (Nov 2013): 
http://discoveryinformaticsinitiative/dis2013 

AAAI Fall Symposium (Nov 2012): 
http://discoveryinformaticsinitiative/dis2012 

AAAI Workshop (July 2014): 
http://discoveryinformaticsinitiative/diw2014 

KDD Workshop (August 2014): 
http://ailab.ist.psu.edu/idkdd14/ 

PSB Workshop on Discovery Informatics in Biological 
and Biomedical Sciences (January 2015) 

Discovery Informatics
Science Challenges for Intelligent Systems
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Discovery Informatics
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           T
echnological innovations are pen-

etrating all areas of science, making 

predominantly human activities a 

principal bottleneck in scientific prog-

ress while also making scientific ad-

vancement more subject to error and 

harder to reproduce. This is an area where a 

new generation of artificial intelligence (AI) 

systems can radically transform the prac-

tice of scientific discovery. Such systems are 

showing an increasing ability to 

automate scientific data analy-

sis and discovery processes, can 

search systematically and correctly through 

hypothesis spaces to ensure best results, can 

autonomously discover complex patterns in 

data, and can reliably apply small-scale sci-

entific processes consistently and transpar-

ently so that they can be easily reproduced. 

We discuss these advances and the steps 

that could help promote their development 

and deployment.

Applying AI to the practice of science is 

not new. AI pioneer and Nobel laureate 

Herbert Simon hypothesized that cognitive 

mechanisms involved in scientific discovery 

are a special case of general human capabili-

ties for problem-solving and, with colleagues, 

developed systems in the 1970s and 1980s 

that demonstrated reasoning capabilities 

for analyzing scientific data ( 1). Also in the 

1970s, Joshua Lederberg (another Nobel win-

ner) and colleagues developed the DENDRAL 

system for analyzing mass spectrometry data 

in order to hypothesize molecular structures 

( 2). More recent breakthroughs, such as ro-

bot scientists and software that formulates 

laws for complex dynamical systems, demon-

strate broader applicability of AI techniques 

for scientific discovery ( 3).

Over the past two decades, AI has seen 

accelerating scientific advances and con-

comitant commercial-sector successes be-

cause of advances on three fronts: steady 

scholarly advances, especially as success has 

increased the numbers of interested partici-

pants; Moore’s law and steady exponential 

increases in computing power; and expo-

nential increases in, and broad availability 

of, relevant data in volumes never previously 

seen. Those scientific efforts that have lever-

aged AI advances have largely harnessed so-

phisticated machine-learning techniques to 

create correlative predictions from large sets 

of “big data.” Such work aligns well with the 

current needs of peta- and exascale science. 

However, AI has far broader capacity to ac-

celerate scientific discovery, and AI-based 

systems that can represent hypotheses, 

reason with models of the data, and design 

hypothesis-driven data collection techniques 

can reduce the error-prone human bottle-

neck in scientific discovery.

SEARCHING AND SYNTHESIZING. What 

do these intelligent systems look like to-

day? AI techniques are amplifying existing 

tools in identifying relevant results from the 

broader scientific community. Search en-

gines are some of the most important and 

frequently used tools in the general scien-

tific arsenal. Major search engines all use AI 

techniques for tasks like query suggestion 

and result customization. Increasingly, sci-

entists in many fields are augmenting the 

power of search by using machine-readable 

ontologies and Semantic Web technology 

( 4) to tag not just scientific articles but 

also figures and videos, blogs, data sets, 

and computational services, which allow 

information-finding beyond current search 

limitations.

We can project a not-so-distant future 

where “intelligent science assistant” pro-

grams identify and summarize relevant 

research described across the worldwide 

multilingual spectrum of blogs, preprint ar-

chives, and discussion forums; find or gen-

erate new hypotheses that might confirm or 

conflict with ongoing work; and even rerun 

old analyses when a new computational 

method becomes available. Aided by such 

a system, the scientist will focus on more 

of the creative aspects of research, with a 

larger fraction of the routine work left to the 

artificially intelligent assistant.

New types of intelligent systems that can 

enhance scientific efforts in this manner are 

transitioning from academic and industrial 

research laboratories. A term gathering pop-

ularity for systems that intelligently process 

online information beyond search is “cogni-

tive computing,” used by IBM in describing 

the Watson system that beat the best human 

players in the televised Jeopardy! game ( 5). 

