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Outline!
1.  Managing work 

•  Personal to do lists 

2.  Knowledge rich tasks in science 
•  Semantic workflows 

3.  Collaborative tasks in science 
•  Organic data science 

4.  Closing thoughts 
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To Dos!

Daily to-dos 

Email 
requests 
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To Dos!

By annual 
timeline  
(e.g. SIGAI) 

By project 
(next 6 
months) 

This 
week 

Monthly travel 
and deadlines 

CFPs, 
BAAs 
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To Do Lists 

■  To do lists are pervasive [Kirsh 01; Norman 91] 
•  Used by more than 60% of people for personal information 

[Jones & Thomas 97] 
•  Used more than calendars, contact lists, etc.  

■  Prior research focused on user studies 
•  [Bellotti et al 04; Dey et al 00] 

 

■  Opportunity for assistance 
•  Major potential impact on productivity 
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To Do List Management: Opportunities for 
Interpretation-based Assistance 

Anticipate missing  
entries & sub-tasks 

   To Do List Manager 

Automate through agents 

Group and organize  

Get advice from others 

Get information from Web 
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What Are To Do Items Like: 
FB app!

Renew registration for car

Hotel reservation

Pay bills

Apply for financial aid

Print plane tickets

Renew BOFA card before you leave for summer




Buy Air Blades Mk2 (Imperial)

Buy Ablative Shell (Imperial)

Ruff Racing Hyperblack 278 19’’ 275/35 & 

         245/40 wrapped in NITTO 555R’s

Order more AA Eneloop batteries

Return Fan to Westside via UPS

Return ugly jacket


Mettre les images des captures sur Facebook

Spinatch and Bashamel Cupcakes

Skriva kod till Simons webbsida

Watch ‘arry pottaaa!


DIET!!!

Shoes?  Debate… need sneakers

Be a true Christian

Mafia blog update

Think about more Facebook Money Making Ideas!

Ending of reproductive abilities

Get off my lazy arse and start achieving some stuff


■  ~1500 items collected 
from ~325 people 

■  Many are not amenable 
to automation 

■  Many could be automated 
fully or in part 
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What Are To Do Items Like: 
Office!
■  Unusual structure 

•  No verb: “quarterly report to Joe” 
•  Abbreviations (also typos): “Sched wed 15 ISI” 
•  Questions: “How to extract data for Steve” 

■  Many ways to refer to the same task 
•  “Meet with John about paper”, “Discuss paper with John”, … 

■  Incomplete task specifications 
•  “Schedule meeting with John” 

■  Ambiguous references out of context 
•  “Meet about paper” 
•  “Meet with Raytheon folks” 

■  Personal items 
•  “Walk the dog” 

■  Corpus of 2400 to-do 
entries from users of 
CALO office assistant 

■  77% lack a verb 
■  56% missing at least 

one argument 
■  14% could be 

automated by agents 
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Opportunities 

Anticipate missing  
entries & sub-tasks 

   To Do List Manager 

Automate through agents 

Group and organize  

Get advice from others 

Get information from Web 

Agents 

Colleagues 

On-Line  
Resources 
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Agents:  
Beamer for CALO and Radar [Gil & Ratnakar AAAI 2008]!

■  Match agent capabilities to user’s to dos 

Calendar Agent 
•  SchMtg <person> 

<topic> <time> <loc> 

A2 
•  Action2 

<x1> <x2> 

A3 
•  Action3 

<z1> 

To Do 

•  Set up discussion 
with  Bill on 
ISWC paper 

? 

? 

? 
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Agents:  
Beamer for CALO and Radar [Gil & Ratnakar AAAI 2008]!

■  Use paraphrase patterns of agent capabilities to match them 
to user’s to dos 

A2 
•  Action2 

<x1> <x2> 

To Do 

•  Set up discussion 
with  Bill on 
ISWC paper 

Calendar Agent 
•  SchMtg <person> 

<topic> <time> <loc> 

PARAPHRASES: 
•  Set up discussion 

with <person> on 
<topic> 

•  Meet about <topic> 
with <person> 

•  … 

Match 
A3 

•  Action3 
<z1> 
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Agents:  
Beamer for CALO and Radar [Gil & Ratnakar AAAI 2008]!

■  Use paraphrase patterns of agent capabilities to 
match them to user’s to dos 

■  Evaluation with CALO office assistant corpus 
•  86.7% accuracy in detecting relevance to agents 
•  only 0.2 to 0.4 edits needed to set up task parameters 

To Do 

•  Set up discussion 
with  Bill on 
ISWC paper 

Calendar Agent 
•  SchMtg <person> 

<topic> <time> <loc> 

PARAPHRASES: 
•  Set up discussion 

with <person> on 
<topic> 

•  Meet about <topic> 
with <person> 

•  … 

Match 
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The Need for Semantics 

Knowledge 

   To Do List Manager 

Automate through agents 

Group and organize  

Get advice from others 

Get information from Web 

Anticipate missing  
entries & sub-tasks 
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Paraphrase Game [Chklovski 2005]!
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Common (Sense) Knowledge  
[Chklovski and Gil, K-CAP 2005, AAAI 2005]!

      Learner2      

700,000+ statements  
collected from over  

3,000 users 
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VerbOcean [Chkovski and Pantel, IJCNLP 2005]!

 8 
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Figure 2. Common Knowledge about Tasks Extracted from Textual Corpora. 

 

 

• Relations between tasks.  Our Verb Relations repository, VerbOcean 

[Chklovski & Pantel 2004, 2005], was extracted from the Web.  It contains 

more than 22,000 instances of relations between nearly 3,500 distinct 

verbs,including “schedule happens-before reschedule”, and “cancel stronger-

than postpone”. Such relations can be useful in identifying potentially related 

to-do entries and their subtasks. 

• Durations of tasks.  Our Task Duration repository is extracted based on 

frequency of temporal mentions in the Google TeraWord corpus [Brants and 

Franz 2006].  This is an English word 5-gram corpus that was made widely 

available, extracted from trillion-word tokens of text in public Web sites. 

 

Figure 1 shows snapshots of the interfaces to collect different kinds of common 

sense knowledge about tasks from volunteers.  Figure 2 shows examples of task 

knowledge extracted automatically from text. 

These repositories have broad coverage of the topics and tasks of relevance, since 

they include knowledge about common tasks and in some cases have more dense 

coverage of office tasks in particular.  The repositories are semi-formal because they 
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Managing To Dos through Colleagues: 
Social Task Networks [Groth et al 2010]!

■  To Do app for FB 

 
■  Open Task 

Repository using 
Linked Data 
Principles 

 

Person 

To-do 

Web resource 

Shared to-do 

Shared technique 

Person | Person 

To-do | Resource 

To-do | Technique 

Task | Subtask 

Social task networks  
•  People linked to 

their to-dos 
•  To-dos linked to 

their  subtasks 
•  Tasks are linked to 

URIs which link to 
web resources 



19!Yolanda Gil	

USC Information Sciences Institute	

 gil@isi.edu	

ISWC-2014	



Managing To Dos through On-Line Resources 
[Vrandecic and Gil IUI 2011]!
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Some Readings!
■  Yolanda Gil, Varun Ratnakar, Timothy Chklovski, Paul T. 

Groth, Denny Vrandecic: “Capturing Common Knowledge 
about Tasks: Intelligent Assistance for To Do Lists.” ACM 
Transactions on Interactive Intelligent Systems, 2(3). 2012.  