One kind of cognitive system includes lan-

guage-based programs like Watson, which 

is now being used by IBM and a number 

of prominent medical centers in develop-

ing tools for improving medical treatment 

by helping doctors keep up with constantly 

changing medical literature. To enhance 

these capabilities, the U.S. Defense Ad-

vanced Research Projects Agency (DARPA) 

recently announced a major effort to syn-

thesize new systems-biology models of can-

cer by knitting together fragmentary causal 

hypotheses gathered by automatically read-

ing papers in the literature ( 6). Another 

group of cognitive systems, based largely on 

advances in neural networks and neurologi-

cally inspired computation, is beginning to 

show promise in the analysis of nontextual 

processing, especially of online images and 

video, across a wide range of areas including 

Amplify scientific discovery 

with artificial intelligence

Schematic of Hanalyzer. Hanalyzer is an example of a modern scientific discovery system. It integrates assertions 

from biomedical databases and then reasons about the resulting semantic information to suggest novel correlations 

from which scientists can generate testable hypotheses.

By Yolanda Gil, 1 Mark Greaves, 2 

James Hendler, 3 
* Haym Hirsh 4    

Many human activities are a bottleneck in progress

ARTIFICIAL INTELLIGENCE

1Information Sciences Institute, University of Southern 
California, Marina del Rey, CA 90292, USA. 2Paci� c Northwest 
National Laboratory, Richland, WA 99354, USA. 3Information 
Technology and Web Science, Rensselaer Polytechnic 
Institute, Troy, NY 12203, USA. 4Cornell University, Ithaca, NY 
14850, USA. *E-mail: hendler@cs.rpi.eduIL

L
U

S
T

R
A

T
IO

N
: 

P
. 

H
U

E
Y

/
S
C
IE
N
C
E

POLICY

Published by AAAS

 o
n 

O
ct

ob
er

 9
, 2

01
4

ww
w.

sc
ie

nc
em

ag
.o

rg
Do

wn
lo

ad
ed

 fr
om

 
 o

n 
O

ct
ob

er
 9

, 2
01

4
ww

w.
sc

ie
nc

em
ag

.o
rg

Do
wn

lo
ad

ed
 fr

om
 

10 OCTOBER 2014 • VOL 346 ISSUE 6206    17 1SCIENCE   sciencemag.org

           T
echnological innovations are pen-

etrating all areas of science, making 

predominantly human activities a 

principal bottleneck in scientific prog-

ress while also making scientific ad-

vancement more subject to error and 

harder to reproduce. This is an area where a 

new generation of artificial intelligence (AI) 

systems can radically transform the prac-

tice of scientific discovery. Such systems are 

showing an increasing ability to 

automate scientific data analy-

sis and discovery processes, can 

search systematically and correctly through 

hypothesis spaces to ensure best results, can 

autonomously discover complex patterns in 

data, and can reliably apply small-scale sci-

entific processes consistently and transpar-

ently so that they can be easily reproduced. 

We discuss these advances and the steps 

that could help promote their development 

and deployment.

Applying AI to the practice of science is 

not new. AI pioneer and Nobel laureate 

Herbert Simon hypothesized that cognitive 

mechanisms involved in scientific discovery 

are a special case of general human capabili-

ties for problem-solving and, with colleagues, 

developed systems in the 1970s and 1980s 

that demonstrated reasoning capabilities 

for analyzing scientific data ( 1). Also in the 

1970s, Joshua Lederberg (another Nobel win-

ner) and colleagues developed the DENDRAL 

system for analyzing mass spectrometry data 

in order to hypothesize molecular structures 

( 2). More recent breakthroughs, such as ro-

bot scientists and software that formulates 

laws for complex dynamical systems, demon-

strate broader applicability of AI techniques 

for scientific discovery ( 3).

Over the past two decades, AI has seen 

accelerating scientific advances and con-

comitant commercial-sector successes be-

cause of advances on three fronts: steady 

scholarly advances, especially as success has 

increased the numbers of interested partici-

pants; Moore’s law and steady exponential 

increases in computing power; and expo-

nential increases in, and broad availability 

of, relevant data in volumes never previously 

seen. Those scientific efforts that have lever-

aged AI advances have largely harnessed so-

phisticated machine-learning techniques to 

create correlative predictions from large sets 

of “big data.” Such work aligns well with the 

current needs of peta- and exascale science. 

However, AI has far broader capacity to ac-

celerate scientific discovery, and AI-based 

systems that can represent hypotheses, 

reason with models of the data, and design 

hypothesis-driven data collection techniques 

can reduce the error-prone human bottle-

neck in scientific discovery.

SEARCHING AND SYNTHESIZING. What 

do these intelligent systems look like to-

day? AI techniques are amplifying existing 

tools in identifying relevant results from the 

broader scientific community. Search en-

gines are some of the most important and 

frequently used tools in the general scien-

tific arsenal. Major search engines all use AI 

techniques for tasks like query suggestion 

and result customization. Increasingly, sci-

entists in many fields are augmenting the 

power of search by using machine-readable 

ontologies and Semantic Web technology 

( 4) to tag not just scientific articles but 

also figures and videos, blogs, data sets, 

and computational services, which allow 

information-finding beyond current search 

limitations.

We can project a not-so-distant future 

where “intelligent science assistant” pro-

grams identify and summarize relevant 

research described across the worldwide 

multilingual spectrum of blogs, preprint ar-

chives, and discussion forums; find or gen-

erate new hypotheses that might confirm or 

conflict with ongoing work; and even rerun 

old analyses when a new computational 

method becomes available. Aided by such 

a system, the scientist will focus on more 

of the creative aspects of research, with a 

larger fraction of the routine work left to the 

artificially intelligent assistant.

New types of intelligent systems that can 

enhance scientific efforts in this manner are 

transitioning from academic and industrial 

research laboratories. A term gathering pop-

ularity for systems that intelligently process 

online information beyond search is “cogni-

tive computing,” used by IBM in describing 

the Watson system that beat the best human 

players in the televised Jeopardy! game ( 5). 

One kind of cognitive system includes lan-

guage-based programs like Watson, which 

is now being used by IBM and a number 

of prominent medical centers in develop-

ing tools for improving medical treatment 

by helping doctors keep up with constantly 

changing medical literature. To enhance 

these capabilities, the U.S. Defense Ad-

vanced Research Projects Agency (DARPA) 

recently announced a major effort to syn-

thesize new systems-biology models of can-

cer by knitting together fragmentary causal 

hypotheses gathered by automatically read-

ing papers in the literature ( 6). Another 

group of cognitive systems, based largely on 

advances in neural networks and neurologi-

cally inspired computation, is beginning to 

show promise in the analysis of nontextual 

processing, especially of online images and 

video, across a wide range of areas including 

Amplify scientific discovery 

with artificial intelligence

Schematic of Hanalyzer. Hanalyzer is an example of a modern scientific discovery system. It integrates assertions 

from biomedical databases and then reasons about the resulting semantic information to suggest novel correlations 
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predominantly human activities a 

principal bottleneck in scientific prog-

ress while also making scientific ad-

vancement more subject to error and 

harder to reproduce. This is an area where a 

new generation of artificial intelligence (AI) 

systems can radically transform the prac-

tice of scientific discovery. Such systems are 

showing an increasing ability to 

automate scientific data analy-

sis and discovery processes, can 

search systematically and correctly through 

hypothesis spaces to ensure best results, can 

autonomously discover complex patterns in 

data, and can reliably apply small-scale sci-

entific processes consistently and transpar-

ently so that they can be easily reproduced. 

We discuss these advances and the steps 

that could help promote their development 

and deployment.

Applying AI to the practice of science is 

not new. AI pioneer and Nobel laureate 

Herbert Simon hypothesized that cognitive 

mechanisms involved in scientific discovery 

are a special case of general human capabili-

ties for problem-solving and, with colleagues, 

developed systems in the 1970s and 1980s 

that demonstrated reasoning capabilities 

for analyzing scientific data ( 1). Also in the 

1970s, Joshua Lederberg (another Nobel win-

ner) and colleagues developed the DENDRAL 

system for analyzing mass spectrometry data 

in order to hypothesize molecular structures 

( 2). More recent breakthroughs, such as ro-

bot scientists and software that formulates 

laws for complex dynamical systems, demon-

strate broader applicability of AI techniques 

for scientific discovery ( 3).