■  Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina 
Lerman, Jean Oh, David V. Pynadath, Thomas A. Russ, 
Milind Tambe: “Electric Elves: Agent Technology for 
Supporting Human Organizations.” AI Magazine 23(2): 
11-24 (2002) 

http://www.isi.edu/~gil/publications.php 
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A Semantic Challenge: 
Managing Personal To Dos!

To-Do list interfaces Agents/services, other 
people, advice web 
sites  

To Do  
List  

Manager 
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A Semantic Challenge: 
Coordinating To Dos of Different People!

To Do  
List  

Manager To Do  
List  

Manager 

To Do  
List  

Manager 

To Do  
List  

Manager 
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Semantic Challenges in Getting Work Done!
■  To dos 

•  Managing personal to dos 
•  Managing coordinated to dos 

■  Knowledge rich tasks in science 

■  Open science 
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Data-Intensive Computing in Science!
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The Bottleneck is the Process, Not the Data!!
■  Today: significant human bottleneck in the scientific process 

 

■  Need to help machines understand the scientific research 
process in order to assist scientists 

•  Semantics can be a game changer 

What is the state of the art? 

What is a good problem to work on? 

What is a good experiment to design? 

What data should be collected? 

What are the implications of the experiments? 

What are appropriate revisions of current models? 

What is the best way to analyze the data? 
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Semantic 
integration of 
biomedical 
databases 

Text extraction 
from publications 

Text Extraction in Hanalyzer  
(L. Hunter, U. Colorado)!

Generation of interesting 
new hypotheses 
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Robot Scientist [King et al 2009]!
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Intelligent Science Assistants!

What is the state of the art? 

What is a good problem to work on? 

What is a good experiment to design? 

What data should be collected? 

What is the best way to analyze the data? 

What are the implications of the experiments? 

What are appropriate revisions of current models? 
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Timely	
  Analysis	
  of	
  Environmental	
  Data	
  	
  
[Gil	
  et	
  al	
  ISWC	
  2011]!

California’s Central Valley:  
•  Farming, pesticides, waste 
•  Water releases 
•  Restoration efforts 

With Tom Harmon (UC Merced), Craig Knoblock and Pedro Szekely (ISI) 
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A Semantic Workflow!

Owens-Gibbs Model 

O’Connor-Dobbins Model 

Churchill Model 

DailySensorData	
  
	
  	
  isa	
  Hydrolab_Sensor_Data	
  	
  
	
  	
  siteLong	
  rdf:datatype=“float”	
  
	
  	
  siteLaHtude	
  rdf:datatype=“float”	
  
	
  	
  dateStart	
  rdf:datatype=“date”	
  
	
  	
  forSite	
  rdf:datatype=”string”	
  
	
  	
  numberOfDayNights	
  rdf:datatype=“int”	
  
	
  	
  avgDepth	
  rdf:datatype=”float”	
  
	
  	
  avgFlow	
  rdf:datatype=“float”	
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Semantic Workflows in Wings 
[Gil et al 10][Gil et al 09][Kim & Gil et al 08][Kim et al 06]!

■  Workflows are augmented with 
semantic constraints  

•  Each workflow constituent has a 
variable associated with it 

–  Workflow components, arguments, 
datasets 

•  Constraints are used to restrict 
workflow variables 

•  Can define abstract classes of 
components  

–  Concrete components model exec. codes 
■  Workflow reasoners propagate and use 

semantic constraints 
■  Uses semantic web standards:   OWL/

RDF, SPARQL 
■  Compilation of workflows to scalable 

execution infrastructure 
9 

www.wings-workflows.org  
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;; Depth must be over .6m 
[ CMInvalidity1: 
(?c rdf:type pcdom:ReaerationCMClass) 
(?c pc:hasInput ?idv) 
(?idv pc:hasArgumentID 
'InputParameters') 
(?idv dcdom:depth ?depth) 
le(?depth '0.61’) 
-> (?c pc:isInvalid 'true’)] 

Classes of 
models/
components  

I/O Data 
constraints 

Use 
constraints 

Semantic Components in WINGS 
[Gil iEMSs 2014]!
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<dcdom:Hydrolab_Sensor_Data	
  rdf:ID=“Hydrolab-­‐CDEC-­‐04272011">	
  
	
  	
  	
  <dcdom:siteLong	
  rdf:datatype=“float">-­‐120.931</dcdom:siteLongitude>	
  
	
  	
  	
  <dcdom:siteLaHtude	
  rdf:datatype=“float">37.371</dcdom:siteLaHtude>	
  
	
  	
  	
  <dcdom:dateStart	
  rdf:datatype=“date">2011-­‐04-­‐27</dcdom:dateStart>	
  
	
  	
  	
  <dcdom:forSite	
  rdf:datatype=”string">MST</dcdom:forSite>	
  
	
  	
  	
  <dcdom:numberOfDayNights	
  rdf:datatype=“int">1</dcdom:numberOfDayNights>	
  
	
  	
  	
  <dcdom:avgDepth	
  rdf:datatype=”float">4.523957</dcdom:avgDepth>	
  
	
  	
  	
  <dcdom:avgFlow	
  rdf:datatype=“float">2399</dcdom:avgFlow>	
  
</dcdom:Hydrolab_Sensor_Data>	
  

1)	
  Parameter	
  
se+ngs	
  

Owens-Gibbs Model 

O’Connor-Dobbins Model 

Churchill Model 

2)	
  Choice	
  	
  
of	
  models	
  

<dcdom:Metabolism_Results	
  	
  rdf:ID=“Metabolism_Results-­‐CDEC-­‐04272011">	
  
	
  	
  	
  <dcdom:siteLong	
  rdf:datatype=“float">-­‐120.931</dcdom:siteLongitude>	
  
	
  	
  	
  <dcdom:siteLaHtude	
  rdf:datatype=“float">37.371</dcdom:siteLaHtude>	
  
	
  	
  	
  <dcdom:dateStart	
  rdf:datatype=“date">2011-­‐04-­‐27</dcdom:dateStart>	
  
	
  	
  	
  <dcdom:forSite	
  rdf:datatype=”string">MST</dcdom:forSite>	
  
	
  	
  	
  <dcdom:numberOfDayNights	
  rdf:datatype=“int">1</dcdom:numberOfDayNights>	
  
	
  	
  	
  <dcdom:avgDepth	
  rdf:datatype=”float">4.523957</dcdom:avgDepth>	
  
	
  	
  	
  <dcdom:avgFlow	
  rdf:datatype=“float">2399</dcdom:avgFlow>	
  
</dcdom:	
  Metabolism_Results>	
  

3)	
  Metadata	
  of	
  new	
  results	
  

WINGS Specializes Workflow Based on 
Characteristics of Daily Data!
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WINGS Dynamically Selects Appropriate Model 
Based on Daily Sensor Readings!

Churchill model O’Connor-Dobbins  
model 

Owens-Gibbs 
model 
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WINGS Workflow Reasoners!

?Dataset4  
dcdom:isDiscrete true 

Input data for 
decision tree 
modelers (eg ID3) 
must be discrete 

■  Key idea: Skeletal planning, 
where constraints for each 
component are propagated 
through a fixed workflow 
structure (the skeleton) 

■  Phase 1: Goal Regression 
•  Starting from final products, 

traverse workflow backwards 
•  For each node, query for constraints 

on inputs 

■  Phase 2: Forward Projection 
•  Starting from input datasets, 

traverse workflow forwards 
•  For each node, query for constraints 

on outputs 
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Example (Step 1 of 5)!