Over the past two decades, AI has seen 

accelerating scientific advances and con-

comitant commercial-sector successes be-

cause of advances on three fronts: steady 

scholarly advances, especially as success has 

increased the numbers of interested partici-

pants; Moore’s law and steady exponential 

increases in computing power; and expo-

nential increases in, and broad availability 

of, relevant data in volumes never previously 

seen. Those scientific efforts that have lever-

aged AI advances have largely harnessed so-

phisticated machine-learning techniques to 

create correlative predictions from large sets 

of “big data.” Such work aligns well with the 

current needs of peta- and exascale science. 

However, AI has far broader capacity to ac-

celerate scientific discovery, and AI-based 

systems that can represent hypotheses, 

reason with models of the data, and design 

hypothesis-driven data collection techniques 

can reduce the error-prone human bottle-

neck in scientific discovery.

SEARCHING AND SYNTHESIZING. What 

do these intelligent systems look like to-

day? AI techniques are amplifying existing 

tools in identifying relevant results from the 

broader scientific community. Search en-

gines are some of the most important and 

frequently used tools in the general scien-

tific arsenal. Major search engines all use AI 

techniques for tasks like query suggestion 

and result customization. Increasingly, sci-

entists in many fields are augmenting the 

power of search by using machine-readable 

ontologies and Semantic Web technology 

( 4) to tag not just scientific articles but 

also figures and videos, blogs, data sets, 

and computational services, which allow 

information-finding beyond current search 

limitations.

We can project a not-so-distant future 

where “intelligent science assistant” pro-

grams identify and summarize relevant 

research described across the worldwide 

multilingual spectrum of blogs, preprint ar-

chives, and discussion forums; find or gen-

erate new hypotheses that might confirm or 

conflict with ongoing work; and even rerun 

old analyses when a new computational 

method becomes available. Aided by such 

a system, the scientist will focus on more 

of the creative aspects of research, with a 

larger fraction of the routine work left to the 

artificially intelligent assistant.

New types of intelligent systems that can 

enhance scientific efforts in this manner are 

transitioning from academic and industrial 

research laboratories. A term gathering pop-

ularity for systems that intelligently process 

online information beyond search is “cogni-

tive computing,” used by IBM in describing 

the Watson system that beat the best human 

players in the televised Jeopardy! game ( 5). 

One kind of cognitive system includes lan-

guage-based programs like Watson, which 

is now being used by IBM and a number 

of prominent medical centers in develop-

ing tools for improving medical treatment 

by helping doctors keep up with constantly 

changing medical literature. To enhance 

these capabilities, the U.S. Defense Ad-

vanced Research Projects Agency (DARPA) 

recently announced a major effort to syn-

thesize new systems-biology models of can-

cer by knitting together fragmentary causal 

hypotheses gathered by automatically read-

ing papers in the literature ( 6). Another 

group of cognitive systems, based largely on 

advances in neural networks and neurologi-

cally inspired computation, is beginning to 

show promise in the analysis of nontextual 

processing, especially of online images and 

video, across a wide range of areas including 
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biological imaging ( 7), species preservation 

( 8), and quantum chemistry ( 9).

DIGESTING DATA. AI techniques have ac-

celerated the pace and quality of analysis of 

the huge quantities of data that can stream 

from modern laboratory equipment. To de-

rive scientific insight from data at this scale, 

standard methods include applying dimen-

sionality-reduction techniques and feature 

extractors to create high-speed classifiers 

based on machine-learning approaches, such 

as Bayesian networks or support-vector ma-

chines. Because the phenomena under study 

often exist in nonstationary environments 

or in contexts with only small quantities of 

labeled data that can be used for training—

complex, unsupervised, and reinforcement 

machine-learning techniques are critical for 

data analysis. These types of approaches are 

being used in recent projects in data-rich ar-

eas as diverse as chemical structure predic-

tion, pathway analysis and identification in 

systems biology, the processing of large-scale 

geophysics data, and others.