Rule in Component Catalog: 
[modelerSpecialCase2: 
       (?c rdf:type pcdom:ID3ModelerClass)  
       (?c pc:hasInput ?idv)  
       (?idv pc:hasArgumentID "trainingData”) 
 
 -> (?idv dcdom:isDiscrete 
"true"^^xsd:boolean)] 
 

?Dataset4 dcdom:isDiscrete true 

Model5! Model6! Model7!
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Example (Step 2 of 5)!

Rule in Component Catalog: 
[samplerTransfer: 
 (?c rdf:type pcdom:RandomSampleNClass) 
 (?c pc:hasOutput ?odv)  
 (?odv pc:hasArgumentID 
"randomSampleNOutputData") 
 (?c pc:hasInput ?idv)  
 (?idv pc:hasArgumentID 
"randomSampleNInputData”) 
  (?odv ?p ?val)  
   (?p rdfs:subPropertyOf dc:hasMetrics)  
 
-> (?idv ?p ?val)] 
 

?Dataset3 dcdom:isDiscrete true 

?Dataset4 dcdom:isDiscrete true 

Model5! Model6! Model7!
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Example (Step 3 of 5)!

Rule in Component Catalog: 
[normalizerTransfer: 
 (?c rdf:type pcdom:NormalizeClass) 
 (?c pc:hasOutput ?odv)  
 (?odv pc:hasArgumentID 
"normalizeOutputData") 
 (?c pc:hasInput ?idv) 
 (?idv pc:hasArgumentID 
"normalizeInputData") 
  (?odv ?p ?val)  
  (?p rdfs:subPropertyOf dc:hasMetrics 
 
-> (?idv ?p ?val)] 
 

?Dataset4 dcdom:isDiscrete true 

?TrainingData dcdom:isDiscrete true 

?Dataset3 dcdom:isDiscrete true 

Model5! Model6! Model7!
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Example (Step 4 of 5)!

Rule in Component Catalog: 
[modelerTransferFwdData: 
 (?c rdf:type pcdom:ModelerClass) 
 (?c pc:hasOutput ?odv) 
 (?odv pc:hasArgumentID "outputModel”) 
 (?c pc:hasInput ?idv)  
 (?idv pc:hasArgumentID "trainingData") 
 (?idv ?p ?val) 
 (?p rdfs:subPropertyOf dc:hasDataMetrics) 
  notEqual(?p dcdom:isSampled) 
 
 -> (?odv ?p ?val)] 
 

?Dataset4 dcdom:isDiscrete true 

?Dataset3 dcdom:isDiscrete true 

?TrainingData dcdom:isDiscrete true 

?Model5 dcdom:isDiscrete true 
?Model6 dcdom:isDiscrete true 
?Model7 dcdom:isDiscrete true 
 

Model5! Model6! Model7!
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Example (Step 5 of 5)!

Rule in Component Catalog: 
[voteClassifierTransferDataFwd10: 
 (?c rdf:type pcdom:VoteClassifierClass) 
 (?c pc:hasInput ?idvmodel1) 
 (?idvmodel1 pc:hasArgumentID "voteInput1") 
 (?c pc:hasInput ?idvmodel2) 
 (?idvmodel2 pc:hasArgumentID "voteInput2") 
 (?c pc:hasInput ?idvmodel3) 
 (?idvmodel3 pc:hasArgumentID "voteInput3") 
 (?c pc:hasInput ?idvdata) 
 (?idvdata pc:hasArgumentID "voteInputData") 
       (?idvmodel1 dcdom:isDiscrete ?val1) 
       (?idvmodel2 dcdom:isDiscrete ?val2) 
       (?idvmodel3 dcdom:isDiscrete ?val3) 
       equal(?val1, ?val2), equal(?val2, ?val3)  
 
       -> (?idvdata dcdom:isDiscrete ?va1l)] 

?Model5 dcdom:isDiscrete true 
?Model6 dcdom:isDiscrete true 
?Model7 dcdom:isDiscrete true 
 

?TestData 
 dcdom:isDiscrete 
 true 

?Dataset4 dcdom:isDiscrete true 

?Dataset3 dcdom:isDiscrete true 

?TrainingData dcdom:isDiscrete true 

Model5! Model6! Model7!
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WINGS Workflow Reasoners: 
Result!

?Model5 dcdom:isDiscrete true 
?Model6 dcdom:isDiscrete true 
?Model7 dcdom:isDiscrete true 
 

?TestData 
 dcdom:isDiscrete 
 true 

?Dataset4 dcdom:isDiscrete true 

?Dataset3 dcdom:isDiscrete true 

?TrainingData  
dcdom:isDiscrete  
true 

Model5! Model6! Model7!

?Dataset4  
dcdom:isDiscrete  
true 
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WINGS Automatic Workflow 
Generation Algorithm [Gil et al JETAI 2011]!

Seed workflow from request 

unified well-formed req. 

Find input data requirements 

seeded workflows 

Data source selection 

binding-ready workflows 

Parameter selection 

bound workflows 

configured workflows 

Workflow instantiation 

Workflow grounding 

workflow instances 

Workflow mapping 

ground workflows 

executable workflows 

Workflow ranking 

top-k workflows 

Workflows with S. McWeeney & C. Zhang (OHSU) 
Work with P. Gonzalez (UCM) and Jihie Kim (ISI) 

“Pay-as-
you-go”  

semantics 
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Workflows!
■  Workflow systems 

■  [Goble et al 2007] 
■  [Ludaescher et al 2007] 
■  [Freire et al 2008] 
■  [Mattmann et al 2007]  
■  [Mesirov et al 2009] 
■  [Dinov et al 2009] 

■  Workflow representations 
■  [Moreau et al 2010] 
■  [IBM/MSR 2002] 
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Semantic Process Models!
■  Composition from first principles 

•  [McIlraith & Son KR 2002] [Sohrabi et al ISWC 2006] [Sohrabi & 
McIlraith ISWC 2009] [Sohrabi & McIlraith ISWC 2010]  

•  [McDermott AIPS 2002] 
•  [Kuter et al ISWC 2004] [Sirin et al JWS 2005] [Kuter et al JWS 2005] [Lin 

et al ESWC 2008] 
•  [Lecue ISWC 2009] 
•  [Calvanese et al IEEE 2008] 
•  [Bertolli et al ICAPS 2009] 
•  [Li et al ISSC 2011] 

■  Representations 
•  [Burstein et al ISWC 2002] [Martin et al ISWC 2007] 
•  [Domingue & Fensel IEEE IS 2008] [Dietze et al IJWSR 2011] [Dietze et al 

ESWC 2009] 
•  [Fensel et al 2011] [Vitvar et al ESWC 2008] [Roman et al AO 2005] 
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Semantic Descriptions of Software Components in Geosciences 
 
!

Work with C. Duffy (PSU), S. Peckham (CU), C. Mattmann (JPL), J. Howison (UT) 
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CSDMS Standard Names [Peckham iEMSs 2014] 
http://csdms.colorado.edu/!
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Benefits of Semantic Workflows: 
1) Automatic Workflow Elaboration [Gil et al WORKS’13]!

LDA Online LDA 

Parallel  
LDA 

Workflowsdeveloped  with Y. Liu (USC) and C. Mattmann (JPL) 
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Benefits of Semantic Workflows: 
2) Access to Data Analytics Expertise!

Science, Dec 2011 
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Capturing Expertise through Workflows 
[Hauder et al e-Science 2011]!

Naïve  
Approach 

Expert 
Approach 

Workflows for text analytics, joint work with Yan Liu (USC) and Mattheus Hauder (TUM) 

Feature  
selection  
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Capturing Expertise [Gil et al 2012]!
Work with Christopher Mason (Cornell University) 

CNV Detection 
Variant Discovery from Resequencing 

Transmission Disequilibrium Test Association Tests 

Workflows for population genomics 
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Benefits of Semantic Workflows: 
3) Saving Time Through Reuse [Sethi et al MM’13]!

Work with Ricky Sethi and Hyujoon Jo of USC 
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Saving Time through Reuse [Garijo et al FGCS’13]!

•  “Scientists and engineers spend more than 60% of their time 
just preparing the data for model input or data-model 
comparison” (NASA A40) 

19 

Result Summary: Data Oriented Motifs 

IEEE eScience 2012. Chicago, USA 
 

•Over 60% of the motifs are data preparation motifs 
•Of the 4 subcategories, the most common across domains are output 
splitting, input augmentation, and reformatting steps. 
 

•Data  retrieval common in domains where curated databases exist 
 

•Data analysis is often the main functionality of the workflow 

Data organisation 

Work with D. Garijo and O. Corcho (UPM), P. Alper, K. Belhajjame, and C. Goble (UM) 
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Measuring Time Savings with 
“Reproducibility Maps” [Garijo et al PLOS CB12]!

■  2 months of effort in reproducing published method (in PLoS’10) 

■  Authors expertise was required 

Comparison	
  of	
  
ligand	
  binding	
  
sites	
  

Comparison	
  of	
  dissimilar	
  
protein	
  structures	
  

Graph	
  network	
  
genera?on	
  

Molecular	
  Docking	
  

Work with D. Garijo of UPM and P. Bourne of UCSD 
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Benefits of Semantic Workflows: 
4) Interoperability in a Workflow Ecosystem [Garijo et al 2014]!

Work with D. Garijo and O. Corcho of UPM 

Workflow'Genera,on'
Wings&

Workflow'Mining'
FragFlow'

Workflow'Documenta,on'
Organic&data&science&wiki&

Workflow'Browsing'
Wexp&

Provenance'visualiza,on'
(e.g.,'Prov7o7viz)'

Workflow'
Execu,on'

Apache&OODT&

Workflow'Execu,on'
LONI&Pipeline&

Repository'
(PROV,'PEPLAN,'

OPMW)'

DAXEC'to'
OPMW'&'PROV' WME'to'OPMW'

&'PROV'

Working'converter'

Planned'converter'

Repository'
(.pipe)'

LONI'to''
PEPlan'

Ecosystem'Tool'

Repositories'

WE'(WME)'

WE'(DAXEC)'

WT'(OPMW)'

WE,''WT''
(OPMW'&PROV)'WI'(Wings)'

PEPLAN'to'
CASEPGE'

PEPLAN'
to'DAX'

WE+WT'
Wings'to'
PEplan'

WME'to'
Wings'

Wings'to'
OPMW'&'
PEPlan'

WT'(PEPlan)'

WT(PEPlan)'

WE'(PROV)'

WT'(.pipe)'

WE'(OPMW'
'&'PROV)'

Workflow'Mapping'
and'Execu,on'

Pegasus/Condor&

WI'(PEPlan)'

WT'(PEPlan)'

Current'dataflow'

Planned'dataflow'

DAXEC'
to'Wings'

WI'(PEPlan)'

RO'Model'applica,on'

DEPROV'applica,on'

Other'workflow'tool'

OPMW'
to'RO'

OPMW'to'
DEPROV'

WE,''WT''
(OPMW'&PROV)'

SPARQL'construct'
converter'
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Benefits of Semantic Workflows: 
4) Interoperability in a Workflow Ecosystem [Garijo et al 2014]!

Work with D. Garijo and O. Corcho of UPM 

Workflow'Genera,on'
Wings&

Workflow'Mining'
FragFlow'

Workflow'Documenta,on'
Organic&data&science&wiki&

Workflow'Browsing'
Wexp&

Provenance'visualiza,on'
(e.g.,'Prov7o7viz)'

Workflow'
Execu,on'

Apache&OODT&

Workflow'Execu,on'
LONI&Pipeline&

Repository'
(PROV,'PEPLAN,'

OPMW)'

DAXEC'to'
OPMW'&'PROV' WME'to'OPMW'

&'PROV'

Working'converter'

Planned'converter'

Repository'
(.pipe)'

LONI'to''
PEPlan'

Ecosystem'Tool'

Repositories'

WE'(WME)'

WE'(DAXEC)'

WT'(OPMW)'

WE,''WT''
(OPMW'&PROV)'WI'(Wings)'

PEPLAN'to'
CASEPGE'

PEPLAN'
to'DAX'

WE+WT'
Wings'to'
PEplan'

WME'to'
Wings'

Wings'to'
OPMW'&'
PEPlan'

WT'(PEPlan)'

WT(PEPlan)'

WE'(PROV)'

WT'(.pipe)'

WE'(OPMW'
'&'PROV)'

Workflow'Mapping'
and'Execu,on'

Pegasus/Condor&

WI'(PEPlan)'

WT'(PEPlan)'

Current'dataflow'

Planned'dataflow'

DAXEC'
to'Wings'

WI'(PEPlan)'

RO'Model'applica,on'

DEPROV'applica,on'

Other'workflow'tool'

OPMW'
to'RO'

OPMW'to'
DEPROV'

WE,''WT''
(OPMW'&PROV)'

SPARQL'construct'
converter'

Workflows are: 
-  Described with semantic metadata 
-  Published as Web objects (linked open data) 
-  Imported by systems with diverse functions: 

(eg editing, execution, provenance browsing, 
workflow mining, etc) 
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Some Readings!
■  Yolanda Gil: “Intelligent Workflow Systems and 

Provenance-Aware Software.” Proceedings of the Seventh 
International Congress on Environmental Modeling and 
Software (iEMSs), San Diego, CA, 2014.  

■  Yolanda Gil: “From Data to Knowledge to Discoveries: 
Artificial Intelligence and Scientific Workflows.” Scientific 
Programming 17(3), 2009. 

■  Ewa Deelman, Chris Duffy, Yolanda Gil, Suresh Marru, 
Marlon Pierce, and Gerry Wiener: “EarthCube Report on a 
Workflows Roadmap for the Geosciences.” National 
Science Foundation, Arlington, VA. 2012.  

http://www.isi.edu/~gil/publications.php 
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A Semantic Challenge: 
Automatic Paper Generator!

■  Capture 
knowledge about 
analytic methods 

•  Run workflows 
in existing data 
repositories 

•  Report new 
findings 
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A Semantic Challenge: 
A Web of Semantic Workflows/Processes!

Assist people to:  
■  Share  
■  Copy 
■  Reuse 
■  Adapt 
■  Remix 
■  Update 
■  Certify 
■  Review 
■  … 
 

“Pay-as-you-go”  
semantics 
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Semantic Challenges in Getting Work Done!
■  To dos 

•  Managing personal to dos 
•  Managing coordinated to dos 

■  Knowledge rich tasks in science 
•  Automatic paper generator 
•  A Web of semantic workflows/processes 
 

■  Open science 
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Seismic 
Hazard 
Model 

Seismicity ! Paleoseismology! Local site effects! Geologic structure!

Faults!

Stress!
transfer!

Crustal!
motion!