Another, more ambitious class of intelli-

gent systems is being developed under the 

rubric of Discovery Science or, increasingly, 

Discovery Informatics ( 10). These systems 

enhance the intelligent assistants described 

earlier with the capability to attack scientific 

tasks that combine rote work with increasing 

amounts of adaptivity and freedom. These 

systems use encoded knowledge of scientific 

domains and processes in order to assist 

with tasks that previously required human 

knowledge and reasoning. In fact, several 

sciences have significant investments in the 

representation of vast amounts of scientific 

knowledge and are poised to explore new in-

telligent systems that exploit that knowledge 

for discovery.

For example, the Hanalyzer (short for 

high-throughput analyzer) uses natural lan-

guage processing to automatically extract a 

semantic network from all PubMed papers 

relevant to a specific scientist, uses Semantic 

Web technology to integrate assertions from 

other biomedical sources, and reasons about 

the network to find new correlations that 

suggest new genes to investigate ( 11) (see 

the figure). The Wings system uses Semantic 

Web technologies and AI planning to reason 

about specific choices of models and algo-

rithms for water-quality data and customizes 

workflows automatically for daily condi-

tions ( 12). Eureqa, usable in many scientific 

fields, searches a vast space of hypotheses 

consistent with given data observed in an 

experiment, selects those most promising, 

and designs experiments to test them ( 13). 

Sunfall incorporates usability principles and 

cognitive load considerations in the design 

of a visual analytics interface; this reduces 

scientists’ workload and false-positive rates 

in identifying supernovae ( 14).

These four systems are representative of 

the ways that more advanced AI can serve 

scientific ends. They are based on explicit 

representations of science processes, and 

they reason about these to automate pro-

cesses and assist the human scientist. De-

velopment of the explicit representations of 

scientific processes on which they are based 

is complex. When successful, the computer 

can become a real (although junior) par-

ticipant in the science process, doing what 

it does best: applying algorithmic methods 

and bringing knowledge to bear in a consis-

tent, systematic, and complete manner.

A VIRTUOUS CIRCLE. Developing systems 

like these is not just an exercise in AI appli-

cation—it affects the direction of AI research. 

Addressing real challenges of science pushes 

the AI envelope in many areas, including 

knowledge representation, automatic infer-

ence, process reasoning, hypothesis genera-

tion, natural language processing, machine 

learning, collaborative interaction, and in-

telligent user interfaces. This interaction 

creates a virtuous circle where advances in 

science go hand in hand with advances in AI. 

This virtuous circle can only work well if bal-

anced and well oiled.

What are the best ways to immerse AI re-

search into scientific practice so that it can 

deliver on this promise? First, and perhaps 

most obviously, is conceiving new means of 

bringing interdisciplinary research teams to-

gether at an earlier stage of research and in 

a sustainable manner. Increasingly, there is a 

realization in academia that scientists must 

gain broad knowledge and skills in computa-

tion and programming. This should include 

AI components—training and supporting 

students and young researchers. In addition, 

basic research to advance AI in domains of 

science practice needs to be facilitated and 

rewarded in academia, as standard criteria 

for research merit focus primarily on theo-

retical advances in computing per se and 

thus do not transfer well to this kind of mul-

tidisciplinary research.

A significant challenge that appears to 

be specific to AI is to attract scientific re-

searchers to engage in this joint research. 

Scientists have made significant invest-

ments in the past in advanced computing 

technologies, such as high-end computing, 

distributed databases, and sensor networks. 

However, their interest in AI seems relatively 

limited. With AI systems having impacts in 

the consumer sector (e.g., speech recogni-

tion systems, real-time automated language 

translation, and self-driving cars and self-

navigating drones), why are scientists not 

enthusiastic about embracing AI?

One hypothesis is the lack of clear methods 

to measure the impact of AI in science. There 

are exceptions in some areas of AI, such as 

machine learning and language processing, 

where metrics to compare systems have been 

defined and improvement has been mea-

sured. But there has been little research into 

such measurement more generally, especially 

for the heuristic methods of the reasoning 

field. Methods to quantify significant ad-

vances because of the use of new AI technolo-

gies in scientific fields are needed to validate 

the impact of AI on scientific discovery.

Another reason may be the limited work 

of the AI community in disseminating and 

marketing ideas to scientists. Although many 

non-AI scientists attend supercomputing and 

database conferences, few are compelled to 

attend an AI conference. Possibly, research-

ers are influenced by the unrealistic science 

fiction images of super-smart machines, 

rather than the realities of current techno-

logical advances. Understanding the sources 

of hesitation of scientists to embrace AI will 

be a first step toward changing the culture 

and bringing these communities together.