Crustal!
deformation!

Seismic velocity!
structure!

Rupture!
dynamics!

!

Collaboration to Develop Workflows [Gil et al 2007]!
Slide from T. Jordan of USC and SCEC 

 

High-Level 
Workflow 
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Linking Catchment  
Model-Data Assets 

Supported by NSF GEO-CZO 

Linking Lake Model-Data 
 Assets Supported by  

NSF BIO-GLEON, USGS CIDA 
 

High Resolution Vegetation Mapping  Mapping Bedrock GP Radar 

High-resolution sensor network data 

Models of lake hydrodynamics and water quality  

Read JS, et al. 2014. Ecological Modelling. 291C: 142-150. doi:10.1016/j.ecolmodel.2014.07.029 

Research Soil Survey 

Understanding the “Age of Water”!
Work with P. Hanson (UWisc), C. Duffy (PSU), and J. Read (USGS) 

Lidar-derived numerical mesh 
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A New Kind of Collaborative Platform!
■  Taxonomy of Science Communities [Bos et al 2007]!

!
■  Need a platform to support science collaborations that 

require:!
•  Significant organization and coordination 
•  Maintaining a community over the longer term 
•  Growing the community based on unanticipated needs 

Shared'Instruments NEON
Community'Data'Systems PDB
Open'Community'Contribution'Systems Zooniverse
Virtual'Communities'of'Practice GLEON
Virtual'Learning'Communities VIVO
Distributed'Research'Centers ENCODE
Community'Infrastructure'Projects CSDMS
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Organic Data Science!

■  Organic data science is a novel approach to on-line 
scientific collaboration that supports:  

•  Self-organization of communities by enabling any user to specify 
and decompose tasks  

•  On-line community support by incorporating social sciences 
principles and best practices 

•  An open science process by capturing new kinds of  metadata 
about the collaboration that give necessary context to newcomers 

 
 

Work with F. Michel and M. Hauder of TUM 
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■  Many tasks involved  
■  Necessary data resides in different repositories 
■  Different people understand different kinds of data 

•  Where it is  
•  How to use it 

■  If other data needed, unclear who has it 

Self-Organization through Task Decomposition !
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Social Principles for Online Communities!
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Social Principles: Some Examples!
■  Starting communities, e.g.: 

•  Organize content, people, and activities into subspaces 
•  Inactive tasks should have “expected active times” 

■  Encouraging contributions, e.g.: 
•  Simple tasks with challenging goals are easier to comply with 
•  Publicize that others have complied with requests 

■  Encouraging commitment, e.g.: 
•  Interdependent tasks increase commitments and reduce conflict 

■  Dealing with newcomers, e.g.: 
•  Design common learning experiences for newcomers 
•  Provide sandboxes while they are learning 
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Opening Science: 
Polymath [Nielsen, Gowers 09]!
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Organic Data Science!

■  Organic data science is a novel approach to on-line 
scientific collaboration that supports:  

•  Self-organization of communities by enabling any user to specify 
and decompose tasks  

•  On-line community support by incorporating social sciences 
principles and best practices 

•  An open science process by capturing new kinds of  metadata 
about the collaboration that give necessary context to newcomers 

 
 

=> Task-oriented self-organizing on-line communities for 
open collaboration in science 
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Self-Organization through Dynamic Task 
Decomposition!

!
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Organic Data Science: 
Contributors!

!
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Data!
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Models!
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Workflows!
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Training Newcomers!

Reader 

Participant 

Owner 
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What Features Are Used to Manage Tasks?!

! !
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How Do Users Find Relevant Tasks?!

!
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        52% of tasks are viewed by more than one person 

        72% of tasks have more than one person signed up 

        19% of tasks have more than one person editing metadata 

        11% of tasks have more than one person editing content 

A
B
C
D

Are Users 
Collaborating?!
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What Does the Social Network of 
Collaborators Look Like?!

■  Network of 
users (nodes) 
linked by 
shared tasks 

■  Links across 
all users 

■  Two distinct 
subgroups 
1.  Water 
2.  Software 

!
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A Semantic Challenge: 
Email-less Coordination for Projects!



81!Yolanda Gil	

USC Information Sciences Institute	

 gil@isi.edu	

ISWC-2014	



A Semantic Challenge: 
Open Science Processes!

Credits 

Metadata&
proper*e
s&created&
on&the&fly&

Datasets&linked&to&
download&sites&

Informa*on&
sources&are&
documented&

People&linked&to&
projects&

Projects&
linked&to&
datasets&

Metadata&
added&by&
different&
volunteers&

People&linked&to&
projects&

Datasets&
linked&to&
loca*ons&

Projects&
linked&to&
datasets&

Datasets&
linked&to&
loca*ons&

En**es&linked&to&&linked&
data&

Datasets&linked&to&
download&sites&

En**es&linked&to&&linked&
data&

www 
From: http://www.ncdc.noaa.gov/paleo/metadata/noaa-coral-1865.html  

{{ #ask: [[Is a::dataset]] 
 | ?Domain=geochemistry 
 | ?Archive 
 | ?MeasurementMaterial 
 | ?MeasurementStandard 
 | ?MeasurementUnits}} 
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Semantic Challenges in Getting Work Done!
■  To dos 

•  Managing personal to dos 
•  Managing coordinated to dos 

■  Knowledge rich tasks in science 
•  Automatic paper generator 
•  A Web of semantic workflows/processes 

■  Open science 
•  Email-less coordination of projects 
•  Open science processes 

 http://www.isi.edu/~gil 
http://www.wings-workflows.org 

http://www.organicdatascience.org 
http://discoveryinformaticsinitiative.org  
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“We need bigger glasses and more hands in the 
water” – J. Tarter, SETI Institute!
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Discovery Informatics: 
Knowledge-Rich Science Infrastructure!

10 OCTOBER 2014 • VOL 346 ISSUE 6206    17 1SCIENCE   sciencemag.org

           T
echnological innovations are pen-

etrating all areas of science, making 

predominantly human activities a 

principal bottleneck in scientific prog-

ress while also making scientific ad-

vancement more subject to error and 

harder to reproduce. This is an area where a 

new generation of artificial intelligence (AI) 

systems can radically transform the prac-

tice of scientific discovery. Such systems are 

showing an increasing ability to 

automate scientific data analy-

sis and discovery processes, can 

search systematically and correctly through 

hypothesis spaces to ensure best results, can 

autonomously discover complex patterns in 

data, and can reliably apply small-scale sci-

entific processes consistently and transpar-

ently so that they can be easily reproduced. 

We discuss these advances and the steps 

that could help promote their development 

and deployment.

Applying AI to the practice of science is 

not new. AI pioneer and Nobel laureate 

Herbert Simon hypothesized that cognitive 

mechanisms involved in scientific discovery 

are a special case of general human capabili-

ties for problem-solving and, with colleagues, 

developed systems in the 1970s and 1980s 

that demonstrated reasoning capabilities 

for analyzing scientific data ( 1). Also in the 

1970s, Joshua Lederberg (another Nobel win-

ner) and colleagues developed the DENDRAL 

system for analyzing mass spectrometry data 

in order to hypothesize molecular structures 

( 2). More recent breakthroughs, such as ro-

bot scientists and software that formulates 

laws for complex dynamical systems, demon-

strate broader applicability of AI techniques 

for scientific discovery ( 3).