The world faces deep problems that chal-

lenge traditional methodologies and ideolo-

gies. These challenges will require the best 

brains on our planet. In the modern world, 

the best brains are a combination of humans 

and intelligent computers, able to surpass 

the capabilities of either one alone.      ■ 
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A View from Biomedical Research: 
The NIH Big Data To Knowledge (BD2K) Initiative

“Discovery informatics is in its infancy. Search engines are grappling with the need 
for deep search, but it is doubtful they will fulfill the needs of the biomedical research 
community when it comes to finding and analyzing the appropriate datasets.  Let me 
cast the vision in a use case. As a research group winds down for the day algorithms 
take over, deciphering from the days on-line raw data, lab notes, grant drafts etc. 
underlying themes that are being explored by the laboratory (the lab’s digital assets). 
Those themes are the seeds of deep search to discover what is relevant to the lab that 
has appeared since a search was last conducted in published papers, public data sets, 
blogs, open reviews etc.  Next morning the results of the deep search are presented to 
each member as a personalized view for further post processing. We have a long way 
to go here, but programs that incite groups of computer, domain and social scientists to 
work on these needs will move us forward.” 
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A View from Geoscieces: 
The NSF EarthCube Initiative

hAp://www.earthcube.org/	  

Data Workflows Semantics Governance 
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2015 NSF Workshop on  
Intelligent Systems for Geosciences

“Intelligent systems must incorporate existing scientific 
knowledge and the user’s context.  This would enable novel 
forms of reasoning and learning about geosciences data.” 

 
http://is-geo.org

Geospa'al)Reasoning)

Geospa'al)Pa+ern)Matching:))
Discovering)Flow)Anomalies)
•  Scalable'geospa,al'temporal'pa0ern'matching'
•  Retrospec,ve'detec,on'of'when'contaminants'entered'an'
ecosystem'

Dissolved  
Oxygen 

Rainfall 

Informa(on)Integra(on)

Seman&c(Metadata:((
En&ty(Linking(Across(Data(Sources(
• Name%based)and)structure%based)mapping)of)en44es)
•  Semi%automa4c)integra4on)of)diverse)data)sources)

Machine(Learning(

Pa#ern'Mining:''
Monitoring'Ocean'Eddies'
•  Spa$o&temporal,pa-ern,mining,of,satellite,data,using,
novel,mul$ple,object,tracking,algorithms,
•  Created,an,open,source,data,base,of,20+,years,of,
eddies,and,eddy,tracks,

Network'Analysis:''
Climate'Teleconnec<ons'
•  Scalable,method,for,discovering,related,graph,regions,
•  Discovery,of,novel,climate,teleconnec$ons,

h#p://climatechange.cs.umn.edu/'

Extremes'and'Uncertainty:'
Heat'waves,'heavy'rainfall'
•  Extreme,value,theory,in,space&$me,and,dependence,of,
extremes,on,covariates,
•  Spa$otemporal,trends,in,extremes,and,physics&guided,
uncertainty,quan$fica$on,

Change'Detec<on:''
Monitoring'Ecosystem'Disturbances'
•  Robust,scoring,techniques,for,iden$fying,,diverse,changes,in,
spa$o&temporal,data,,
•  Created,a,comprehensive,catalogue,of,global,changes,in,
vegeta$on,,e.g.,fires,,,deforesta$on,,and,insect,damage,

Augmented)Reality)

Tablet'based*Augmented*Reality:**
Exploring*Remote*Loca;ons*
•  Low$cost(tablet$based(virtual(reality(displays(
•  Virtual(presence(in(inaccessible(or(previously(visited(
loca6ons(

Robo$cs'

Offline&Models&from&AUV&data:&&
Models&of&Coastal&Zones&
• Georeferenced)mapping)and)3D)reconstruc4on)
•  Long6term)autonomy)for)AUV)gliders)includes)in6situ)mass6
spectrometry)

Summary of Some Computer Science Technologies Relevant to Geoscientists 
Katie Skinner & Matthew Johnson-Roberson http://droplab.engin.umich.edu 
 