Over the past two decades, AI has seen 

accelerating scientific advances and con-

comitant commercial-sector successes be-

cause of advances on three fronts: steady 

scholarly advances, especially as success has 

increased the numbers of interested partici-

pants; Moore’s law and steady exponential 

increases in computing power; and expo-

nential increases in, and broad availability 

of, relevant data in volumes never previously 

seen. Those scientific efforts that have lever-

aged AI advances have largely harnessed so-

phisticated machine-learning techniques to 

create correlative predictions from large sets 

of “big data.” Such work aligns well with the 

current needs of peta- and exascale science. 

However, AI has far broader capacity to ac-

celerate scientific discovery, and AI-based 

systems that can represent hypotheses, 

reason with models of the data, and design 

hypothesis-driven data collection techniques 

can reduce the error-prone human bottle-

neck in scientific discovery.

SEARCHING AND SYNTHESIZING. What 

do these intelligent systems look like to-

day? AI techniques are amplifying existing 

tools in identifying relevant results from the 

broader scientific community. Search en-

gines are some of the most important and 

frequently used tools in the general scien-

tific arsenal. Major search engines all use AI 

techniques for tasks like query suggestion 

and result customization. Increasingly, sci-

entists in many fields are augmenting the 

power of search by using machine-readable 

ontologies and Semantic Web technology 

( 4) to tag not just scientific articles but 

also figures and videos, blogs, data sets, 

and computational services, which allow 

information-finding beyond current search 

limitations.

We can project a not-so-distant future 

where “intelligent science assistant” pro-

grams identify and summarize relevant 

research described across the worldwide 

multilingual spectrum of blogs, preprint ar-

chives, and discussion forums; find or gen-

erate new hypotheses that might confirm or 

conflict with ongoing work; and even rerun 

old analyses when a new computational 

method becomes available. Aided by such 

a system, the scientist will focus on more 

of the creative aspects of research, with a 

larger fraction of the routine work left to the 

artificially intelligent assistant.

New types of intelligent systems that can 

enhance scientific efforts in this manner are 

transitioning from academic and industrial 

research laboratories. A term gathering pop-

ularity for systems that intelligently process 

online information beyond search is “cogni-

tive computing,” used by IBM in describing 

the Watson system that beat the best human 

players in the televised Jeopardy! game ( 5). 

One kind of cognitive system includes lan-

guage-based programs like Watson, which 

is now being used by IBM and a number 

of prominent medical centers in develop-

ing tools for improving medical treatment 

by helping doctors keep up with constantly 

changing medical literature. To enhance 

these capabilities, the U.S. Defense Ad-

vanced Research Projects Agency (DARPA) 

recently announced a major effort to syn-

thesize new systems-biology models of can-

cer by knitting together fragmentary causal 

hypotheses gathered by automatically read-

ing papers in the literature ( 6). Another 

group of cognitive systems, based largely on 

advances in neural networks and neurologi-

cally inspired computation, is beginning to 

show promise in the analysis of nontextual 

processing, especially of online images and 

video, across a wide range of areas including 

Amplify scientific discovery 

with artificial intelligence

Schematic of Hanalyzer. Hanalyzer is an example of a modern scientific discovery system. It integrates assertions 

from biomedical databases and then reasons about the resulting semantic information to suggest novel correlations 

from which scientists can generate testable hypotheses.

By Yolanda Gil, 1 Mark Greaves, 2 

James Hendler, 3 
* Haym Hirsh 4    

Many human activities are a bottleneck in progress

ARTIFICIAL INTELLIGENCE

1Information Sciences Institute, University of Southern 
California, Marina del Rey, CA 90292, USA. 2Paci� c Northwest 
National Laboratory, Richland, WA 99354, USA. 3Information 
Technology and Web Science, Rensselaer Polytechnic 
Institute, Troy, NY 12203, USA. 4Cornell University, Ithaca, NY 
14850, USA. *E-mail: hendler@cs.rpi.eduIL
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           T
echnological innovations are pen-

etrating all areas of science, making 

predominantly human activities a 

principal bottleneck in scientific prog-

ress while also making scientific ad-

vancement more subject to error and 

harder to reproduce. This is an area where a 

new generation of artificial intelligence (AI) 

systems can radically transform the prac-

tice of scientific discovery. Such systems are 

showing an increasing ability to 

automate scientific data analy-

sis and discovery processes, can 

search systematically and correctly through 

hypothesis spaces to ensure best results, can 

autonomously discover complex patterns in 

data, and can reliably apply small-scale sci-

entific processes consistently and transpar-

ently so that they can be easily reproduced. 

We discuss these advances and the steps 

that could help promote their development 

and deployment.

Applying AI to the practice of science is 

not new. AI pioneer and Nobel laureate 

Herbert Simon hypothesized that cognitive 

mechanisms involved in scientific discovery 

are a special case of general human capabili-

ties for problem-solving and, with colleagues, 

developed systems in the 1970s and 1980s 

that demonstrated reasoning capabilities 

for analyzing scientific data ( 1). Also in the 

1970s, Joshua Lederberg (another Nobel win-

ner) and colleagues developed the DENDRAL 

system for analyzing mass spectrometry data 

in order to hypothesize molecular structures 

( 2). More recent breakthroughs, such as ro-

bot scientists and software that formulates 

laws for complex dynamical systems, demon-

strate broader applicability of AI techniques 

for scientific discovery ( 3).

Over the past two decades, AI has seen 

accelerating scientific advances and con-

comitant commercial-sector successes be-

cause of advances on three fronts: steady 

scholarly advances, especially as success has 

increased the numbers of interested partici-

pants; Moore’s law and steady exponential 

increases in computing power; and expo-

nential increases in, and broad availability 

of, relevant data in volumes never previously 

seen. Those scientific efforts that have lever-

aged AI advances have largely harnessed so-

phisticated machine-learning techniques to 

create correlative predictions from large sets 

of “big data.” Such work aligns well with the 

current needs of peta- and exascale science. 

However, AI has far broader capacity to ac-

celerate scientific discovery, and AI-based 

systems that can represent hypotheses, 

reason with models of the data, and design 

hypothesis-driven data collection techniques 

can reduce the error-prone human bottle-

neck in scientific discovery.

SEARCHING AND SYNTHESIZING. What 

do these intelligent systems look like to-

day? AI techniques are amplifying existing 

tools in identifying relevant results from the 

broader scientific community. Search en-

gines are some of the most important and 

frequently used tools in the general scien-

tific arsenal. Major search engines all use AI 

techniques for tasks like query suggestion 

and result customization. Increasingly, sci-

entists in many fields are augmenting the 

power of search by using machine-readable 

ontologies and Semantic Web technology 

( 4) to tag not just scientific articles but 

also figures and videos, blogs, data sets, 

and computational services, which allow 

information-finding beyond current search 

limitations.

We can project a not-so-distant future 

where “intelligent science assistant” pro-

grams identify and summarize relevant 

research described across the worldwide 

multilingual spectrum of blogs, preprint ar-

chives, and discussion forums; find or gen-

erate new hypotheses that might confirm or 

conflict with ongoing work; and even rerun 

old analyses when a new computational 

method becomes available. Aided by such 

a system, the scientist will focus on more 

of the creative aspects of research, with a 

larger fraction of the routine work left to the 

artificially intelligent assistant.

New types of intelligent systems that can 

enhance scientific efforts in this manner are 

transitioning from academic and industrial 

research laboratories. A term gathering pop-

ularity for systems that intelligently process 

online information beyond search is “cogni-

tive computing,” used by IBM in describing 

the Watson system that beat the best human 

players in the televised Jeopardy! game ( 5). 