Optical Autonomous Underwater Vehicles and SLAM 
Underwater vehicles, capable of high precision navigation and equipped with 
downward-looking stereo cameras, can recover bathymetry at fine resolutions over 
relatively large, contiguous extents of seafloor. Measures derived from these 
surveys make it possible to obtain dense coverage over larger spatial extents more 
rapidly than with human divers. Given that the surveys and calculations can be 
performed without humans, a potential source of measurement bias is eliminated. 
Furthermore, the submersibles and the navigation systems proposed in this grant 
would provide the ability for easy repeat transects, making it possible to revisit an 
area of interest for monitoring purposes.  

A great deal of work has been done in the 
domain of 3D mapping for underwater vehicles and 
this work has established the practicality of 
performing georeferenced mapping, using SLAM 
(Simultaneous Localization and Mapping), 
followed by post-processed 3D reconstruction. 
An example of the state-of-the-art in offline 
models generated with AUV data appears at 
right. 

 
3D image data classification 
The recent success of convolutional neural networks (CNNs) in tasks such as image 
recognition, object detection and semantic scene recognition has spurred a renewed 
interest in multi-layer hierarchal feature learning in the computer vision 
community. One of the most exciting aspects of research in this direction is that 
network architectures such as CNNs alleviate the need for domain specific feature 
engineering. Such methods, which learn feature representations directly from the 
data, are thus desirable because they can be applied to a multitude of input 
modalities, and are not limited to 2D RGB data.  
 
Long-term persistent autonomy with hybrid AUV gliders and chemical sensing 
AUV gliders have begun to blur AUV class distinctions by 
combining active thrust and buoyancy. Hybrid glider with an 
embedded decision architecture that assimilates data to 
generate and continuously update an environmental model of 
the study site could allow for long term site monitoring. An 
AUV glider can operate as a reconnaissance platform in coastal 
zones to autonomously identify benthic areas for follow up 
investigation with a higher resolution sensor. Combing this 
with in-situ mass spectrometry can quantitatively identify a wide range of dissolved 
chemicals at trace concentrations in the subsurface environment. This technology 
can be used to track and follow plumes of chemicals, environmental phenomenon, 
and disasters like oil spills. Su
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http://commons.wikimedia.org/wiki/File:MRI_brain_sagittal_section.jpg 
http://commons.wikimedia.org/wiki/File:Earth_Eastern_Hemisphere.jpg 
http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html 
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Thank you!
http://www.isi.edu/~gil 

http://www.wings-workflows.org 
http://www.organicdatascience.org 

http://discoveryinformaticsinitiative.org  

■  Wings contributors: Varun Ratnakar, Ricky Sethi, Hyunjoon Jo, Jihie Kim, Yan Liu, Dave Kale 
(USC), Ralph Bergmann (U Trier), William Cheung (HKBU), Daniel Garijo (UPM), Pedro 
Gonzalez & Gonzalo Castro (UCM), Paul Groth (VUA) 

■  Wings collaborators: Chris Mattmann (JPL), Paul Ramirez (JPL), Dan Crichton (JPL), Rishi 
Verma (JPL), Ewa Deelman & Gaurang Mehta & Karan Vahi (USC), Sofus Macskassy (ISI), 
Natalia Villanueva & Ari Kassin (UTEP) 

■  Organic Data Science: Felix Michel and Matheus Hauder (TUM), Varun Ratnakar (ISI), Chris 
Duffy (PSU), Paul Hanson, Hilary Dugan, Craig Snortheim (U Wisconsin), Jordan Read 
(USGS), Neda Jahanshad (USC) 

■  Biomedical workflows: Phil Bourne & Sarah Kinnings (UCSD), Parag Mallick (Stanford U.) 
Chris Mason (Cornell), Joel Saltz & Tahsin Kurk (Emory U.), Jill Mesirov & Michael Reich 
(Broad), Randall Wetzel (CHLA), Shannon McWeeney & Christina Zhang (OHSU) 

■  Geosciences workflows: Chris Duffy (PSU), Paul Hanson (U Wisconsin), Tom Harmon & 
Sandra Villamizar (U Merced), Tom Jordan & Phil Maechlin (USC), Kim Olsen (SDSU) 

■  And many others! 