One kind of cognitive system includes lan-

guage-based programs like Watson, which 

is now being used by IBM and a number 

of prominent medical centers in develop-

ing tools for improving medical treatment 

by helping doctors keep up with constantly 

changing medical literature. To enhance 

these capabilities, the U.S. Defense Ad-

vanced Research Projects Agency (DARPA) 

recently announced a major effort to syn-

thesize new systems-biology models of can-

cer by knitting together fragmentary causal 

hypotheses gathered by automatically read-

ing papers in the literature ( 6). Another 

group of cognitive systems, based largely on 

advances in neural networks and neurologi-

cally inspired computation, is beginning to 

show promise in the analysis of nontextual 

processing, especially of online images and 

video, across a wide range of areas including 

Amplify scientific discovery 

with artificial intelligence

Schematic of Hanalyzer. Hanalyzer is an example of a modern scientific discovery system. It integrates assertions 

from biomedical databases and then reasons about the resulting semantic information to suggest novel correlations 

from which scientists can generate testable hypotheses.
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           T
echnological innovations are pen-

etrating all areas of science, making 

predominantly human activities a 

principal bottleneck in scientific prog-

ress while also making scientific ad-

vancement more subject to error and 

harder to reproduce. This is an area where a 

new generation of artificial intelligence (AI) 

systems can radically transform the prac-

tice of scientific discovery. Such systems are 

showing an increasing ability to 

automate scientific data analy-

sis and discovery processes, can 

search systematically and correctly through 

hypothesis spaces to ensure best results, can 

autonomously discover complex patterns in 

data, and can reliably apply small-scale sci-

entific processes consistently and transpar-

ently so that they can be easily reproduced. 

We discuss these advances and the steps 

that could help promote their development 

and deployment.
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ties for problem-solving and, with colleagues, 

developed systems in the 1970s and 1980s 

that demonstrated reasoning capabilities 

for analyzing scientific data ( 1). Also in the 

1970s, Joshua Lederberg (another Nobel win-

ner) and colleagues developed the DENDRAL 

system for analyzing mass spectrometry data 

in order to hypothesize molecular structures 

( 2). More recent breakthroughs, such as ro-

bot scientists and software that formulates 

laws for complex dynamical systems, demon-

strate broader applicability of AI techniques 

for scientific discovery ( 3).

Over the past two decades, AI has seen 

accelerating scientific advances and con-

comitant commercial-sector successes be-

cause of advances on three fronts: steady 

scholarly advances, especially as success has 

increased the numbers of interested partici-

pants; Moore’s law and steady exponential 

increases in computing power; and expo-

nential increases in, and broad availability 

of, relevant data in volumes never previously 

seen. Those scientific efforts that have lever-

aged AI advances have largely harnessed so-

phisticated machine-learning techniques to 

create correlative predictions from large sets 

of “big data.” Such work aligns well with the 

current needs of peta- and exascale science. 

However, AI has far broader capacity to ac-

celerate scientific discovery, and AI-based 

systems that can represent hypotheses, 

reason with models of the data, and design 

hypothesis-driven data collection techniques 

can reduce the error-prone human bottle-

neck in scientific discovery.

SEARCHING AND SYNTHESIZING. What 

do these intelligent systems look like to-

day? AI techniques are amplifying existing 

tools in identifying relevant results from the 

broader scientific community. Search en-

gines are some of the most important and 

frequently used tools in the general scien-

tific arsenal. Major search engines all use AI 

techniques for tasks like query suggestion 

and result customization. Increasingly, sci-

entists in many fields are augmenting the 

power of search by using machine-readable 

ontologies and Semantic Web technology 

( 4) to tag not just scientific articles but 

also figures and videos, blogs, data sets, 

and computational services, which allow 

information-finding beyond current search 

limitations.

We can project a not-so-distant future 

where “intelligent science assistant” pro-

grams identify and summarize relevant 

research described across the worldwide 

multilingual spectrum of blogs, preprint ar-

chives, and discussion forums; find or gen-

erate new hypotheses that might confirm or 

conflict with ongoing work; and even rerun 

old analyses when a new computational 

method becomes available. Aided by such 

a system, the scientist will focus on more 

of the creative aspects of research, with a 

larger fraction of the routine work left to the 

artificially intelligent assistant.

New types of intelligent systems that can 

enhance scientific efforts in this manner are 

transitioning from academic and industrial 

research laboratories. A term gathering pop-

ularity for systems that intelligently process 

online information beyond search is “cogni-

tive computing,” used by IBM in describing 

the Watson system that beat the best human 

players in the televised Jeopardy! game ( 5). 

One kind of cognitive system includes lan-

guage-based programs like Watson, which 

is now being used by IBM and a number 

of prominent medical centers in develop-

ing tools for improving medical treatment 

by helping doctors keep up with constantly 

changing medical literature. To enhance 

these capabilities, the U.S. Defense Ad-

vanced Research Projects Agency (DARPA) 

recently announced a major effort to syn-

thesize new systems-biology models of can-

cer by knitting together fragmentary causal 

hypotheses gathered by automatically read-

ing papers in the literature ( 6). Another 

group of cognitive systems, based largely on 

advances in neural networks and neurologi-

cally inspired computation, is beginning to 

show promise in the analysis of nontextual 

processing, especially of online images and 

video, across a wide range of areas including 
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biological imaging ( 7), species preservation 

( 8), and quantum chemistry ( 9).

DIGESTING DATA. AI techniques have ac-

celerated the pace and quality of analysis of 

the huge quantities of data that can stream 

from modern laboratory equipment. To de-

rive scientific insight from data at this scale, 

standard methods include applying dimen-

sionality-reduction techniques and feature 

extractors to create high-speed classifiers 

based on machine-learning approaches, such 

as Bayesian networks or support-vector ma-

chines. Because the phenomena under study 

often exist in nonstationary environments 

or in contexts with only small quantities of 

labeled data that can be used for training—

complex, unsupervised, and reinforcement 

machine-learning techniques are critical for 

data analysis. These types of approaches are 

being used in recent projects in data-rich ar-

eas as diverse as chemical structure predic-

tion, pathway analysis and identification in 

systems biology, the processing of large-scale 

geophysics data, and others.

Another, more ambitious class of intelli-

gent systems is being developed under the 

rubric of Discovery Science or, increasingly, 

Discovery Informatics ( 10). These systems 

enhance the intelligent assistants described 

earlier with the capability to attack scientific 

tasks that combine rote work with increasing 

amounts of adaptivity and freedom. These 

systems use encoded knowledge of scientific 

domains and processes in order to assist 

with tasks that previously required human 

knowledge and reasoning. In fact, several 

sciences have significant investments in the 

representation of vast amounts of scientific 

knowledge and are poised to explore new in-

telligent systems that exploit that knowledge 

for discovery.

For example, the Hanalyzer (short for 

high-throughput analyzer) uses natural lan-

guage processing to automatically extract a 

semantic network from all PubMed papers 

relevant to a specific scientist, uses Semantic 

Web technology to integrate assertions from 

other biomedical sources, and reasons about 

the network to find new correlations that 

suggest new genes to investigate ( 11) (see 

the figure). The Wings system uses Semantic 

Web technologies and AI planning to reason 

about specific choices of models and algo-

rithms for water-quality data and customizes 

workflows automatically for daily condi-

tions ( 12). Eureqa, usable in many scientific 

fields, searches a vast space of hypotheses 

consistent with given data observed in an 

experiment, selects those most promising, 

and designs experiments to test them ( 13). 

Sunfall incorporates usability principles and 

cognitive load considerations in the design 

of a visual analytics interface; this reduces 

scientists’ workload and false-positive rates 

in identifying supernovae ( 14).

These four systems are representative of 

the ways that more advanced AI can serve 

scientific ends. They are based on explicit 

representations of science processes, and 

they reason about these to automate pro-

cesses and assist the human scientist. De-

velopment of the explicit representations of 

scientific processes on which they are based 

is complex. When successful, the computer 

can become a real (although junior) par-

ticipant in the science process, doing what 

it does best: applying algorithmic methods 

and bringing knowledge to bear in a consis-

tent, systematic, and complete manner.

A VIRTUOUS CIRCLE. Developing systems 

like these is not just an exercise in AI appli-

cation—it affects the direction of AI research. 

Addressing real challenges of science pushes 

the AI envelope in many areas, including 

knowledge representation, automatic infer-

ence, process reasoning, hypothesis genera-

tion, natural language processing, machine 

learning, collaborative interaction, and in-

telligent user interfaces. This interaction 

creates a virtuous circle where advances in 

science go hand in hand with advances in AI. 

This virtuous circle can only work well if bal-

anced and well oiled.

What are the best ways to immerse AI re-

search into scientific practice so that it can 

deliver on this promise? First, and perhaps 

most obviously, is conceiving new means of 

bringing interdisciplinary research teams to-

gether at an earlier stage of research and in 

a sustainable manner. Increasingly, there is a 

realization in academia that scientists must 

gain broad knowledge and skills in computa-

tion and programming. This should include 

AI components—training and supporting 

students and young researchers. In addition, 

basic research to advance AI in domains of 

science practice needs to be facilitated and 

rewarded in academia, as standard criteria 

for research merit focus primarily on theo-

retical advances in computing per se and 

thus do not transfer well to this kind of mul-

tidisciplinary research.

A significant challenge that appears to 

be specific to AI is to attract scientific re-

searchers to engage in this joint research. 

Scientists have made significant invest-

ments in the past in advanced computing 

technologies, such as high-end computing, 

distributed databases, and sensor networks. 

However, their interest in AI seems relatively 

limited. With AI systems having impacts in 

the consumer sector (e.g., speech recogni-

tion systems, real-time automated language 

translation, and self-driving cars and self-

navigating drones), why are scientists not 

enthusiastic about embracing AI?

One hypothesis is the lack of clear methods 

to measure the impact of AI in science. There 

are exceptions in some areas of AI, such as 

machine learning and language processing, 

where metrics to compare systems have been 

defined and improvement has been mea-

sured. But there has been little research into 

such measurement more generally, especially 

for the heuristic methods of the reasoning 

field. Methods to quantify significant ad-

vances because of the use of new AI technolo-

gies in scientific fields are needed to validate 

the impact of AI on scientific discovery.

Another reason may be the limited work 

of the AI community in disseminating and 

marketing ideas to scientists. Although many 

non-AI scientists attend supercomputing and 

database conferences, few are compelled to 

attend an AI conference. Possibly, research-

ers are influenced by the unrealistic science 

fiction images of super-smart machines, 

rather than the realities of current techno-

logical advances. Understanding the sources 

of hesitation of scientists to embrace AI will 

be a first step toward changing the culture 

and bringing these communities together.

The world faces deep problems that chal-

lenge traditional methodologies and ideolo-

gies. These challenges will require the best 

brains on our planet. In the modern world, 

the best brains are a combination of humans 

and intelligent computers, able to surpass 

the capabilities of either one alone.      ■ 
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NSF Workshop (Feb 2012): 
http://discoveryinformaticsinitiative/diw2012 

PSB Workshop (Jan 2013): 
on Computational Challenges of  
Mass Phenotyping 

Microsoft eScience Summit (Aug 2012) 
Workshop on Web Observatories  
for Discovery Informatics  

AAAI Fall Symposium (Nov 2013): 
http://discoveryinformaticsinitiative/dis2013 

AAAI Fall Symposium (Nov 2012): 
http://discoveryinformaticsinitiative/dis2012 

 
http://www.discoveryinformaticsinitiative.org"
"

AAAI Workshop (July 2014): 
http://discoveryinformaticsinitiative/diw2014 

KDD Workshop (August 2014): 
http://ailab.ist.psu.edu/idkdd14/ 

PSB Workshop (January 2015) 
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A View from Biomedical Research: 
The NIH Big Data To Knowledge (BD2K) Initiative!

“Discovery informatics is in its infancy. Search engines are grappling with the need for 
deep search, but it is doubtful they will fulfill the needs of the biomedical research 
community when it comes to finding and analyzing the appropriate datasets.  Let me 
cast the vision in a use case. As a research group winds down for the day algorithms 
take over, deciphering from the days on-line raw data, lab notes, grant drafts etc. 
underlying themes that are being explored by the laboratory (the lab’s digital assets). 
Those themes are the seeds of deep search to discover what is relevant to the lab that 
has appeared since a search was last conducted in published papers, public data sets, 
blogs, open reviews etc.  Next morning the results of the deep search are presented to 
each member as a personalized view for further post processing. We have a long way 
to go here, but programs that incite groups of computer, domain and social scientists to 
work on these needs will move us forward.” 
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A View from Geoscieces: 
The NSF EarthCube Initiative!

hAp://www.earthcube.org/	
  

Data Workflows Semantics Governance 
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What Might the Future Look Like?!
YOU: What are you working on? 

OTHER PERSON: I am really busy, working on… 
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In the Future!

YOU: Yes, but aren’t you glad that we can get our 
work done faster? 

YOU: What are you working on? 

OTHER PERSON: I am really busy, working on… 
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Thank you!!
http://www.isi.edu/~gil 

http://www.wings-workflows.org 
http://www.organicdatascience.org 

http://discoveryinformaticsinitiative.org  

■  Wings contributors: Varun Ratnakar, Ricky Sethi, Hyunjoon Jo, Jihie Kim, Yan Liu, Dave Kale 
(USC), Ralph Bergmann (U Trier), William Cheung (HKBU), Daniel Garijo (UPM), Pedro 
Gonzalez & Gonzalo Castro (UCM), Paul Groth (VUA) 

■  Wings collaborators: Chris Mattmann (JPL), Paul Ramirez (JPL), Dan Crichton (JPL), Rishi 
Verma (JPL), Ewa Deelman & Gaurang Mehta & Karan Vahi (USC), Sofus Macskassy (ISI), 
Natalia Villanueva & Ari Kassin (UTEP) 

■  Organic Data Science: Felix Michel and Matheus Hauder (TUM), Varun Ratnakar (ISI), Chris 
Duffy (PSU), Paul Hanson, Hilary Dugan, Craig Snortheim (U Wisconsin), Jordan Read 
(USGS) 

■  Biomedical workflows: Phil Bourne & Sarah Kinnings (UCSD), Chris Mason (Cornell), Joel 
Saltz & Tahsin Kurk (Emory U.), Jill Mesirov & Michael Reich (Broad), Randall Wetzel 
(CHLA), Shannon McWeeney & Christina Zhang (OHSU) 

■  Geosciences workflows: Chris Duffy (PSU), Paul Hanson (U Wisconsin), Tom Harmon & 
Sandra Villamizar (U Merced), Tom Jordan & Phil Maechlin (USC), Kim Olsen (SDSU) 

■  And many others! 


